
HAL Id: hal-01880093
https://hal.science/hal-01880093

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Edit Distance in the exact context
Mostafa Darwiche, Romain Raveaux, Donatello Conte, Vincent t’Kindt

To cite this version:
Mostafa Darwiche, Romain Raveaux, Donatello Conte, Vincent t’Kindt. Graph Edit Distance in the
exact context. Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), Aug 2018, Bejing, China. pp.
326-336. �hal-01880093�

https://hal.science/hal-01880093
https://hal.archives-ouvertes.fr

Graph Edit Distance in the exact context

Mostafa Darwiche1,2, Romain Raveaux1, Donatello Conte1, and Vincent
T’Kindt2

1 Université de Tours, LIFAT EA6300, 64 avenue Jean Portalis, 37200 Tours, France
2 Université de Tours, LIFAT EA6300, ROOT ERL CNRS 7002, 64 avenue Jean

Portalis, 37200 Tours, France
{mostafa.darwiche,romain.raveaux,donatello.conte,tkindt}@univ-tours.fr

Abstract. This paper presents a new Mixed Integer Linear Program
(MILP) formulation for the Graph Edit Distance (GED) problem. The
contribution is an exact method that solves the GED problem for at-
tributed graphs. It has an advantage over the best existing one when
dealing with the case of dense of graphs, because all its constraints are
independent from the number of edges in the graphs. The experiments
have shown the efficiency of the new formulation in the exact context.

Keywords: Graph Edit Distance · Graph Matching · Mixed Integer
Linear Program.

1 Introduction

Graphs are very powerful in modeling structural relations of objects and pat-
terns. A graph consists of two sets of vertices and edges. The vertices represent
the main components, while the edges show the link between those components.
In a graph, it is also possible to store information and features about the object,
by assigning attributes to vertices and edges. Graphs have been used in many ap-
plications and fields, such as Pattern Recognition to model objects in images and
videos [14]. Also, graphs form a natural representation of the atom-bond struc-
ture of molecules, therefore they have applications in Cheminformatics field [12].
A common task is then, the ability to compare graphs or find (dis)similarities
between them. Such a task enables comparing objects and patterns that are
represented by graphs, and this is known as Graph Matching (GM). GM has
been split into different sub-problems, which mainly fall under two categories:
exact and error tolerant. The first one is very strict, while the second is more
flexible and tolerant to differences in topologies and attributes, which makes it
more suitable for real-life scenarios.

Graph Edit Distance (GED) problem is an error-tolerant graph matching
problem. It provides a dissimilarity measure between two graphs, by computing
the cost of editing one graph to transform it into another. The set of edit opera-
tions are substitution, insertion and deletion, and can be applied on both vertices
and edges. There is a cost associated to each edit operation. Solving the GED
problem consists in finding the sequence of edit operations that minimizes the

2 Mostafa Darwiche et al.

total cost. GED, by concept, is known to be flexible because it has been shown
that changing the edit cost properties can result in solving other matching prob-
lems such as, maximum common subgraph, graph and subgraph isomorphism
[4]. GED is a minimization problem that was proven to be NP-hard. The prob-
lem is complex and hence it was mostly treated by heuristic methods in order to
compute sub-optimal solutions in reasonable time. A famous heuristic is called
Bipartite Graph Matching (BP), which is known to be fast [13]. BP breaks down
the GED problem into a linear sum assignment problem that can be solved in
polynomial time, using the Hungarian algorithm [11]. BP was integrated later in
other heuristics such as Fast BP, Square BP and Beam-search BP [15, 6]. Two
new heuristics: Integer Projected Fixed Point (IPFP) and Graduate Non Con-
vexity and Concavity Procedure (GNCCP), were proposed by Bougleux et al. [3].
Both are adapted to operate over a Quadratic Assignment Problem (QAP) that
models the GED. These heuristics aim at approximating the quadratic objective
function to compute a solution and then improve it by applying projection meth-
ods. In a recent work by Darwiche et al. [5], a heuristic called Local Branching
GED was proposed, that is based on local searches in the solution space of a
Mixed Integer Linear Program (MILP). On the other hand, and in the exact
context (e.g. methods that compute optimal solutions), there are three MILP
formulations in the literature. Only two of them are designed to solve the general
GED problem [8]. The third formulation was designed by Justice and Hero [7],
and it is the most efficient formulation. However, it only deals with a special
case of the GED problem, where attributes on edges are ignored and a constant
cost is assigned to edges edit operations. As well, in the exact context, there is a
branch and bound algorithm [2], which was shown later to be less efficient than
MILP formulations.

The present work is with the interest of designing a new MILP formulation
to solve the GED problem, and so contributes to the exact methods for GED. A
new efficient formulation is proposed that has good performance w.r.t. existing
formulations in the literature. The new formulation is inspired by F2, which is
proposed by Lerouge et al. [8]. It is an improvement to F2 by modifying the vari-
ables and the constraints. It has the advantage over F2, that the constraints are
independent from the number of edges in the graphs. The remainder is organized
as follows: Section 2 presents the definition of the GED problem, followed with
a review of F2 formulation. Then, Section 3 details the improved formulation.
Section 4 shows the results of the computational experiments. Finally, Section 5
highlights some concluding remarks.

2 GED definition and F2 formulation

2.1 GED problem definition

An attributed graph is a 4-tuple G = (V,E, µ, ξ) where, V is the set of vertices,
E is the set of edges, such that E ⊆ V × V , µ : V → LV (resp. ξ : E → LE) is
the function that assigns attributes to a vertex (resp. an edge), and LV (resp.
LE) is the label space for vertices (resp. edges).

Graph Edit Distance in the exact context 3

Next, given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), GED is the
task of transforming one graph source into another graph target. To accomplish
this, GED introduces the vertices and edges edit operations: (i → k) is the
substitution of two vertices, (i→ ε) is the deletion of a vertex, and (ε→ k) is the
insertion of a vertex, with i ∈ V, k ∈ V ′ and ε refers to the empty node. The same
logic goes for edges. The set of operations that reflects a valid transformation
of G into G′ is called a complete edit path, defined as λ(G,G′) = {o1, ..., ok},
where oi is an elementary vertex (or edge) edit operation and k is the number
of operations. GED is then

dmin(G,G′) = min
λ∈Γ (G,G′)

∑
oi∈λ

`(oi) (1)

where Γ (G,G′) is the set of all complete edit paths, dmin represents the
minimal cost obtained by a complete edit path λ(G,G′), and `(.) is the cost
function that assigns costs to elementary edit operations.

2.2 Mixed Integer Linear Program

The general MILP formulation is of the form:

min
x

cTx (2)

Ax ≥ b (3)

xi ∈ {0, 1}, ∀i ∈ B (4)

xj ∈ N, ∀j ∈ I (5)

xk ∈ R, ∀k ∈ C (6)

where c ∈ Rn and b ∈ Rm are vectors of coefficients, A ∈ Rm×n is a matrix
of coefficients. x is a vector of variables to be computed. The variable index
set is split into three sets (B, I, C), respectively stands for binary, integer and
continuous. This formulation minimizes an objective function (Eq. 2) w.r.t. a set
of linear inequality constraints (Eq. 3) and the bounds imposed on variables x
e.g. integer or binary. A feasible solution to this formulation is a vector x with the
proper values based on their defined types, that satisfies all the constraints. The
optimal solution is a feasible solution that has the minimum objective function
value. This approach of modeling decision problems (i.e. problems with binary
and integer variables) is very efficient, especially for hard optimization problems.

2.3 F2 formulation

F2 is the best MILP formulation for the GED problem in the literature, it was
proposed by Lerouge et al. [8]. It is based on a previous and straightforward
MILP formulation, referred to as F1, by the same authors. F2 formulation is a
more compact and improved version of F1 by reducing the number of variables
and constraints. The compactness of F2 comes from the design of the objective
function to be optimized. At first, it considers all vertices and edges of G as

4 Mostafa Darwiche et al.

deleted and vertices and edges of G′ as inserted. Then, it solves the problem
of finding the cheapest assignments/matching between the two sets of vertices
and the two sets of edges. The matching in this context is the substitution edit
operations for vertices and edges. Once, the cheapest matching is computed, the
deletion and insertion operations can be concluded. All the remaining vertices
in V (resp. in V ′) that are not matched with any vertex in V ′ (resp. in V), are
considered as deleted (resp. inserted). The edges are treated in the same manner.
Such design is helpful in reducing the number of variables and constraints in the
formulation. In the following, F2 is detailed by defining the data of the problem,
variables, objective function to minimize and constraints to respect.

Data. Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), the cost
functions, in order to compute the cost of each vertex/edge edit operations,
are known and defined. Therefore, vertices cost matrix [cv] is computed as in
equation 7 for every couple (i, k) ∈ V × V ′. The ε column is added to store the
cost of deletion i vertices, while the ε row stores the costs of insertion k vertices.
Following the same process, the matrix [ce] is computed for every ((i, j), (k, l)) ∈
E × E′, plus the row/column ε for deletion and insertion of edges.

cv =

v1 v2 . . . v|V ′| ε


c1,1 c1,2 . . . c1,|V ′| c1,ε u1
c2,1 c2,2 . . . c2,|V ′| c2,ε u2

...
...

. . .
...

...
...

c|V |,1 c|V |,2 . . . c|V |,|V ′| c|V |,ε u|V |
cε,1 cε,2 . . . cε,|V | 0 ε

(7)

Variables. As mentioned earlier, F2 formulation focuses on finding the corre-
spondences between the two sets of vertices and the two sets of edges. That is
why two sets of decision variables are needed.

– xi,k ∈ {0, 1} ∀i ∈ V,∀k ∈ V ′; xi,k = 1 when vertices i and k are matched,
and 0 otherwise.

– yij,kl ∈ {0, 1} ∀(i, j) ∈ E,∀(k, l) ∈ E′; yij,kl = 1 when edge (i, j) is matched
with (k, l), and 0 otherwise.

Objective function. The objective function to minimize is the following.

min
x,y

∑
i∈V

∑
k∈V ′

(cv(i, k)− cv(i, ε)− cv(ε, k)) .xi,k+ (8)∑
(i,j)∈E

∑
(k,l)∈E′

(ce(ij, kl)− ce(ij, ε)− ce(ε, kl)) .yij,kl + γ

The objective function minimizes the cost of assigning vertices and edges with
the cost of substitution subtracting the cost of insertion and deletion. The γ,

Graph Edit Distance in the exact context 5

which is a constant and given in equation 9, compensates the subtracted costs of
the assigned vertices and edges. This constant does not impact the optimization
algorithm and it could be removed. It is there to obtain the GED value.

γ =
∑
i∈V

cv(i, ε) +
∑
k∈V ′

cv(ε, k) +
∑

(i,j)∈E

ce(ij, ε) +
∑

(k,l)∈E′

ce(ε, kl) (9)

Constraints. F2 has 3 sets of constraints.∑
k∈V ′

xi,k ≤ 1 ∀i ∈ V (10)

∑
i∈V

xi,k ≤ 1 ∀k ∈ V ′ (11)

∑
(k,l)∈E′

yij,kl ≤ xi,k + xj,k ∀k ∈ V ′,∀(i, j) ∈ E (12)

Constraints 10 and 11 are to make sure that a vertex can be only matched with
maximum one vertex. It is possible that a vertex is not assigned to any other, in
this case it is considered as deleted or inserted. Here is the key point of this for-
mulation: F2 is flexible by allowing some vertices/edges not to be matched. The
objective function gets to decide whether a substitution is cheaper than a dele-
tion/insertion or not. γ takes care of the unmatched vertices/edges and includes
their deletion or insertion costs to the objective function. Finally, constraints 12
guarantee preserving edges matching between two couple of vertices. In other
words, to match two edges (i, j) → (k, l), their vertices must be matched first,
i.e. i→ k and j → l OR i→ l and j → k.

The presented version of F2 formulation, and for the sake of simplicity, is ap-
plied to undirected graphs. For the directed case, it simply splits the constraints
12 into two sets of constraints. For more details, please refer to the paper [9].

3 Improved MILP formulation (F3)

3.1 F3 formulation

F3 is a new and an improved MILP formulation, inspired by F2, to solve the
GED problem. It shares some parts of F2 and it is defined as follows.

Data. Same as in F2 formulation, F3 uses the cost matrices [cv] and [ce].

Variables. F3 introduces two sets of decision variables xi,k and yij,kl as in F2.
However, it includes more y variables, by creating two variables: yij,kl and yij,lk

for every ((i, j), (k, l)) ∈ E × E′. Let E
′

= {(l, k) : ∀(k, l) ∈ E′}. The variables
of the formulation are as follows.

– xi,k ∈ {0, 1} ∀i ∈ V,∀k ∈ V ′; xi,k = 1 when vertices i and k are matched,
and 0 otherwise.

– yij,kl ∈ {0, 1} ∀(i, j) ∈ E,∀(k, l) ∈ E′ ∪ E′; yij,kl = 1 when edge (i, j) is
matched with (k, l), and 0 otherwise.

6 Mostafa Darwiche et al.

Fig. 1. Example of edges assignment when assigning two vertices

Objective function. It is basically the same function as in F2 formulation, except
for the cost sum over the y variables to include all of them.

min
x,y

∑
i∈V

∑
k∈V ′

(cv(i, k)− cv(i, ε)− cv(ε, k)) .xi,k+ (8-a)∑
(i,j)∈E

∑
(k,l)∈E′∪E′

(ce(ij, kl)− ce(ij, ε)− ce(ε, kl)) .yij,kl + γ

Constraints. F3 formulation shares the same sets of constraints 10 and 11, that
assure a vertex is only matched with one vertex at most. However, it re-writes
the constraints 12 in a different fashion.∑

(i,j)∈E

∑
(k,l)∈E′∪E′

yij,kl ≤ di,k × xi,k ∀i ∈ V,∀k ∈ V ′ (12-a)

With di,k = min(degree(i), degree(k)). The degree of a vertex is the number of
edges incident to the vertex. The constraints stands for: whenever two vertices
are matched, e.g. (i→ k), the maximum number of edges substitution that can
be done is equal to the minimum degree of the two vertices. Figure 1 shows an
example of the case. Two edges at most can be substituted and the third of i has
to be deleted. Of course, the deletion of all edges is possible, if it costs less than
the substitutions. These constraints force matching the edges and respecting the
topological constraint defined in the GED problem.

The given formulation handles the case of undirected graphs. Though, it can

be adapted to deal with the directed case, by setting E
′

= {φ} (because edges
(i, j) are different from (j, i) and they are already included in E), and replacing
the objective function Eq. 8-a by the objective function of F2 Eq. 8.

3.2 F2 vs. F3

The most important improvement in the proposed formulation is that F3 has sets
of constraints independent of the number of edges in the graphs. Constraints 10
and 11 are shared by both formulations and they do not include edges. However,
constraints 12 rely on the edges of G, which is not the case of the constraints

Graph Edit Distance in the exact context 7

12-a in F3. Table 1 shows the number of variables and constraints in both
formulations. Clearly, F3 has (2 times) more y variables than F2. The reason
behind creating two y variables for each couple of edges, is to accommodate
to the symmetry case that appears when dealing with undirected graphs, i.e.
(i, j) = (j, i). By doing so, the constraints 12 can be re-written differently by
relying only on the vertices of the graphs (constraints 12-a). Note that, this
comparison is done for undirected graphs. In the other case, the symmetry is
discarded, and both formulations have the same number of variables.

Table 1. Nb. of variables and constraints in F2 and F3

Nb. of variables Nb. of Constraints

F2 |V | × |V ′|+ |E| × |E′| |V |+ |V ′|+ |V | × |E|
F3 |V | × |V ′|+ |E| × |E′| × 2 |V |+ |V ′|+ |V | × |V ′|

In the GED problem, edge operations are driven by vertex-vertex matching.
On this basis, the difficulty in F2 and F3 comes from the x decision variables,
rather than the y variables. Moreover, F2 formulation is more sensitive to the

density of the graphs (% connectivity, D = 2|E|
|V |(|V |−1)), because its constraints

depend on the edges, which is not the case in F3. This reasoning led to make
the following two assumptions, by distinguishing between two cases:

1. Non-dense graphs: even if F3 has more y variables than in F2, its perfor-
mance will not be degraded compared to F2.

2. Dense graphs: F3 will have less constraints than F2, since F3 has a number
of constraints independent from the number of edges. Consequently, F3 tends
to perform better than F2.

To validate those assumptions, both formulations are tested over two graph
databases. The results are discussed in the next section.

4 Computational Experiment

4.1 Databases

Two databases are selected from the literature in order to evaluate F3.

MUTA. This database consists of graph that model chemical molecules [1].
It is commonly used when testing GED methods, mainly because it contains
different subsets of small and large graphs. It allows exploiting GED methods
and shows their behaviors when the instances get more difficult. There are 7
subsets, each of which has 10 graphs of same size (10 to 70 vertices) and a subset
of also 10 graphs with mixed graph sizes. Each pair of graphs is considered as
an instance. Therefore, a total of 800 instances (100 per subset) are considered
in this experiment. The density of the graphs is very low (D = 7%), hence they
are considered as non-dense graphs. The choice of the edit operations costs is
based on the values defined in [1].

8 Mostafa Darwiche et al.

CMUHOUSE. This database contains 111 graphs corresponding to 3-D images
of houses [10], each graph consists of 30 vertices with attributes described using
Shape Context feature vector. The graphs are extracted from 3-D house images,
where the houses are rotated with different angles. This is interesting because
it enables testing and comparing graphs that represent the same house but po-
sitioned differently inside the images. For this database, there are 660 instances
in total. The density of these graphs is higher than MUTA graphs, D = 18%.
Two versions of this database are considered: CMUHOUSE-NA is the version
where attributes are not considered when calculating the costs; CMUHOUSE-A
a second version with costs computed based on the functions given in [16].

4.2 Experiment settings

Both formulations are implemented in C language, and solved by CPLEX 12.7.1
with time limit 900 seconds. The tests were executed on a machine with the
following configuration: Windows 7 (64-bit), Intel Xeon E5 4 cores and 8 GB
RAM. For each formulation, the following values are computed for each subset of
graphs: tavg is the average CPU time in seconds for all instances, davg is the devi-
ation percentage between the solutions obtained by one formulation, and the best
computed by both formulations. For example, given an instance I, the deviation

percentage for F3 is equal to
solF3

I −bestI
bestI

× 100, with bestI = min(solF2
I , solF3

I).
Lastly, ηI and η′I represent, respectively, the number of optimal solutions ob-
tained by a formulation, and the number of solutions for which, a given for-
mulation has provided the minimum (smaller objective function value, without
necessarily a proof of optimality).

4.3 Results and analysis

MUTA results. Table 2 shows the results obtained for both formulations for each
subset of graphs. Looking at davg for F2, it scores the smallest values for all the
subsets, except for subset 70. However, the gap between both formulations is
small, especially with small instances (0% for subsets 10 and 20). In terms opti-
mal solutions (η), F3 has higher numbers for subsets 30, 40, 50 and Mixed, with
greater differences: for subsets 30 at 76 optimal solutions against 48, and subset
50 at 31 optimal solutions against 19. Regarding η′, F2 has higher numbers for
most of the subsets (30, 50, 60 and Mixed). However, η′ of F3 are not far the
ones of F2. At last, F2 is faster than F3 for small and medium subsets (10, 20, 30
and Mixed). But, for the rest of the subsets, both formulations suffer from high
computation time and reach the time limit set (900s). The conclusion of this ex-
periment: both formulations seems to be very close in terms of performance and
efficiency in computing optimal solutions. It is hard to tell which formulation is
better. This result corroborates the first assumption, that is F3 is as good as
F2 in the case of non-dense graphs.

Graph Edit Distance in the exact context 9

Table 2. Results of MUTA instances

10 20 30 40 50 60 70 Mixed

F3

tavg(s) 0.10 3.07 365.44 575.65 770.61 810.51 811.10 410.08
davg 0.00 0.00 0.74 0.54 1.78 3.60 2.55 0.80
η 100 100 81 76 31 10 10 62
η′ 100 100 91 90 68 53 61 78

F2

tavg(s) 0.05 0.99 320.35 571.65 766.63 802.94 802.69 370.36
davg 0.00 0.00 0.21 0.51 1.52 1.46 2.76 0.15
η 100 100 79 48 19 11 11 61
η′ 100 100 93 84 69 69 60 91

Table 3. Results of CMUHOUSE instances

CMUHOUSE-NA CMUHOUSE-A

F3

tavg(s) 497.07 416.75
davg 0.70 0.22
η 365 633
η′ 644 652

F2

tavg(s) 880.74 278.78
davg 604.11 4.68
η 25 505
η′ 54 548

CMUHOUSE results. Table 3 presents the results of both formulations for both
versions of CMUHOUSE. In the case of CMUHOUSE-NA (no attributes), the
instances seem to be harder than the version with attributes. When ignoring the
attributes, the similarities between vertices and edges are high and it does not
allow to easily differentiate between them. The average deviation for F3 is 0.70%
against 604.11% for F2, the difference is remarkably high. This is also seen when
looking at η and η′, respectively, 365, 644 for F3 against 25, 54 for F2. F3 was
able to compute optimal solutions for more than 50% of the instances. It looks
like F2 had hard time with these instances in converging towards good solutions.
The version with attributes (CMUHOUSE-A) is easier, but still F3 has scored
davg = 0.22% against 4.68% for F2. F3 has solved more instances to optimality
(652) than F2 (505). Based on these results, the second assumption also holds
true. CMUHOUSE graphs are more dense than MUTA, which means that F3
has less constraints, since all its constraints are independent from the number
of edges in the graphs. As a result, F3 has performed better than F2.

5 Conclusion

In this work, a new MILP formulation is proposed for the GED problem. The
new formulation is an improvement to the best existing one. The results of the
experiments have shown the efficiency of this formulation, especially in the case
of dense graphs. This is due to the fact that, the constraints are independent from
the edges in the graphs. The next step will be to evaluate the new formulation

10 Mostafa Darwiche et al.

against more graph databases with different settings, i.e. graphs with high and
very high densities.

References

1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.: A graph database repository and perfor-
mance evaluation metrics for graph edit distance. In: Graph-Based Representations
in Pattern Recognition - 10th IAPR-TC-15.Proceedings. pp. 138–147 (2015)

2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit
distance algorithm for solving pattern recognition problems. In: 4th International
Conference on Pattern Recognition Applications and Methods 2015 (2015)

3. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recognition Letters 87,
38–46 (2017)

4. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

5. Darwiche, M., Conte, D., Raveaux, R., TKindt, V.: A local branching heuristic for
solving a graph edit distance problem. Computers & Operations Research (2018)

6. Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by as-
sessing the assignment confidence. Pattern Recognition Letters 65, 29–36 (2015)

7. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8),
1200–1214 (2006)

8. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear
programming formulation to compute the graph edit distance. Pattern Recognition
72, 254–265 (2017)

9. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary
linear programming formulation to compute the graph edit distance. Pattern
Recognition 72, 254–265 (2017). https://doi.org/10.1016/j.patcog.2017.07.029,
https://doi.org/10.1016/j.patcog.2017.07.029

10. Moreno-Garćıa, C.F., Cortés, X., Serratosa, F.: A graph repository for learning
error-tolerant graph matching. In: Joint IAPR International Workshops on Sta-
tistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR). pp. 519–529. Springer (2016)

11. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the society for industrial and applied mathematics 5(1), 32–38 (1957)

12. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of computer-aided molecular de-
sign 16(7), 521–533 (2002)

13. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the
edit distance of graphs. In: International Workshop on Graph-Based Representa-
tions in Pattern Recognition. pp. 1–12. Springer (2007)

14. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics
SMC-13(3), 353–362 (May 1983). https://doi.org/10.1109/TSMC.1983.6313167

15. Serratosa, F.: Computation of graph edit distance: reasoning about optimality and
speed-up. Image and Vision Computing 40, 38–48 (2015)

16. Zhang, Z., Shi, Q., McAuley, J.J., Wei, W., Zhang, Y., Van Den Hengel, A.: Pair-
wise matching through max-weight bipartite belief propagation. In: CVPR. vol. 5,
p. 7 (2016)

