
HAL Id: hal-01880066
https://hal.science/hal-01880066

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Deep Neural Network Architecture to Estimate Node
Assignment Costs for the Graph Edit Distance

Xavier Cortés, Donatello Conte, Hubert Cardot, Francesc Serratosa

To cite this version:
Xavier Cortés, Donatello Conte, Hubert Cardot, Francesc Serratosa. A Deep Neural Network Archi-
tecture to Estimate Node Assignment Costs for the Graph Edit Distance. Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), Aug 2018, Beijing, China. pp. 429-438. �hal-01880066�

https://hal.science/hal-01880066
https://hal.archives-ouvertes.fr

A Deep Neural Network Architecture to Estimate Node

Assignment Costs for the Graph Edit Distance

Xavier Cortés
1
, Donatello Conte

1
, Hubert Cardot

1
 & Francesc Serratosa

2

1 LiFAT, Université de Tours, Tours, France

2 Universitat Rovira i Virgili, Tarragona, Catalonia, Spain

{xavier.cortes, donatello.conte, hubert.cardot}@univ-tours.fr, francesc.serratosa@urv.cat

Abstract. The problem of finding a distance and a correspondence between a

pair of graphs is commonly referred to as the Error-tolerant Graph matching

problem. The Graph Edit Distance is one of the most popular approaches to

solve this problem. This method needs to define a set of parameters and the cost

functions aprioristically. On the other hand, in recent years, Deep Neural

Networks have shown very good performance in a wide variety of domains due

to their robustness and ability to solve non-linear problems. The aim of this

paper is to present a model to compute the assignments costs for the Graph Edit

Distance by means of a Deep Neural Network previously trained with a set of

pairs of graphs properly matched. We empirically show a major improvement

using our method with respect to the state-of-the-art results.

1 Introduction

Graphs are defined by a set of nodes (local components) and edges (the structural

relations between them), allowing to represent the connections that exist between the

component parts of an object. Due to this, graphs have become very important to

model objects that require this kind of representation. In fields like cheminformatics,

bioinformatics, computer vision and many others, graphs are commonly used to

represent objects [1].
One of the key points in pattern recognition is to define an adequate metric to

estimate distances between two patterns. The Error-tolerant Graph Matching tries to
address this problem. In particular, the Graph Edit Distance (GED) [2] is an approach
to solve the Error-tolerant Graph Matching problem by means of a set of edit
operations including insertions, deletions and node assignments, also referred to as
node substitutions. On the other hand, Deep Neural Networks (DNNs) have become a
very powerful tool applied in several domains due to their ability to find models.

The aim of this paper is to propose a new way to estimate node assignment costs
for GED, using a DNN trained with a set of graphs correspondences properly labelled.
The document is organized as follows: in Section 2 are presented the definitions to
understand the paper, in Section 3 is presented the state-of-the-art, in Section 4 we
describe the architecture and de details of our model while Section 5 shows the
experimental results. Finally, the conclusions are presented in Section 6.

2 Definitions and Methods

2.1 Attributed Graph

Formally, we define an attributed graph as a quadruplet G = (Σν , Σe , γv , γe), where

Σv = {vi | i = 1, … , n} is the set of nodes, Σe = eij i, j ∈ 1, … , n is the set of

edges connecting pairs of nodes, γv is a function to map nodes to their attributed

values and γe maps the structure of the nodes.

2.2 Graphs Correspondence

We define a correspondence between two graphs Gp and Gq as a set of assignments

f: Σv
p
→ Σv

q
 that univocally relate the nodes of Gp to the nodes of Gq . Where

f vi
p
 = vj

q
 if exist the assignment vi

p
→ vj

q
.

2.3 Node Assignment Costs for the Graphs Edit Distance

The basic idea of the GED [2] between two graphs Gp and Gq , is to find the

minimum cost to transform completely Gp into Gq by means of a set of edit

operations, including insertions, deletions and node assignments, commonly referred

to as editpath. Cost functions are introduced to quantitatively evaluate the level of

distortion that each edit operation introduces.

c vi
p
→ vj

q
 = cv vi

p
→ vj

q
 + ce vi

p
→ vj

q
 (1)

The cost of an assignment edit operation (1) is typically given by the distance

measure between the nodes attributes

cv vi
p
→ vj

q
 = local_distance γv

p
 vi

p
 , γv

q
 vj

q
 and by the cost of substituting the

local structures ce vi
p
→ vj

q
 = structural_distance γe

p
 vi

p
 , γe

q
 vj

q
 . These cost

functions estimate the degree of separation between a pair of nodes vi
p
 and vj

q

belonging to graphs Gp and Gq . The Euclidean distance is a common way to

estimate the local_distance between the nodes attributes, while in [3] are presented

different metrics to estimate the structural_distance. Our model, as we will see,

automatically learns the costs of these assignations from a set of training

correspondences previously labeled without having to define the cost functions.

In order to allow the maximum flexibility in the matching process and taking into

account that graphs can have different cardinality and that a node that appears in Gp

could not be in Gq , graphs can be extended with null nodes adding penalty costs

when an existing node of one graph is assigned to a null one of the other graph. In this

paper we do not consider this option since we focus on the problem of node

assignments comparing our results with other works that face the same problem, as in

[4, 5]. However, our model can be easily combined with other models that consider

null nodes by adding penalty costs for insertions and deletions.

2.4 Hamming Distance

The hamming distance is a metric to compare graph correspondences used typically to

assess the correctness of a correspondence comparing the correspondence that we are

evaluating with respect to the ground-truth one. This metric evaluates the ratio

between the number of correct assignments and the total number of assignments in the

evaluated correspondence. Formally:

Let f: Σv
p
→ Σv

q
 the automatic correspondence and f ′ : Σv

p′
→ Σv

q′
 the ground-truth

correspondence between two graphs Gp and Gq with cardinality n (graphs can be

extended with null nodes to manage insertions or deletions of nodes), the hamming

distance is formally defined as:

∆h f, f ′ =
 (1 − δ f vi

p
 , f ′ vi

p
)n

i=1

n
 (2)

Where, δ is the Kronecker Delta function:

δ(a, b) =
0, if a ≠ b
1, if a = b

 (3)

2.5 Deep Neural Networks

DNNs are a computational model inspired by the neural networks existing in many

biological organisms [6]. They have become very popular in many fields due to its

adaptability and learning capacity.

The classical architecture of a DNN consists of an input layer, an output layer and

a cascade of multiple hidden layers in the middle. Each layer contains several neurons

connected with the neurons of the previous layer. The connections between neurons

have different weights fixing the strength of the signal at the connection. Each neuron

executes an activation function having as inputs the values of the connections with the

previous layer and sending the output to the neurons of the next layer. The signal path

goes from the input layer to the output layer. Depending on the connections weights

and the bias values, the output can be different given the same input.

During the training process the learning algorithm adjust the weights and bias

according to the values of a training set trying to minimize the error between the

given inputs and the expected outputs.

3 State of the Art

The distance value of the GED depends on the edit costs, in particular cv (distance

between the nodes attributes), ce (distance between the local structures) and the

penalties costs for insertions and deletions. Typically, these costs must be defined and

parameterized aprioristically. Depending on how these parameters and costs functions

are defined the performance in terms of hamming distance between the automatically

deduced correspondence and a ground truth correspondence or graphs classification

accuracy, can be different.

Recently, in order to maximize the performance of different Error-Tolerant Graph

Matching approaches, some researchers have focused their work on automatically

learn the parameters and the cost functions instead of using the traditional trial-error

method.

We can divide the learning methods in three main groups depending on the

objective function. The first group [7-10] addresses the recognition ratio for graph

classification, while the second group [4, 5, 11, 12] targets the hamming distance.

Finally, there is a special case in [13] that does not learn the parameters to estimate

the costs but tries to predict if an assignment between nodes is correct or not

depending on the values of the costs matrix (the matrix with the costs of each edit

operation). Moreover, another subdivision can be considered depending if the

methods try to learn the assignments costs or the insertions and deletions. The aim of

our paper is to propose a model to estimate only the assignments costs minimizing the

hamming distance, as in [4, 5]. As we have commented before, our model can be

combined with other models that consider nodes insertions and deletions but we do

not address this particularity in this paper.

4 Proposed Architecture

In this section we describe a new architecture based on DNNs to estimate assignments

costs (section 2.3) between a pair of nodes by means of a DNN (section 2.5) in order

to minimize the hamming distance (section 2.4).

c vi
p
→ vj

q
 = DNN vi

p
→ vj

q
 (4)

4.1 Node Assignment Embedding

The first step of our model consists of transforming the local and structural

information of both nodes into a set of inputs for the network. In this section we show

how to embed this information into an input vector.

Let Gpand Gq two attributed graphs, γv
p

= {vi
p
→ Ψi

p
| i = 1…n} a function that

assigns t attribute values from an arbitrary domain to each node of Gp , where

Ψi
p
∈ ℝt is defined in a metric space of t ∈ ℝ dimensions and γe

p
= {vi

p
→

E vi
p
 | i = 1 …n} where E . refers to the number of edges of a certain node (the

Degree centrality [3]). And similar for γv
q
 and γe

p
 in Gq .

Vector xi→j = [γv
p
 vi

p
 , γe

p
 vi

p
 , γv

q
 vj

q
 , γe

q
 vj

q
] ∈ ℝ(t+1)∙2 is the embedded

representation of the assignment vi
p
→ vj

q
 where each position of the vector xi→j

corresponds to one of the values of the input layer of the DNN that estimates the

assignment cost between the node vi
p
 of Gp and the node vj

q
 of Gq (Fig. 1).

Fig. 1. An illustration showing the embedding process of two nodes (red and blue) into an input

vector.

4.2 Network Architecture

The topology we propose is a classical topology for parameters fitting consisting of a

multi-layer network using the sigmoid activation function for the hidden layers and a

linear function for the output layer (Fig. 2). In the experimental section we shown the

results achieved with different configurations changing the number of neurons and the

number hidden layers.

Fig. 2. DNN architecture for node assignments costs. Z is the number of inputs (size of the

vector xi→j). L the number of neurons of each hidden layer, w the weights and b the bias.

The input of the network representing the nodes to be assigned is the vector xi→j

∈ ℝ(t+1)∙2 (defined in section 4.1) and the output is a real value theoretically defined

within a cost range from zero to one viz. yi→j = {c ∈ ℝ ∶ 0 ≤ c ≤ 1}. Zero is the

expected value when there is no penalty for the assignment and one is the maximum

expected value penalizing a node assignment.

4.3 Training the Model

We manage the problem of training the DNN as a supervised learning problem. The

training set has K observations. Each observation is composed of a triplet consisting

of pair of graphs and the correspondence that relates its nodes {Gp k , Gq k , f k}. The

ground-truth correspondences f k must be provided by an oracle according to the

problem (images, fingerprints, letters…).

a) b)

Fig. 3. (a) Correspondence between a pair of graphs. Colored circles: Nodes. Black lines:

Edges. Green arrows: Graphs correspondence. (b) Set of all possible node assignments and
expected DNN outputs given the correspondence in (a).

Then, assuming that the assignment cost must be low if two nodes are matched and

high in the opposite case and taking into account that the outputs range goes from

zero to one (section 4.2), we propose to feed the learning algorithm with a set of R

inputs-outputs pairs x
vi

p r
→vj

q r

, or that we deduce from the training set

{Gp k , Gq k , f k }. Where vi
p r

 and vj
q r

are two nodes belonging to graphs Gp k
 and

Gq k
 respectively. x

vi
p r

→vj
q r

are the inputs of the DNN representing the assignment

between vi
p r

 and vj
q r

 (section 4.1). And or is the expected output, zero if

f k vi
p r
 = vj

q r
 and one otherwise.

In Fig. 3.b, we show the expected outputs between nodes when the ideal

correspondence is the correspondence shown in Fig. 3.a. Zero when there is an

assignment in the gorund-truth correspondence and one when not. Note that there are

more cases in which the expected output must be one because the correspondences

between graphs are bijective by definition in our framework. That means, each node

of Gp k
 is assigned to a single node of Gq k

 while it is unassigned to all the other

nodes. For this reason and in order to prevent unbalancing problems we propose to

oversample the positive assignments between nodes (when the expected output is

zero) repeating them in the set of inputs-outputs that feeds the learning algorithm

n − 1 times, where n is the graphs cardinality.

The training algorithm used to learn the bias and weights of the network is the

Leveberg-Marquardt [14].

4.4 Graph Matching Algorithm

The graph matching method we propose is inspired by the Bipartite-GED [15] which

is one of the most popular methods used to reduce the computational complexity of

the GED problem to a Linear Sum Assignment Problem (LSAP). First, we build a

cost matrix in which each cell corresponds to the cost of an assignment. The

algorithm fills the values of this matrix with the DNN outputs. Our algorithm does not

extend the matrix for insertions and deletions since we only consider the assignments

between nodes. The process of assigning nodes can be solved as a LSAP on C matrix.

In our experiments we used the Hungarian [16] solver. The final step is to sum the

costs of the solution provided by the solver.

Algorithm: Neural Graph Matching

Input: Graph G1, G2; DNN network;

Output: Correspondences Co; Cost Ct;
1:

2:

3:
4:

5:

6:
7:

8:

9:

Initialisation:

foreach Node NodeI of G1

 foreach Node NodeJ of G2

x:=inputVector(NodeI,NodeJ);

y:=computeCosts(network,x);

 C(I,J) = y;
 end

end
[Co, Ct] = solveLSAP(C);

Algorithm 1. Learning Graph Matching methods.

5 Experiments

We divided the experimental section in three parts. First, we describe the database

used in the experiments. Second, we show the resultant costs matrix using different

network configurations. Finally, we present the hamming distance results using our

model compared with the state-of-the-art algorithms that face the same kind of

problem.

5.1 Databases

The HOUSE-HOTEL database described in detail in [17] consists of two sequences

of frames showing two computer modeled objects, 111 frames of a HOUSE and 101

frames of a HOTEL, rotating on its own axis. Each frame of these sequences has the

same 30 salient points identified and labelled. Each salient point represents a node of

the graph and it is attributed by 60 Context Shape features. They triangulated the set

of salient points using the Delaunay triangulation to generate the structure of the

graphs. They made three sets of frames pairs taking into account different baselines

(number of frames of separation in the video sequence). One set was used to learn,

another to validate and the third one to test the model. Since the salient points are

labelled we know the ground-truth correspondence between the nodes of the graphs.

5.2 Costs Matrix

This section shows the heatmaps of the resultant costs matrix (C matrix in 4.4) using

our model. The aim of this experiment is to find a cost matrix minimizing the costs

when the nodes must be assigned and maximizing the costs when not. Since we know

the ground-truth correspondence we can deduce the ground-truth cost matrix. Fig. 4.a

shows the results using a single hidden layer while Fig. 4.b shows the same results

using 5 hidden layers and Fig. 4.c shows the results using 10 hidden layers with

different configurations of numbers of neurons per layer. Blue color represents low

costs values while yellow color represents high costs values. The experiment was

performed using the first pair of graphs of the test set in the HOUSE sequence

separated by 90 frames and the model has been trained with all the graphs separated

by 90 frames in the training set.

a) b) c)

Fig. 4. Costs matrix heatmaps between two graphs corresponding to the HOUSE dataset (90

frames of separation) using (a) 1 hidden layer, (b) 5 hidden layers and (c) 10 hidden layers.

Fig. 5. Correspondences found between two graphs of the HOTEL sequence using our model.

Left: single-layer and 10 neurons per layer, Right: five-layers and 10 neurons per layer. Blue

lines are the edges between these nodes. Green lines: correct assignments. Red lines: incorrect

assignments.

We observe how the model tends to separate better the correct assignments from

the incorrect ones when we increase the number of neurons and layers until reaching a

point where the improvement is no longer increasing and even it could decrease. This

can be explained because when we increase the network complexity, the model is able

to find deeper non-linear correlations between the attributes that feature the nodes, but

reached a critical point, could present overfitting problems due to there are more

neurons than the ones that can be justified by the data.

Fig. 5 shows the obtained correspondences computing a cost matrix with a single-

layer (left) and with five-layers (right) of 10 neurons each layer in order to illustrate

the performance of the model with different network configurations in terms of

matching accuracy.

5.3 Hamming Distance Results

The main goal of our model is to reduce the hamming distance performing the GED.

In the following experiment we show the hamming distance results between the

correspondence found by our model and the ground-truth correspondence. In Table 1,

we compare our results with respect to the state-of-the-art, note that smaller values

mean better performance. We train, validate and test the model using different pairs of

graphs as we described in section 5.1. The baseline of our experiments is the number

of frames of separation in the video sequence. Since the objects are in motion,

consecutive frames are more similar than the distant ones. Therefore, the problem

tends to be more complex when we increase the number of frames of separation. A

single-layer network with 30 neurons per layer has been enough to reduce the

hamming distance to zero for all the experiments, however, in Fig. 4, we show how

deeper networks tend to increase the gap between the costs, generally separating

better the correct assignments from the incorrect ones. The achieved results using our

model represent a major improvement with respect to the previously presented results.

We discuss the results in the next section.

Table 1. Hamming distance results on House and Hotel datasets.

HOUSE HOTEL

#Frames [4] [5]
Our

model

#Frames [4] [5]

Our

model

90 0.14 0.24 0 90 0.09 0.21 0

80 0.14 0.18 0 80 0.17 0.18 0

70 0.13 0.10 0 70 0.14 0.15 0

60 0.09 0.06 0 60 0.13 0.16 0

50 0.19 0.04 0 50 0.09 0.07 0

40 0.02 0.02 0 40 0.07 0.04 0

30 0.02 0.01 0 30 0.04 0.02 0

20 0.01 0 0 20 0.02 0 0

10 0 0 0 10 0 0 0

* Results obtained with 1 layer of 30 neurons

6 Conclusions

We have presented a new model to estimate assignment costs for the Graphs Edit

Distance using a Deep Neural Network. We experimentally show that our model is

able to find the ideal solution independently of the number of frames of separation.

These results represent a major improvement with respect to the previous state-of-the-

art results, in particular, when the number of frames of separation is large. This means

that the model can manage important distortions in the representations when it tries to

find the best correspondence. We conclude that the improvement is because using

neural networks allows to find multiple correlations between nodes attributes when

performing the matching and our model is not limited by having to define a particular

distance metric aprioristically since it learns the costs functions.

We consider that this work represents an important step to define the costs

functions for node assignments in the problem of the Graph Edit Distance. However it

is necessary to train the network with a set of examples properly labeled. The next

step is to expand the model including insertions and deletions costs.

Acknowledgments. This work is part of the LUMINEUX project supported by the

Region Centre-Val de Loire (France) and by the Spanish projects TIN2016-77836-

C2-1-R and ColRobTransp MINECO DPI2016-78957-R AEI/FEDER EU; and also,

the European project AEROARMS, H2020-ICT-2014-1-644271.

References

1. D. Conte, P. Foggia, C. Sansone, M. Vento. “Thirty Years Of Graph Matching In Pattern

Recognition”. International Journal of Pattern Recognition and Artificial Intelligence, Vol.

18, No. 3 pp: 265-298, 2004.

2. H. Bunke, G. Allermann. “Inexact graph matching for structural pattern recognition”.

Pattern Recognition Letters, 1(4): p. 245-253, 1983.

3. Francesc Serratosa, Xavier Cortés. “Graph Edit Distance: Moving from global to local

structure to solve the graph-matching problem”. Pattern Recognition Letters 65: 204-210,

2015.

4. T.S. Caetano, J.J. McAuley, L. Cheng, Q.V. Le, A.J. Smola. “Learning Graph Matching”.

IEEE Trans. Pattern Anal. Mach. Intell. 31(6): 1048-1058, 2009.

5. X. Cortés, F. Serratosa. “Learning Graph Matching Substitution Weights Based on the

Ground Truth Node Correspondence”. IJPRAI 30(2), 2016.

6. J. Schmidhuber, J. "Deep Learning in Neural Networks: An Overview". Neural

Networks. 61: 85–117. 2015.

7. R. Raveaux, M. Martineau, D. Conte, G. Venturini. “Learning Graph Matching with a

Graph-Based Perceptron in a Classification Context”. GbRPR 2017: 49-58. 2017.

8. M. Neuhaus, H. Bunke. “Self-organizing maps for learning the edit costs in graph

matching”. IEEE Trans. on Sys., Man, and Cybernetics, Part B 35(3), pp. 503-514, 2005.

9. M. Neuhaus, H. Bunke. “Automatic learning of cost functions for graph edit distance”. Inf.

Sci. 177(1), pp. 239-247, 2007.

10. M. Leordeanu, R. Sukthankar, M. Hebert. “Unsupervised Learning for Graph Matching”.

International Journal of Computer Vision 96(1): 28-45, 2012.

11. F. Serratosa, A. Solé-Ribalta, X. Cortés. “Automatic Learning of Edit Costs Based on

Interactive and Adaptive Graph Recognition”. GbRPR 2011: 152-163, 2011.

12. X. Cortés, F. Serratosa. “Learning graph-matching edit-costs based on the optimality of

the oracle's node correspondences”. Pattern Recognition Letters 56: 22-29, 2015.

13. K. Riesen, M. Ferrer. “Predicting the correctness of node assignments in bipartite graph

matching”. Pattern Recognition Letters 69: 8-14. 2016.

14. C. Kanzow, N. Yamashita, M. Fukushima "Levenberg-Marquardt methods with strong

local convergence properties for solving nonlinear equations with convex constraints,"

JCAM, 172(2):375-97, 2004.

15. K. Riesen, H. Bunke. “Approximate graph edit distance computation by means of bipartite

graph matching”. Image and Vision Computing, vol. 27, no. 4, pp. 950–959, 2009.

16. H. W. Kuhn. “The Hungarian Method for the assignment problem”. Naval Research

Logistics Quarterly, 2: 83–97, 1955.

17. C. Francisco Moreno-García, X. Cortés, F. Serratosa. “A Graph Repository for Learning

Error-Tolerant Graph Matching”. S+SSPR 2016: 519-529. 2016.

