Skip to main content

Use-Cases for Uncertainty Propagation in Distributed Control Systems

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2018)

Abstract

This paper describes how data quality can be used to gain trust between components in distributed control systems by adding information about quality to data values. Especially numeric uncertainty is a helpful tool for making highly informed decisions. To illustrate the benefits and challenges, several use-cases are discussed in the context of industrial and automotive settings. The target audience are architects and developers of cyber-physical systems in industrial and automotive domains, researchers in such domains and software developers who are writing software for embedded or distributed control systems which also use uncertain sensor measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amorim, T., et al.: Runtime safety assurance for adaptive cyber- physical systems: ConSerts M and ontology-based runtime reconfiguration applied to an automotive case study. In: Solutions for Cyber-Physical Systems Ubiquity, pp. 137–168. IGI Global (2018). https://doi.org/10.4018/978-1-5225-2845-6

  2. Amorim, T., Ruiz, A., Dropmann, C., Schneider, D.: Multidirectional modular conditional safety certificates. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 357–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_31

    Chapter  Google Scholar 

  3. Beugnard, A., Jézéquel, J.M., Plouzeau, N.: Contract aware components, 10 years after. Electron. Proc. Theor. Comput. Sci. 37, 1–11 (2010). https://doi.org/10.4204/EPTCS.37.1

    Article  Google Scholar 

  4. Bondavalli, A., Simoncini, L.: Failure classification with respect to detection. In: Proceedings of the Second IEEE Workshop on Future Trends of Distributed Computing Systems, pp. 47–53, September 1990. https://doi.org/10.1109/FTDCS.1990.138293

  5. Bornholt, J., Meng, N., Mytkowicz, T., McKinley, K.S.: Programming the internet of uncertain \(<\)T\(>\)hings, pp. 1–7 (2015)

    Google Scholar 

  6. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain\(<\)T\(>\): a first-order type for uncertain data, p. 21 (2013)

    Google Scholar 

  7. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain\(<\)T\(>\): a first-order type for uncertain data, pp. 51–66. ACM Press (2014). https://doi.org/10.1145/2541940.2541958

  8. Darulova, E.: Programming with numerical uncertainties, p. 172 (2014)

    Google Scholar 

  9. Darulova, E., Kuncak, V.: Sound compilation of reals, pp. 235–248. ACM Press (2014). https://doi.org/10.1145/2535838.2535874

  10. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point programs, pp. 1–10. IEEE, September 2013. https://doi.org/10.1109/EMSOFT.2013.6658600

  11. Ezhilchelvan, P.D., Shrivastava, S.K., Elphick, M.J.: A characterisation of faults in systems. University of Newcastle upon Tyne, Computing Laboratory (1985)

    Google Scholar 

  12. Fenelon, P., Hebbron, B.: Applying HAZOP to software engineering models. In: Risk Management and Critical Protective Systems: Proceedings of SARSS 1994 (1994)

    Google Scholar 

  13. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Proceedings of the on Future of Software Engineering, FOSE 2014, pp. 167–181. ACM, New York (2014). https://doi.org/10.1145/2593882.2593900

  14. Iber, J., Rauter, T., Kreiner, C.: A self-adaptive software system for increasing the reliability and security of cyber-physical systems. In: Solutions for Cyber-Physical Systems Ubiquity, pp. 223–246 (2018). https://doi.org/10.4018/978-1-5225-2845-6.ch009

  15. ISO, IEC: ISO/IEC 25012:2008 data quality model (2008)

    Google Scholar 

  16. Izycheva, A., Darulova, E.: On sound relative error bounds for floating-point arithmetic, pp. 15–22. IEEE, October 2017. https://doi.org/10.23919/FMCAD.2017.8102236

  17. JCGM: JCGM 100:2008 evaluation of measurement data Guide to the expression of uncertainty in measurement, September 2008

    Google Scholar 

  18. JGCM: JCGM-WG1-SC1-N10 guide to the expression of uncertainty in measurement (GUM) - supplement 1: numerical methods for the propagation of distributions (2004)

    Google Scholar 

  19. JGCM: JCGM 104:2009 evaluation of measurement data - an introduction to the “guide to the expression of uncertainty in measurement” (2009)

    Google Scholar 

  20. JGCM: JCGM 102:2011 evaluation of measurement data - supplement 2 to the “guide to the expression of the uncertainty in measurement” - extension to any number of output quantities (2011)

    Google Scholar 

  21. JGCM: JCGM 106:2012 evaluation of measurement data - the role of measurement uncertainty in conformity assessment. Chem. Int. - Newsmagazine IUPAC 35(2) (2013). https://doi.org/10.1515/ci.2013.35.2.22

  22. Klein, L.A.: Sensor and data fusion: a tool for information assessment and decision making. SPIE Press, Bellingham (2004)

    Book  Google Scholar 

  23. Korsaa, M., et al.: The SPI manifesto and the ECQA SPI manager certification scheme. J. Softw.: Evol. Process 24(5), 525–540 (2012). https://doi.org/10.1002/smr.502

    Article  Google Scholar 

  24. Kreiner, C.: A binding time guide to creational patterns, pp. 1–10. ACM Press (2015). https://doi.org/10.1145/2739011.2739025

  25. Krisper, M., Iber, J., Dobaj, J., Kreiner, C.: Uncertain values, error-propagation, and decision confidence, p. 5. ACM, Irsee (2018, unpublished)

    Google Scholar 

  26. Krisper, M., Kreiner, C.: Describing binding time in software design patterns, pp. 1–15. ACM Press (2016). https://doi.org/10.1145/3011784.3011811

  27. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data without doing anything obviously wrong! p. 12 (2009)

    Google Scholar 

  28. Puder, A., Römer, K., Pilhofer, F.: Distributed Systems Architecture: A Middleware Approach. Elsevier, Amsterdam/Boston (2006)

    Google Scholar 

  29. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms, 2nd edn. Pearson Education, Harlow/Essex (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krisper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krisper, M., Iber, J., Dobaj, J. (2018). Use-Cases for Uncertainty Propagation in Distributed Control Systems. In: Larrucea, X., Santamaria, I., O'Connor, R., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2018. Communications in Computer and Information Science, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-97925-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97925-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97924-3

  • Online ISBN: 978-3-319-97925-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics