Skip to main content

Physarum Inspired Connectivity and Restoration for Wireless Sensor and Actor Networks

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence Systems (UKCI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 840))

Included in the following conference series:

Abstract

Wireless sensor-actor networks (WSANs) are a core component of Internet of Things (IOT), and are useful for environments that are difficult and/or dangerous for sensors to be deployed deterministically. After random deployment, the sensors are required to disperse autonomously without central control to maximize the coverage and re-establish the connectivity of the network. In this paper, we propose a Physarum inspired self-healing autonomous network connectivity restoration algorithm that minimize movement overhead and keep load balance. The mechanism to select the alternative nodes only involves the one-hop information table, and depends on actor node location from base station (regions of k-influence), and residual energy. Our model achieved almost complete coverage, and fault repair in one or two rounds with minimal number of movement overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, A.A., Younis, M., Akkaya, K.: Movement-assisted connectivity restoration in wireless sensor and actor networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1366–1379 (2009). https://doi.org/10.1109/TPDS.2008.246

    Article  Google Scholar 

  2. Abbasi, A.A., Younis, M.F., Baroudi, U.A.: A least-movement topology repair algorithm for partitioned wireless sensor-actor networks. Int. J. Sens. Netw. 11(4), 250–262 (2012). https://doi.org/10.1504/IJSNET.2012.047152

    Article  Google Scholar 

  3. Abbasi, A.A., Younis, M.F., Baroudi, U.A.: Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Trans. Veh. Technol. 62(1), 256–271 (2013). https://doi.org/10.1109/TVT.2012.2212734

    Article  Google Scholar 

  4. Adamatzky, A.: From reaction-diffusion to physarum computing. Nat. Comput. 8(3), 431–447 (2009). https://doi.org/10.1007/s11047-009-9120-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010). https://books.google.co.uk/books?id=Kbs_AIDbfU8C

  6. Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Kaiser, M.S.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018). https://doi.org/10.1109/ACCESS.2018.2789437

    Article  Google Scholar 

  7. Akkaya, K., Senel, F., Thimmapuram, A., Uludag, S.: Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility. IEEE Trans. Comput. 59(2), 258–271 (2010). https://doi.org/10.1109/TC.2009.120

    Article  MathSciNet  MATH  Google Scholar 

  8. Alfadhly, A., Baroudi, U., Younis, M.: Least distance movement recovery approach for large scale wireless sensor and actor networks. In: IWCMC 2011 - 7th International Wireless Communications and Mobile Computing Conference, pp. 2058–2063 (2011). https://doi.org/10.1109/IWCMC.2011.5982851

  9. Brass, P.: Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM Trans. Sens. Netw. 3(2) (2007). https://doi.org/10.1145/1240226.1240229

  10. Goubier, O.N.P., Huynh, H.X., Truong, T.P., Traore, M., Pottier, B., Rodin, V., Nsom, B., Esclade, L., Rakoroarijaona, R.N., Goubier, O., Stinckwich, S., Huynh, H.X., Lam, B.H., Vinh, Udrekh, Muslim, H., Surono: Wireless sensor network-based monitoring, cellular modelling and simulations for the environment. ASM Sci. J. 2017(Special issue1), 56–63 (2017)

    Google Scholar 

  11. Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. J. Theor. Biol. 253(4), 659–667 (2008). https://doi.org/10.1016/j.jtbi.2008.04.017

    Article  Google Scholar 

  12. Gupta, S.K., Kuila, P., Jana, P.K.: Genetic algorithm for k-connected relay node placement in wireless sensor networks. Adv. Intell. Syst. Comput. 379 (2016). https://doi.org/10.1007/978-81-322-2517-1_69

  13. Hashim, H.A., Ayinde, B.O., Abido, M.A.: Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm. J. Netw. Comput. Appl. 64, 239–248 (2016). https://doi.org/10.1016/j.jnca.2015.09.013

    Article  Google Scholar 

  14. Imran, M., Younis, M., Haider, N., Alnuem, M.A.: Resource efficient connectivity restoration algorithm for mobile sensor/actor networks. EURASIP J. Wirel. Commun. Netw. 2012(1), 347 (2012)

    Article  Google Scholar 

  15. Jones, J.: Influences on the formation and evolution of physarum polycephalum inspired emergent transport networks. Nat. Comput. 10(4), 1345–1369 (2011). https://doi.org/10.1007/s11047-010-9223-z

    Article  MathSciNet  Google Scholar 

  16. Lam, B.H., Huynh, H.X., Pottier, B.: Synchronous networks for bio-environmental surveillance based on cellular automata. EAI Endorsed Trans. Context-Aware Syst. Appl. 16(8) (2016). https://doi.org/10.4108/eai.9-3-2016.151117

  17. Latty, T., Beekman, M.: Speed-accuracy trade-offs during foraging decisions in the acellular slime mould physarum polycephalum. Proc. R. Soc. B Biol. Sci. 278(1705), 539–545 (2011). https://doi.org/10.1098/rspb.2010.1624

    Article  Google Scholar 

  18. Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000). https://doi.org/10.1038/35035159

    Article  Google Scholar 

  19. Ozera, K., Oda, T., Elmazi, D., Barolli, L.: Design and implementation of a simulation system based on genetic algorithm for node placement in wireless sensor and actor networks. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 673–682. Springer, Heidelberg (2016)

    Google Scholar 

  20. Qiu, T., Chen, N., Li, K., Qiao, D., Fu, Z.: Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw. 55, 143–152 (2017). https://doi.org/10.1016/j.adhoc.2016.11.001

    Article  Google Scholar 

  21. Qiu, T., Luo, D., Xia, F., Deonauth, N., Si, W., Tolba, A.: A greedy model with small world for improving the robustness of heterogeneous internet of things. Comput. Netw. 101, 127–143 (2016). https://doi.org/10.1016/j.comnet.2015.12.019

    Article  Google Scholar 

  22. Ramezani, T., Ramezani, T.: A distributed method to reconstruct connection in wireless sensor networks by using genetic algorithm. Mod. Appl. Sci. 10(6), 50 (2016)

    Article  Google Scholar 

  23. Reid, C.R., Beekman, M.: Solving the towers of Hanoi - how an amoeboid organism efficiently constructs transport networks. J. Exp. Biol. 216(9), 1546–1551 (2013). https://doi.org/10.1242/jeb.081158

    Article  Google Scholar 

  24. Reid, C.R., Latty, T.: Collective behaviour and swarm intelligence in slime moulds. FEMS Microbiol. Rev. 40(6), 798–806 (2016). https://doi.org/10.1093/femsre/fuw033

    Article  Google Scholar 

  25. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1) (2008). https://doi.org/10.1103/PhysRevLett.100.018101

  26. Senturk, I., Yilmaz, S., Akkaya, K.: Connectivity restoration in delay-tolerant sensor networks using game theory. Int. J. Ad Hoc Ubiquitous Comput. 11(2–3), 109–124 (2012). https://doi.org/10.1504/IJAHUC.2012.050268

    Article  Google Scholar 

  27. Tsompanas, M.A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models simulating slime mould computing. In: Advances in Physarum Machines, pp. 563–594. Springer, Heidelberg (2016)

    Google Scholar 

  28. Vaidya, K., Younis, M.: Efficient failure recovery in wireless sensor networks through active spare designation. In: DCOSS 2010 - International Conference on Distributed Computing in Sensor Systems, Adjunct Workshop Proceedings: IWSN, MobiSensors, Poster and Demo Sessions (2010). https://doi.org/10.1109/DCOSSW.2010.5593284

  29. Wolfram, S.: Computation theory of cellular automata. Commun. Math. Phys. 96(1), 15–57 (1984)

    Article  MathSciNet  Google Scholar 

  30. Yan, K., Luo, G., Tian, L., Jia, Q., Peng, C.: Hybrid connectivity restoration in wireless sensor and actor networks. EURASIP J. Wirel. Commun. Netw. 2017(1) (2017). https://doi.org/10.1186/s13638-017-0921-4

  31. Younis, M., Lee, S., Gupta, S., Fisher, K.: A localized self-healing algorithm for networks of moveable sensor nodes. In: GLOBECOM - IEEE Global Telecommunications Conference, pp. 1–5 (2008). https://doi.org/10.1109/GLOCOM.2008.ECP.9

  32. Zhang, X., Gao, C., Deng, Y., Zhang, Z.: Slime mould inspired applications on graph-optimization problems. In: Advances in Physarum Machines, pp. 519–562. Springer, Heidelberg (2016)

    Google Scholar 

  33. Zhang, Y., Wang, J., Hao, G.: An autonomous connectivity restoration algorithm based on finite state machine for wireless sensor-actor networks. Sensors 18(1), 153 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

Abubakr Awad is supported by Elphinstone PhD Scholarship (University of Aberdeen). Wei Pang and George M. Coghill are supported by the Royal Society International Exchange program (Grant Ref IE160806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubakr Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awad, A., Pang, W., Coghill, G.M. (2019). Physarum Inspired Connectivity and Restoration for Wireless Sensor and Actor Networks. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds) Advances in Computational Intelligence Systems. UKCI 2018. Advances in Intelligent Systems and Computing, vol 840. Springer, Cham. https://doi.org/10.1007/978-3-319-97982-3_27

Download citation

Publish with us

Policies and ethics