

Edinburgh Research Explorer

On the Security Properties of e-Voting Bulletin Boards

Citation for published version:
Kiayias, A, Kuldmaa, A, Lipmaa, H, Siim, J & Zacharias, T 2018, On the Security Properties of e-Voting
Bulletin Boards. in 11th Conference on Security and Cryptography for Networks (SCN 2018). Lecture Notes
in Computer Science, vol. 11035, Springer, Cham, Amalfi, Italy, pp. 505-523, 11th Conference on Security
and Cryptography for Networks, Amalfi, Italy, 5/09/18. https://doi.org/10.1007/978-3-319-98113-0_27

Digital Object Identifier (DOI):
10.1007/978-3-319-98113-0_27

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
11th Conference on Security and Cryptography for Networks (SCN 2018)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1007/978-3-319-98113-0_27
https://doi.org/10.1007/978-3-319-98113-0_27
https://www.research.ed.ac.uk/en/publications/e7cb2c8c-cc49-45e1-8b25-808ade7bb82d

On the Security Properties of e-Voting Bulletin Boards

Aggelos Kiayias1, Annabell Kuldmaa2, Helger Lipmaa2,3, Janno Siim2,4, and Thomas
Zacharias1

1 University of Edinburgh, UK
2 University of Tartu, Estonia

3 Cybernetica-Smartmatic CCEIV, Estonia
4 STACC, Estonia

akiayias@inf.ed.ac.uk, annabell.kuldmaa@gmail.com, helger.lipmaa@gmail.com,

jannosiim@gmail.com, tzachari@inf.ed.ac.uk

Abstract. In state-of-the-art e-voting systems, a bulletin board (BB) is a critical component for
preserving election integrity and availability. Although it is common in the literature to assume
that a BB is a centralized entity that is trusted, in the recent works of Culnane and Schneider
[CSF 2014] and Chondros et al. [ICDCS 2016], the importance of removing BB as a single point
of failure has been extensively discussed. Motivated by these works, we introduce a framework for
the formal security analysis of the BB functionality. Our framework treats a secure BB as a robust
public transaction ledger, defined by Garay et al. [Eurocrypt 2015], that additionally supports the
generation of receipts for successful posting. Namely, in our model, a secure BB system achieves
Persistence and Liveness that are confirmable, in the sense that any malicious behavior of the BB
system can be detected via a verification mechanism.
As a case study for our framework, we analyze the BB system of Culnane and Schneider and point
out its weaknesses. We demonstrate an attack revealing that the said system does not achieve
Confirmable Liveness, even in the case where the adversary is computationally bounded and covert,
i.e., it may deviate from the protocol specification but does not want to be detected. In addition,
we show that special care should be taken for the choice of the underlying cryptographic primitives,
so that the claimed fault tolerance threshold of N/3 out-of N corrupted peers is preserved.
Next, based on our analysis, we introduce a new BB protocol that upgrades the [CSF 2014] protocol.
We prove that it tolerates any number less than N/3 out-of N corrupted peers both for Persistence
and Confirmable Liveness, against a computationally bounded general Byzantine adversary.

Keywords: Bulletin board, e-voting, liveness, persistence

On the Security Properties of e-Voting Bulletin Boards 1

1 Introduction

An electronic voting (e-voting) system is a salient instance of a network protocol where verifying
the correctness of the execution is of critical importance. One can argue that if the concerned
parties can not agree on the election transcript, then the voting process itself is meaningless.
Furthermore, besides e-voting, verifiability of the execution is a desired feature in several other
cases, such as auctions and blockchain transactions, to name a few.

It becomes apparent that in any protocol where consensus on the outcome is essential,
the protocol infrastructure must guarantee a consistent view to all involved parties as far as
auditing is concerned. Consistency here informally suggests that any two auditors engaging
in the verification process on the same input but from possibly different network locations,
should agree on their verdict, i.e. they both accept or reject the execution outcome. If this
guarantee cannot be provided, then an adversary controlling the network traffic could easily
partition the parties into small “islands”, such that each island has access to a partial, and
possibly (partially) fake, view of the execution. By doing this, the adversary can undermine
the auditors’ consensus on the outcome. This matter has been extensively studied by Barak
et al. [5], where it is shown that parties communicating via non-authenticated channels are
unavoidably prone to such “isolation” attacks.

When it comes to voting, consistency may be realized in various ways depending on the
election setting. For instance, in small-scale elections (e.g. board elections) a consistent view
can be achieved by executing a consensus protocol by the voters themselves, even without
encrypting the votes if privacy is not a concern. However, when considering the large scale setting
(e.g., national elections) where complete connectivity among the participants is unrealistic, a
publicly accessible and reliable method is required for posting and reading all necessary election
information. This is provided by an electronic bulletin board (BB) which, abstractly, encompasses
two types of operations: 1) a posting operation involving users who make post requests for items
of their choice, potentially subject to some access policy, and a subsystem of item collectors (ICs)
that receive and store the submitted items. 2) A publishing operation, where the IC subsystem
publishes the stored items on an audit board (AB) from where any party can read. Depending
on the implementation, the IC and the AB could be distributed or centralized, or even managed
by the same physical entity. Nonetheless, the above generic description typifies the way BB’s
are treated in the e-voting literature.

By the discussion so far, it is of high importance that the BB functionality implemented
by the IC and AB should function as an immutable database, so that once submitted, items
could not be erased or changed. The desired features of such a database include: (a) the ability
to authenticate item contributors, (b) distributed operation so as to protect against attacks on
availability, (c) a predetermined time-span where item submission is enabled, (d) resilience to
any modification so as to facilitate verifiability.

The necessity of a consistent BB has been stressed many times in e-voting literature. In
his PhD thesis, Benaloh [6] assumes BBs with append-only write operations for auditing, also
stressing out that “implementing such bulletin boards may be a problem unto itself.” Subse-
quently, most verifiable e-voting systems proposed (e.g. [23,17,13,31,15,2,14,10,7,32]) refer to the
notion of BB as a fundamental component of their infrastructure without explicitly realizing it.

Despite the widely accepted critical importance of building reliable BBs for e-voting, the
literature on proposals of secure and efficient BB constructions is scarce. Outside a limited
number of early works [39,21,38,29,33], the most concrete examples include the BB applied
in the vVote e-voting system [20] (cf. [18,11]) and the BB of the D-DEMOS Internet-voting
(i-voting) system [16]. In all these cases, the introduced BB was either an integral part of a
specific e-voting system [21,16], or, even though modular, lacked formal treatment under a
comprehensive security model [39,38,33,29,20].

In this work, we focus on the functionality of the BB as used in e-voting systems, yet we note
that our approach can be extended to other applications where a public reliable auditing system

2 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

is needed. We aim to establish a complete formal treatment of a BB and propose an efficient
and provably secure construction that can be deployed in a wide class of e-voting designs.

Initially, we are motivated by the security requirements proposed by Culnane and Schnei-
der [20], suggesting that a secure BB should prevent data injection and removal, while allowing
only the publishing of non-clashing items. On top of these properties, [20] prescribes a liveness
guarantee of the eventual publishing of all submitted items for which a receipt of correct record-
ing has been generated. Taking a step further, we introduce a framework for the formal study of
the BB concept and its security. Our framework is inspired by (i) the notion of a robust public
transaction ledger (RPTL) defined by Garay et al. [24] and (ii) the security model presented
by Chondros et al. [16], thereby utilizing the connection between blockchain and BB systems,
which, albeit being folklore, was never formally exploited. We formalize a secure BB system in
a way that it can be seen as an RPTL that additionally supports the generation of receipts
for successful posting. Expanding the security model for blockchain protocols of [24], we divide
security into two properties named Persistence and Confirmable Liveness. Confirmability in
liveness captures the receipt generation capability. Persistence can also be Confirmable, mean-
ing that dishonest AB behavior is detectable via verification of published data.

Next, we apply our framework for the security analysis of the BB system of [20], which we
refer to as the CS BB system, that utilizes standard signature and threshold signature schemes
(TSS) as cryptographic building blocks. In the threat model of [20], an adversary may corrupt
less than Nc/3 out-of the total Nc IC peers, hence we also assume this fault-tolerance threshold.

Our findings reveal that CS is not secure in our framework for the < Nc/3 threshold. Specif-
ically, we demonstrate an explicit attack showing that CS with Nc IC peers does not achieve
Confirmable Liveness. Our attack falls outside the threat model [20] but raises an interesting
discussion about its plausibility. In particular, the threat model of [20] relies on a presumed “fear
of detection” (cf. the full version of [20], [19, Section 8]), to exclude certain adversarial protocol
deviations in the IC subsystem. Nevertheless, such covert type of security reasoning, cf. [3], is
never formalized or implemented in [19] and in fact, as our attack demonstrates, the detection
of protocol deviation is impossible by the IC peers themselves given their local protocol view.

A second, though less crucial, finding for the security of CS concerns its Confirmable Persis-
tence guarantees. Namely, we show that in order for CS to achieve Confirmable Persistence under
the < Nc/3 fault tolerance threshold, the underlying TSS should not be applied as ‘black-box’
and that care should be taken for the choice of the TSS construction. By describing a specific
attack, we show that when the TSS robustness condition analyzed in [26] is invoked for liveness,
then a smaller fault threshold of < Nc/4 must be assumed. On the positive side, we show that
there are constructions (e.g. the TSS in [41], or the “trivial” TSS consisting of Nc standard
signatures) suitable for CS that respect the < Nc/3 threshold for Confirmable Persistence.

Based on our analysis, we modify CS by designing a new Publishing protocol that achieves
consensus among the honest IC peers on the posted items that should be published. Combined
with the CS Posting protocol, we obtain a new BB system that achieves both Persistence and
Confirmable Liveness for < Nc/3 corrupted IC peers. The new BB system is secure against (i)
a general computationally bounded Byzantine adversary, (ii) in a partially synchronous setting
(cf. [22]), where the message delivery delay and the synchronization loss among the entities’
clocks are bounded, but the bounds need not to be known for the entities’ engagement in the
BB system.

Summary of Contributions. Our contributions are as follows:

– Introduction of the first complete framework for the formal study of e-voting BBs captured
by the properties of Confirmable Liveness and (Confirmable) Persistence.

– Analysis of the CS BB system [20] in our security framework that reveals two vulnerabilities.
In particular, one of the vulnerabilities challenges the reasoning of liveness in the threat
model provided in [19, Sec. 8].

On the Security Properties of e-Voting Bulletin Boards 3

– A suitably modified variant of the CS protocol that restores Confirmable Liveness and we
prove secure in our framework with an Nc/3 threshold for the IC subsystem against compu-
tationally bounded Byzantine adversaries. In particular, (i) Persistence holds in the asyn-
chronous model and can be also Confirmable assuming honest majority between AB peers,
while (ii) Confirmable Liveness holds in the partially synchronous model.

2 Related work

The BB functionality as component of e-voting systems. In a wide range of state-of-the-
art e-voting systems (e.g., [31,15,2,14,10,42,32]), the BB is a centralized single point of failure
for security analysis. Dini [21] proposed a distributed e-voting service based on [23], focusing on
the service in general rather on the BB system. Several works on distributed e-voting BB solu-
tions lacked formal security analysis, providing only constructions without proof [38,40,29,33],
a study of requirements [28] or being applicable only to the kiosk-voting based setting [7]. D-
DEMOS [16] is a distributed internet-voting system which adopts [32] to the distributed setting.
The security in [16] is studied in a model that is a stepping stone for our framework, yet secu-
rity argumentation targets specifically the D-DEMOS requirements. The CS BB system [20] is
a reference point for our work, and will be analyzed in Section 5.

Robust public transaction ledgers. In a recently emerged line of research, transaction
ledgers used in blockchain applications have been studied under formal cryptographic models.
Garay et al. [24] formalize robust public transaction ledgers (RPTLs) that satisfy (i) Persistence,
i.e., honest parties agree on their report of transactions published in the ledger in an append-
only manner and (ii) Liveness, i.e., all transactions in the local view of the honest parties will
be eventually reported. Moreover, they prove that Nakamoto’s Bitcoin blockchain protocol [35]
is an RPTL in a synchronous setting. Taking a step further, Pass et al. [36] prove the robustness
of Bitcoin blockchain protocol, even when the network is semi-synchronous, i.e., the adversary
can impose bounded delays. Very recently, Garay et al. [25] introduce a dynamic setting that
reflects most real-world scenarios where the number of involved parties may vary over time, while
Badertscher et al. [4] prove the security of Bitcoin as an RPTL in the universal composability
framework [12]. A responsive consensus protocol is one that achieves “instant” confirmation of
transactions (i.e., dependent only on network delay), and it is shown in [37], that such protocols
exist only assuming a 1/3 bound on the adversary. As a side observation, our protocol matches
this bound and this level of responsiveness in the permissioned setting (while [37] is in the
permissionless setting) and can be seen as a responsive permissioned distributed ledger. We
note that the permissionless setting is not immediately relevant to e-voting, since in e-voting,
we need to explicitly permission write access so that it is consistent with the e-voting semantics
(e.g., the one voter - one vote principle).

3 Preliminaries

We use κ as the security parameter. We write f(κ) = negl(κ) if function f is negligible in κ,
and PPT for probabilistic polynomial-time. We denote [N] := {1, 2, . . . , N} for any N ∈ N.

Signature schemes. A signature scheme DS = (KGen,Sig,Vf) consists of the following PPT
algorithms: (i) the key generation algorithm KGen generates a keypair (pk, sk) ← KGen(1κ) for
a secret signing key sk and a public verification key pk; (ii) the signing algorithm Sig returns,
on input a message m and a signing key sk, a signature σ ← Sigsk(m); (iii) the verification
algorithm Vf returns, given pk, a message m and signature σ, a bit b← Vfpk(m,σ).

The correctness of DS requires that for each (pk, sk) ∈ KGen(1κ) and a valid message m,
it must hold that Vfpk(m,Sigsk(m)) = 1. The security of DS is formalized via the notion of

4 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

existential unforgeability against chosen message attacks (EUFCMA, [27]). For a more detailed
description of EUFCMA security, cf. Appendix A.1.

Threshold signature schemes. Let ts < N be two positive integers and P1, . . . , PN a set
of peers. A (non-interactive) threshold signature scheme (TSS) TSS = (DistKeygen,ShareSig,
ShareVerify,Combine,TVf) is a tuple of the following five efficient algorithms: (i) the distributed
key generation algorithm DistKeygen(1κ, ts, N) generates a keypair (tski, pki) for each peer Pi
and a public key pk, such that exactly ts + 1 secret keys tski are required to recover the se-
cret key tsk corresponding to pk. The public output is pk together with a tuple of verifica-
tion keys (pk1, . . . , pkN); (ii) the signing algorithm ShareSigtski(m) returns a signature share σi
of the message m; (iii) the share verification algorithm ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi))
outputs 1 iff σi is the valid ith signature share of m; (iv) the share combining algorithm
Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S), given a subset of ts + 1 valid signature shares on m,
outputs a full signature σ ← TSign(tsk,m) on m; (v) the verification algorithm TVfpk(m,σ)
outputs 0 or 1, depending on whether σ is a valid signature of m.

The correctness of TSS requires that for a vector (tsk, pk, tsk1, . . . , tskN , pk1, . . . , pkN) output
by DistKeygen(1κ, ts, N), if S ⊆ [N] s.t. |S| = ts + 1, it holds that (i) σi = ShareSigtski(m), and
(ii) if σ = Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S), then ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi)) =
1 for i ∈ S and TVfpk(m,σ) = 1.

TSS is existentially (ts, N)-unforgeable against chosen-message attacks ((ts, N)-EUFCMA-
secure) if every PPT adversary A has negl(κ) advantage in performing a successful EUFCMA
forgery for a message m∗, even when the sum of (i) the number of the parties A corrupts, and
(ii) the number of parties for which A made a signing query for m∗, is no more than ts. We write
AdvtssA (κ, ts, N) to denote A’s advantage in breaking the (ts, N)-EUFCMA-security of TSS. For
a more detailed description of (ts, N)-EUFCMA security, cf. Appendix A.2.

TSS is said to be (ts, N)-robust, if A controlling ts peers, cannot prevent honest peers from
creating a valid signature. Robustness can only be achieved for ts < N/2, see Gennaro et al. [26].

4 Framework

We introduce a formal framework for secure e-voting BB systems. First, we provide an abstract
description of the consisting entities and protocols. Then, building upon the requirements stated
in [20] and the modeling approach of [16] and [24], we formalize BB security via the notions of
(Confirmable) Persistence and Confirmable Liveness.

4.1 Syntax of a bulletin board system

Entities. A BB system involves the following entities: 1) a setup authority SA that generates
the setup information and initializes all other entities with their private inputs; 2) the users
that submit post requests for items of their choice. An item can be any data the user intends to
be published, e.g., the voters’ ballots, the election results or any necessary audit information.;
3) a subsystem of item collection (IC) peers P1, . . . , PNc that are responsible for (i) interacting
with the users for posting all submitted items, and (ii) interacting with the AB (see below) to
publish the recorded items; 4) a subsystem of audit board (AB) peers AB1, . . . , ABNw where all
the posted items are published.

Setup. At the preparation period, SA specifies a posting policy P = (Accept,Select(·)), where
1) Accept = {(U, x)} is a binary relation over pairs of user IDs and items. For a user U that
wants to post item x, (U, x) ∈ Accept is a check the IC peers execute to initiate interaction with
U for posting x. E.g., a user that is authenticated as a voter may be accepted to post a vote
but not some public data (e.g., public encryption key).
2) Select(·) is a selection function over sets of items defined as follows: let XU be the set
of published items associated with posts from user U . Then, Select(XU) ⊆ XU contains all

On the Security Properties of e-Voting Bulletin Boards 5

valid published items posted by U , resolving any conflict among clashing items. E.g., in Esto-
nian e-voting [30], if a voter U submitted multiple votes then only the last one must count.
Thus, if the votes were submitted in time ascending order as x1, x2, . . . , xm, then we set
XU = {x1, x2, . . . , xm} and Select(XU) = {xm}.

The SA initializes the other entities with the description of P. Next, all entities engage in a
setup interaction such that when finalized, each entity has a private input (e.g., a signing key
or an authentication password) and some public parameters params.

BB protocols. The BB functionality comprises the Posting and Publishing protocols, ac-
companied by two verification algorithms: (i) VerifyRec, run by the users to verify the successful
posting of their items, and (ii) VerifyPub, run by any party for auditing the validity of the data
on the AB.

The Posting protocol is initiated by a user U that on private input sU submits a post
request for item x. Namely, U uses sU to generate a credential crU

5. Then, the user and the
IC peers engage in an interaction that results in U obtaining a receipt rec[x] for the successful
posting of x. Upon receiving rec[x], and using public election parameters params, U may run
the algorithm VerifyRec on input (rec[x], x, sU , params), that either accepts or rejects.

In the Publishing protocol, the IC peers upload their local records of posted items to the
AB subsystem. The protocol may encompass a consensus protocol among the AB peers to agree
whether a local record is admissible. In addition, any auditor may run VerifyPub on input params
and (a subset of the) published data to check AB consistency.

4.2 Introducing our security framework

In [20], Culnane and Schneider propose a list of four properties that a secure BB must satisfy:

(bb.1). Only items that have been posted may appear on the AB. This property expresses safety
against illegitimate data injection.
(bb.2). Any item that has a valid receipt must appear on the AB.
(bb.3). No clashing items must both appear on the AB.
(bb.4). Once published, no items can be removed from the AB. According to this property, the
AB subsystem is an append-only posting site.

In this section, we integrate the above four properties into a formal security framework. At
a high level, our framework conflates the formal approach in distributed e-voting security of
Chondros et al. [16] with the notion of a robust public transaction ledger (RPTL) proposed by
Garay et al. [24]. Namely, we view a secure BB as an RPTL that additionally provides receipts
of successful posting for honestly submitted items. The security properties of an RPTL stated
in [24] are informally expressed as follows:
• Persistence: once an honest peer reports an item x as posted, then all honest peers will either
(i) agree on the AB position that x should be published, or (ii) not report x.
• θ-Liveness: honest peers will report honestly submitted items within some delay bound θ.

Introducing Confirmable θ-Liveness. In the e-voting scenario, we require that the honest
users will eventually get a receipt when engaging at the Posting protocol. Consequently, we
introduce the Confirmable θ-Liveness property, suggesting that any honest user that submits
an item x, will obtain a valid receipt for x within time θ, and x will be published on the AB.

The conflict between Confirmable Liveness and property (bb.3). An important obser-
vation is that Confirmable Liveness and (bb.3) cannot be satisfied concurrently if we assume
that honest users may submit post requests for clashing items (e.g., in Estonian e-voting [30],
as a coercion countermeasure, voters may vote multiple times and only the last counts). To
resolve this conflict, we make the following relaxation: we do not require that (bb.3) holds, by

5 E.g., if sU is a signing key, then crU could be a valid signature under sU ; if sU is a password, then crU can be
the pair (U, sU).

6 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

allowing every successfully posted item to be published. Then, we specify the subset of valid
published items for each user via the selection function Select(·) over the set of published items;
the description of Select(·) depends on the election setting. Note that in the special case where
we restrict the honest users from submitting clashing items, we can match (bb.3) by fixing
Select(·) to be the identity function.

Introducing (Confirmable) Persistence. Given the above, to encompass (bb.1) and (bb.4),
we introduce the notion of Persistence where conflict resolution is achieved by applying Select(·)
on the AB view. Persistence as defined in [24] captures the “unremovability” property (bb.4).
To also capture (bb.1), we require that in a setting where tc out-of Nc IC peers are corrupted,
an item x posted by U will not be reported as valid, if at least tc + 1 honest IC peers did not
record x at some Posting protocol execution. Note that if we require a threshold of less than
tc + 1 honest IC peers to be unaware of item x, then (bb.1) becomes unrealistic, as in most
distributed systems, an adversary that corrupts tc peers can block tc honest peers, and run the
execution jointly with the rest Nc − 2tc honest peers.

Furthermore, we extend Persistence by taking into account a AB subsystem that is fully
controlled by the adversary. This is formalized by the Confirmable Persistence property, where
we require that any malicious AB behavior will be detected via the VerifyPub algorithm.

System clocks. Like in [16], we assume that there exists a global clock variable Clock ∈ N, and
that every system entity X is equipped with an internal clock variable Clock[X] ∈ N. We define
the following two events:

• The event Init(X): Clock[X] ← Clock, that initializes X by synchronizing its internal clock
with the global clock.

• The event Inc(Clock[X]): Clock[X]← Clock[X]+1, that causes some clock Clock[X] to advance
by one time unit.

Synchronicity and message delay. We parameterize our threat model by (i) an upper bound
δ on the delay of message delivery, and (ii) an upper bound ∆ on the synchronization loss of the
nodes’ internal clocks w.r.t. the global clock. By convention, we set ∆ =∞ to denote the fully
asynchronous setting. and δ =∞, to denote that the adversary may drop messages. Any values
δ,∆ ∈ [0,∞) refer to a semi-synchronous model, if δ,∆ are known to the system’s entities, or
a partially synchronous model, if δ,∆ are unknown.

Notation. We use κ as the security parameter and denote by Nc, Nw the number of IC and
AB peers, respectively, and by n (an upper bound) on the number of users. In our security
analysis, the parameters Nc, Nw, n are assumed polynomial in κ. Let E := {SA} ∪ {U`}`∈[n] ∪
{Pi}i∈[Nc] ∪ {ABj}j∈[Nw] be the set of all involved BB system entities. We denote by tc (resp.
tw) the number of peers that the adversary may statically corrupt out of the Nc (resp. Nw)
total peers of the IC (resp. AB) subsystem. We denote the local record of IC peer Pi at global
time Clock = T as the set of accepted and confirmed items Lpost,i,T :=

{
x1, . . . , xKi,T

}
, where

Ki,T ∈ N. Similarly, the AB view of peer ABj at global time Clock = T is denoted as the set of
items Lpub,j,T :=

{
x1, . . . , xMj,T

}
, where Mj,T ∈ N.

4.3 (Confirmable) Persistence definition

We define Persistence via a security game GA,δ,∆,tc,twPrst

(
1κ,E

)
between the challenger C and an

adversary A. The game is also parameterized by the eventual message delivery and synchro-
nization loss upper bounds δ and ∆. The adversary A may statically corrupt up to tc out-of the
Nc total IC peers and tw out-of the Nw total AB peers, and may also choose to corrupt users.
C initializes the BB system on behalf of the SA. Then, C and A engage in the Setup phase
and the Posting and Publishing protocols, where C acts on behalf of the honest entities. The
game is described in detail in Fig. 1. Intuitively, the goal of A is to successfully attack the (bb.1)
property (winning condition (P.1)) or the (bb.4) property (winning condition (P.2)).

On the Security Properties of e-Voting Bulletin Boards 7

Threat model for Persistence.

(P.I). The adversary A statically corrupts up to tc (resp. tw) out-of the Nc (resp. Nw) total peers of
the IC (resp. AB) subsystem. Then, A provides C with the set Lcorr ⊂ E of corrupted parties.
Throughout the game, C plays the role of honest entities that include SA.

(P.II). When an honest entity X wants to transmit a message M to an honest entity Y , then it just
sends (X,M, Y) to A. If the honest entity X sends (X,M, Y) to A, when the global time
is Clock = T , then A must write M on the incoming network tape of Y by the time that
Clock = T + δ (eventual message delivery).

(P.III). A may write on the incoming network tape of any honest entity.
(P.IV). A may invoke the event Inc(Clock[X]) under the restriction that for any X, |Clock[X]−Clock| ≤

∆ (loose clock synchronization).

Protocol execution under the presence of A.

– The challenger initiates the Setup phase playing the role of SA and determines the posting policy
P =

(
Accept, Select(·)

)
. Then, it initializes every system entity X ∈ E by running the event Init(X).

– Upon initialization, C and A engage in the Setup phase and the Posting and Publishing protocols,
where C acts on behalf of the honest entities.

– For each user U`, ` ∈ [n], A may choose to corrupt, and thus fully control U`.
– The adversary A may provide C with a message (post, U`, x) for some honest user U` and an item x

of its choice. Upon receiving (post, U`, x), C engages in the Posting protocol on behalf of U`. If the
interaction is completed successfully, C obtains a receipt rec[x] for x.

Game winning conditions.

The game outputs 1 iff exists an AB peer ABj /∈ Lcorr s.t. at least one of the following conditions holds:
(P.1). There is an item x, tc+1 honest IC peers {Pik}k∈[tc+1], and moments T, T ′, such that (i) T ≤ T ′,

(ii) x ∈ Lpub,j,T , and (iii) x /∈ Lpost,ik,T
′ , for any k ∈ [tc + 1].

(P.2). There is an item x, and moments T, T ′ such that (i) T < T ′, (ii) x ∈ Lpub,j,T , and (iii) x /∈ Lpub,j,T ′ .

Fig. 1. The BB Persistence security game GA,δ,∆,tc,twPrst (1κ,E), between C and A.

Game winning conditions.

The game outputs 1 iff for every k ∈ [Nw] and moment T , we have VerifyPub(Lpub,k,T , params) = accept,
and there is a (not necessarily honest) AB peer ABj s.t. at least one of the following conditions holds:
(P.1). There is an item x, tc + 1 honest IC peers {Pik}k∈[tc+1], and moments T ′, T ′′, such that (i)

T ′ ≤ T ′′, (ii) x ∈ Lpub,j,T ′ , and (iii) x /∈ Lpost,ik,T
′′ , for any k ∈ [tc + 1].

(P.2). There is an item x, and moments T ′, T ′′ such that (i) T ′ < T ′′, (ii) x ∈ Lpub,j,T ′ , and (iii)
x /∈ Lpub,j,T ′′ .

Fig. 2. Game winning conditions for the BB Confirmable Persistence security game GA,δ,∆,tcC.Prst (1κ,E).

Subsequently, we extend the Persistence notion by defining Confirmable Persistence. Now,
the entire AB may be malicious and deviate from the Publishing protocol, yet the adversary
fails if its attack is detected via the VerifyPub algorithm, on the input view of any AB peer.
Formally, Confirmable Persistence is defined via the game GA,δ,∆,tcC.Prst (1κ,E) that follows the same

steps as GA,δ,∆,tc,twPrst (1κ,E), for the special case tw = Nw, except the following differences in the
winning conditions for A, that are presented in detail in Fig. 2: (1) for every k ∈ [Nw], the
published data on ABk should always verify successfully, and (2) the inconsistent ABj referred
in either of (P.1) or (P.2) conditions may be any (malicious) AB peer.

We define Persistence and Confirmable Persistence as follows.

Definition 1 ((Confirmable) Persistence). Let κ be the security parameter, Nc, Nw, tc, tw ∈
N, δ,∆ ∈ [0,+∞], and BB be a BB system with Nc IC peers and Nw AB peers. We say

8 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

Threat model for Confirmable Liveness. The threat model satisfies conditions (P.I)-(P.IV) in Fig. 1.

Protocol execution under the presence of A. The initialization by the challenger C and the engagement

of A and C in the Setup phase, the Posting protocol, and the Publishing protocol is as in Fig. 1.

Game winning conditions.

The game outputs 1 iff exists an honest user U , an item x and a moment T s.t. the following holds:
(L.1). A provided C with the message (post, U, x) at global time Clock = T .
(L.2). No honest IC peer engages in the Publishing protocol during global time Clock ∈ [T, T + θ].
(L.3). Either of the following two is true:

(a) By global time Clock ≤ T + θ, C did not obtain a value z s.t. VerifyRec(z, x, crU , params) =
accept.

(b) There is a partyABj /∈ Lcorr, s.t. for any moment Tj , exists a moment T ′j ≥ Tj s.t. x /∈ Lpub,j,T ′
j
.

Fig. 3. The BB Liveness security game GA,δ,∆,tc,twθ−C.Live (1κ,E) between C and A.

that BB achieves Persistence for fault-tolerance thresholds (tc, tw), delay message bound δ and
synchronization loss bound ∆, if for every PPT adversary A it holds that

Pr
[
GA,δ,∆,tc,twPrst (1κ,E) = 1

]
= negl(κ).

We say that BB achieves Confirmable Persistence for fault tolerance threshold tc, delay
message bound δ and synchronization loss bound ∆, if for every PPT adversary A, it holds that

Pr
[
GA,δ,∆,tcC.Prst (1κ,E) = 1

]
= negl(κ).

4.4 Confirmable θ-Liveness definition

We define θ-Confirmable Liveness via a security game GA,δ,∆,tc,twθ−C.Live (1κ,E) between the challenger
C and an adversary A, where A statically corrupts up to tc (resp. tw) out-of the Nc (resp. Nw)
total IC (resp. AB) peers, while C plays the role of SA and all peers and users that A does not
corrupt. The adversary wins if it manages to prevent the generation of a valid receipt for an
item x or the eventual publishing of x, given that x has been submitted at least θ time prior to
the nearest Publishing protocol execution. The game is described in detail in Fig. 3.

Definition 2 (Confirmable θ-Liveness). Let κ be the security parameter, Nc, Nw, tc, tw, θ ∈
N, δ,∆ ∈ [0,+∞] and let BB be a BB system with with Nc IC peers and Nw AB peers. We say
that BB achieves Confirmable θ-Liveness for fault-tolerance thresholds (tc, tw), delay message
bound δ, and synchronization loss bound ∆, if for every PPT adversary A, it holds that

Pr
[
GA,δ,∆,tc,twθ−C.Live (1κ,E) = 1

]
= negl(κ).

5 The Culnane-Schneider (CS) BB system

In this section, we provide an outline of CS BB system as presented in [20] adopted in our
terminology, and analyze its security guarantees and weaknesses under the framework intro-
duced in Sec. 4. The CS BB system comprises the setup authority SA, the users, the IC peers
P1, . . . , PNc and a single trusted AB (called WBB in [20]), i.e., Nw = 1. The fault-tolerance
threshold on the number of corrupted IC peers, tc, that CS requires is

tc < Nc/3 and ts + 1 = Nc − tc (1)

On the Security Properties of e-Voting Bulletin Boards 9

5.1 Description of the CS BB system

Setup. Upon specifying the posting policy P =
(
Accept,Select(·)

)
, the SA provides all enti-

ties with the description of an EUFCMA-secure signature scheme DS = (KGen,Sig,Vf) and
a (ts, Nc)-EUFCMA-secure TSS TSS = (DistKeygen, ShareSig, ShareVerify, TVf, Combine) (cf.
Sec. 3). Then, each IC peer Pi runs KGen(1κ) to obtain a signing key ski and a verification key vki,
while all IC peers jointly execute DistKeygen(1κ, ts, Nc) to produce a secret keys (tsk1, . . . , tskNc),
implicitly defining tsk, and the corresponding public output pk, (pk1, . . . , pkNc).

Upon key generation, the IC peers broadcast pk := {pk, (pk1, . . . , pkNc), (vk1, . . . , vkNc)} to
all other entities. The public parameters params include the description of DS,TSS,P, as well
as pk. Finally, every user U engages with SA in an interaction to obtain her private input crU .
As mentioned in Sec. 4.1, crU could be a singing key, or an authentication password.

From a timing aspect, the CS BB system runs in consecutive periods. Namely, each period
p is a time interval [Tbegin,p, Tend,p] between two fixed global time values Tbegin,p and Tend,p, and
the end of a period matches the beginning of the next one. For each IC peer Pi, we denote by
Bi,p the local record of Pi including all items x recorded as posted and by Di,p the database of
received items x together with other peers’ signatures on them, for the period p. In the beginning
of p, Pi sets Bi,p, Di,p ← ∅.
Posting. If a user U wants to post item x during period p, then she broadcasts x to all IC
peers, along with her credential crU . Upon receiving and verifying the validity of (x, crU), each
peer Pi broadcasts a signature on (p, x, crU) under its singing key ski. When Pi receives Nc− tc
valid signatures on (p, x, crU) (including its own) from Nc− tc different peers, it threshold signs
(p, x) and sends it to U . Finally, when U receives Nc− tc ≥ ts + 1 valid TSS shares from Nc− tc
different peers, it combines them to obtain a threshold signature on (p, x), as her receipt. We
define VerifyRec(rec[x], x, crU , params) := TVfpk((p, x),TSign(tsk, (p, x))). The Posting protocol
is presented in more detail in Fig. 6 of Appendix B.1.

Publishing. Given a period p = [Tbegin,p, Tend,p], all IC peers stop item recording and begin
publishing their local records at a specified time Tbarrier,p ∈ (Tbegin,p, Tend,p). The Publishing
protocol includes two subprotocols: initially, the IC peers run an Optimistic protocol that results
in the publishing of a BB record, if at least Nc − tc local BB records agree. We note that the
Optimistic protocol always terminates successfully if all peers are honest. If the Optimistic
protocol check fails, then IC peers engage in the Fallback protocol, where they exchange their
databases of collected signatures for posted items. The Fallback protocol is essentially one
round of the Floodset agreement algorithm [34, Section 6.2] with the following characteristic:
if all users posted their items honestly, then Fallback need to run only once. Otherwise, as in
standard Floodset, it needs to be executed up to Nc − tc + 1 times in the synchronous setting.

When consensus is reached, the IC peers provide the AB with their records along with
corresponding TSS shares. The AB sets the agreed record as its view for period p along with the
reconstructed TSS signature from the collected shares. The total view of AB at some moment T ,
denoted by Lpub,T , is the union of the agreed and published BB records for all periods preceding
moment T . The Publishing protocol is presented in more detail in Fig. 7 of Appendix B.1.

5.2 Attacking the liveness of the CS BB system

As informally argued in [19, Sec. 8] (the full version of [20]), the liveness in CS can be achieved
if one of the following conditions hold: 1) all the peers are following the protocol honestly and
are online, 2) a threshold of tc < Nc/3 peers is malicious, but all users are honest, or 3) the
more general condition that not all users are honest and the malicious peers may choose any
database in their capability, but do not change their database once it has been fixed, and will
not send different databases to different peers. The argument is that one can easily detect in
practice if malicious peers send different databases to different peers.

10 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

In this section, we demonstrate an attack against the Confirmable Liveness of CS under
our framework. Although our attack falls outside the threat model of [20], it reveals that the
presumed “fear of detection” that justifies the said threat model, and especially the more general
condition 3) described above, is not rigorously addressed. In particular, we show that the liveness
adversary may cleverly choose to split the honest peers into two groups, and yet not be detected
by being consistent w.r.t. to the peers in the same group. This way, the adversary manages a
liveness breach, while the honest IC peers cannot detect the attack relying on the protocol
guidelines and their local views. As a result, our attack points out that the original description
of CS must be enhanced with an explicit detection mechanism against any deviation from the IC
consensus protocol specifications, in order for the threat model in [20] to be properly justified.
On the other hand, as we describe in Section 6 and prove in Section 7, enhancing CS with
our novel Publishing protocol completely overcomes such issues, by achieving Confirmable
Liveness even against a general Byzantine adversary.

Description of the liveness attack. Our attack works under fault tolerance threshold Nc >
3tc, as required in [20], and consists of seven steps described below. The steps are illustrated in
Fig. 8 of Appendix B.2 for the simple case where Nc = 4 and tc = 1:

Step 1: Let p be a period where the set of honestly posted items is non-empty. For sim-
plicity, we assume that there is a single honest user Uh who broadcasts xh to all IC peers Pi,
i ∈ [Nc], and obtains a valid receipt rec[xh].

Step 2: A malicious user Uc deviates from broadcasting and sends xc to all tc corrupted
peers and Nc − 2tc honest peers. Denote the latter set of honest Nc − 2tc peers by Hin. The
malicious peers engage in the Posting protocol by interacting only with the peers in Hin. Ob-
serve that even if tc honest peers do not participate in the post request of xc, the collaboration
of tc + (Nc − 2tc) = Nc − tc peers is enough so that Uc obtains a valid receipt rec[xc], yet
(p, xc) ∈ Bi,p only for honest peers Pi ∈ Hin. Denote by Hout the tc honest peers s.t. xc 6∈ Bi,p.

Step 3: Another malicious user Ûc deviates from broadcasting and, like Uc, sends item x̂c
to all tc corrupted peers and the Nc−2tc honest peers in Hin. However, now the malicious peers
do not engage in the Posting protocol, so the peers in Hin do not suffice for a receipt for x̂c.

Step 4: When Publishing protocol starts, the honest peers in Hin and Hout engage
in the Optimistic protocol by sending their signed local records Rch := {(p, xh), (p, xc)} and

Rh := {(p, xh)} respectively. From their side, the malicious peers sign their records as Rc,ĉh :=

{(p, xh), (p, xc), (p, x̂c)}. As a result, none of the three records Rh, Rch and Rc,ĉh is signed by at
least Nc− tc peers (recall that |Hin| = Nc− 2tc and |Hout| = tc). Therefore, the malicious peers
force all honest peers to engage in the Fallback protocol.

Step 5: During Fallback, all honest peers exchange their collection of signatures. At this
step, each peer in Hin sends to each peer in Hout (i) its signature on (p, xc), (p, xh) and (p, x̂c)
and (ii) the tc signatures on (p, xc) that it received from the malicious peers. This way, each
peer in Hout receives (Nc− 2tc) + tc = Nc− tc signatures on (p, xc) but only Nc− 2tc signatures
on (p, x̂c), so it updates its local record to Rch. On the other hand, the malicious peers send their
signatures on (p, xc), (p, xh) and (p, x̂c) only to the peers in Hin. Therefore, each peer collects

(Nc − 2tc) + tc = Nc − tc signatures on (p, x̂c) and updates its local record to Rc,ĉh .

Step 6: When the Fallback round above is completed, all peers restart the Optimistic

protocol. However, now the peers in Hin and Hout send their signed local records Rc,ĉh and Rch
respectively. The malicious peers resend their records Rc,ĉh only to the peers in Hin, which now

have Nc − tc signatures on Rc,ĉh . Thus, they finalize their engagement in the Publishing pro-

tocol for period p by sending their TSS shares for Rc,ĉh to the AB.

Step 7: After forcing the peers in Hin to termination, the malicious peers become inert.
This causes the peers in Hout to remain pending for a new Fallback round that no other peer will
follow. Moreover, the AB can not obtain Nc − tc TSS shares on some agreed record, and thus
it can not publish anything. This violates the property (bb.2) in [20] (expressed via condition

On the Security Properties of e-Voting Bulletin Boards 11

(L.3) in Fig. 3), which dictates that since xh is an honestly posted item that has a receipt, it
must be published to the AB. Thus, liveness is breached.

The strength of our liveness attack. The attack described above requires the collaboration
of malicious users and corrupted IC peers. Nonetheless, it is important to note that during the
Publishing protocol, the tc malicious peers behave consistently towards the Nc − 2tc peers in
Hin by providing the same records and signature databases. In addition, the fact that they send
no information to the peers in Hout is a malicious behavior that the peers cannot prove to the
peers in Hin, i.e., the peers in Hin cannot tell whether the peers in Hout are (i) honest and they
did not receive anything, or (ii) malicious and claim some false denial of service. As a result,
the peers in Hin can not distinguish whether (i) the tc malicious peers, or (ii) the tc peers in
Hout, are the ones that deviate from the protocol guidelines. This shows that the attacker can
deviate from the guidelines and still not be detected, within the context of the CS IC consensus.

5.3 TSS Fault-Tolerance Requirements for Confirmable Persistence

In [20] no concrete recommendations are given for which TSS to use. For liveness to be achieved,
TSS should be robust, i.e., malicious peers cannot block signature creation. Gennaro et al. show
in [26] that TSS can achieve robustness only if ts < Nc/2. This contradicts the CS requirements
in Eq. (1). Given that ts < Nc/2, we can still prove the CS BB system to achieve Confirmable
Persistence, but for a smaller bound of tc < Nc/4. This bound is tight, in the sense that if
tc ≥ Nc/4, then there exists an attack. However, this issue seems to be less worrisome than
the liveness attack in the previous section. Usually in TSS literature it is assumed that ts = tc.
In [41], Shoup proposes a more general definition of (k, ts, Nc) − TSS (with a construction)
where ts is the number of malicious peers and k ≥ ts + 1 is the number of TSS shares needed to
combine a valid signature. This would allow us to still get robustness by having ts < Nc/2, but
we can also set k = Nc − tc, as CS requires in Eq. (1). Shoup’s construction uses trusted setup,
but if one prefers to avoid this, then they may use the trivial TSS defined in Sec. A.3.

In conclusion, CS BB could still achieve the bound tc < Nc/3, but care must be taken
when choosing TSS. Instantiating CS BB with an arbitrary TSS, might not give the expected
security guarantees. More thorough treatment of this issue, together with the attack and the
proof discussed above, is provided in Appendix B.3.

6 A New Publishing Protocol for the CS BB System

We present a new Publishing protocol that, when combined with the CS Posting protocol,
results in a BB system that achieves Confirmable Liveness in partially synchronous model,
and Persistence in asynchronous model, against a general Byzantine adversary, assuming a
threshold of tc < Nc/3 corrupted IC peers. Our novel Publishing protocol requires (i) eventual
message delivery and (ii) the existence of a Binary Consensus (BC) protocol BC with tc < Nc/3
Byzantine fault tolerance. Both these conditions are met in the partially synchronous model
(cf. [22]). Recall that a BC protocol satisfies: 1) Termination: all honest peers will decide on
some value, 2) Agreement : all honest peers decide on the same value, and 3) Validity : if all
honest peers engage in the protocol with input b ∈ {0, 1}, then they all decide on b.

The protocol consists of the following phases:

� The Initialization phase: each IC peer Pi initializes the following vectors:

(i). Its direct view of local records, denoted by Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉: by setting
B̃i,j,p ← ⊥, for j 6= i, and B̃i,i,p ← Bi,p.

(ii). For every j ∈ [Nc] \ {i}, its indirect view of local records as provided by Pj , denoted by
Viewi,j,p := 〈B̃i

j,1,p, . . . , B̃
i
j,Nc,p

〉: by setting Viewi,j,p ← 〈⊥, . . . ,⊥〉.
(iii). A variable vector 〈bi,1, . . . , bi,Nc〉, where bi,j is a value in {?, 0, 1} and expresses the

opinion of Pi on the validity of Pj’s behavior. Initially, only bi,i is fixed to 1, while for j 6= i, bi,j

12 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

is set to the “pending” value ‘?’. When Pi fixes bi,j to some value 1/0 for all j ∈ [Nc] (which we
prove it happens, cf. Lemma 3), it engages in the Consensus phase, that we describe shortly.

(iv). An integer variable vector 〈di,1, . . . , di,Nc〉, where di,j denotes the number of Pi’s (direct
or indirect) views that agree regarding Pj’s record. Initially, di,j = 0, for j 6= i, and di,i = 1.

� The Collection phase: upon initialization, Pi signs its local record Bi,p, followed by a tag

denoted by record, and broadcasts
(
(record, Bi,p),Sigski(record, Bi,p)

)
to all IC peers.

During this phase, Pi updates its direct and indirect views of other IC peers’ records and fixes
its opinion bit for their behavior, depending on the number of consistent signed messages it
receives on each peer’s record. In particular,

– When Pi receives a message
(
(record, Ri,j,p), Sigskj (record, Ri,j,p)

)
signed by peer Pj

that was never received before, then it acts as follows: if Ri,j,p is formatted as a non-⊥ record
and the “opinion” bit bi,j is not fixed (i.e. bi,j = ‘?’), then it verifies the validity of the message
by checking if Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 1. If the latter holds, then Pi

operates according to either of the following two cases:
1. If B̃i,j,p 6= ⊥, then it marks Pj as malicious, that is, it sets B̃i,j,p ← ⊥ and fixes bi,j to 0.

Observe that since Pj is authenticated (except from some negl(κ) error), it is safe for Pi to mark
Pj as malicious, as an honest peer would never send two different versions of its local records.
2. If B̃i,j,p = ⊥, then Pi updates Viewi,p as B̃i,j,p ← Ri,j,p, and Viewi,j,p as B̃i

j,j,p ← Ri,j,p and
increases the di,j by 1. Next, it signs and re-broadcasts to all IC peers the received message in the
format

(
Vi,j , Sigski(Vi,j)

)
, where Vi,j :=

(
(view, j), ((record, B̃i,j,p), Sigskj (record, B̃i,j,p))

)
.

Upon fixing bi,j to 1/0, Pi ignores any message for the record of Pj .

– When Pi receives a message
(
Vk,j , Sigskk(Vk,j)

)
signed by peer Pk for some peer Pj different

than Pi and Pk, where Vk,j =
(
(view, j), ((record, Rk,j,p),Sigskj (record, Rk,j,p))

)
, and the

message was never received before, then it acts as follows: if Rk,j,p is formatted as a non-⊥ record
and bi,j = ‘?’, then it executes verification Vfpkk(Vk,j ,Sigskk(Vk,j)). If Vfpkk(Vk,j , Sigskk(Vk,j)) =
1, then Pi operates according to either of the following two cases:
1. If Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 0 or B̃i

k,j,p 6= ⊥, then Pi sets B̃i,k,p ← ⊥,
fixes the bit bi,k to 0 and engages in the Consensus phase for the record of Pk (marked as
malicious). Observe that it is safe for Pi to mark Pk as a malicious, since an honest Pk would
neither send two non-⊥ views for Pj , nor accept an invalid signature from Pj in the first place.
2. If Vfpkj

(
(record, Ri,j,p), Sigskj (record, Ri,j,p)

)
= 1 and B̃i

k,j,p = ⊥, then Pi updates

Viewi,k,p by setting B̃i
k,j,p ← Rk,j,p. Then, Pi updates Viewi,j,p according to the cases below:

(C.1). If for every k′ ∈ [Nc] \ {i} such that B̃ik′,j,p 6= ⊥, it holds that B̃ik′,j,p = B̃ik,j,p := B̃ij,p (i.e. all non-⊥
records for j agree on some record B̃ij,p), then it increases the value of di,j by 1. Moreover, if di,j = tc + 1,

(i.e., there are tc + 1 matching non-⊥ records) and B̃i,j,p = ⊥, then it updates as B̃i,j,p ← B̃ij,p and fixes
the bit bi,j to 1.

(C.2). If there is a k′ ∈ [Nc] such that B̃ik′,j,p 6= ⊥ and B̃ik,j,p 6= B̃ik′,j,p, then it updates as B̃i,j,p ← ⊥ and

fixes the bit bi,j to 0.

In either case, upon fixing bi,j ,Pi ignores any message for the record of Pj
6.

– When Pi has fixed Nc−tc opinion bits, it broadcasts a request message
(
(request view, j),

Sigski(request view, j)
)
, for every Pj that it has not yet fixed the opinion bit bi,j . This step

is executed to ensure that Pi will eventually fix its opinion bits for all IC peers. Upon receiving
Pi’s request, Pk replies with a signature for a response message

(
Wk,j , Sigskk(Wk,j)

)
, where

Wk,j :=
(
(response view, j), ((record, Rk,j,p),Sigskj (record, Rk,j,p))

)
. Note that here Rk,j,p

may be ⊥, reflecting the lack of direct view of Pk for Pj ’s record until it received Pi’s request.
For every Pj that Pi has broadcast a request

(
(request view, j), Sigski(request view, j)

)
,

Pi waits until it collects Nc− tc−1 distinct signed responses that verify successfully. During this

6 The security of DS ascertains Pi that with 1−negl(κ) probability, only if Pj is malicious, two non-equal records
can be valid under Pj ’s verification key. Thus, in case (C.2), Pi can safely fix the bit bi,j to 0.

On the Security Properties of e-Voting Bulletin Boards 13

wait, it ignores any message in a format other than
(
Wk,j , Sigskk(Wk,j)

)
or
(
(request view, j),

Sigskk(request view, j)
)
. When Nc− tc− 1 distinct valid responses are received, it parses the

collection of the Nc − tc − 1 responses and its current direct view of Pj ’s record B̃i,j,p and fixes
bi,j as follows: (a) if B̃i,j,p 6= ⊥, all responses for non-⊥ records are at least tc and match B̃i,j,p,
then Pi fixes bi,j to 1; (b) if B̃i,j,p = ⊥, all responses for non-⊥ records are at least tc + 1 and
refer to the same record denoted as B̃i

j,p, then Pi sets B̃i,j,p ← B̃i
j,p and fixes bi,j to 1; (c) else,

it sets B̃i,j,p ← ⊥ and fixes bi,j to 07.
In any case, upon fixing bi,j , Pi ignores any message for the record of Pj . Whenever Pi fixes

bi,j to some value 1/0, the view of Pi for Pj ’s record reaches a “binary” state (cf. Lemma 3),
i.e., Pi’s opinion on Pj ’s record is that it is either (i) a fixed non-⊥ record, or (ii) set to ⊥. Thus,
honest peers can reach consensus for all records, as described below.

� The Consensus phase: when Pi fixes its “opinion” bi,j to some value 1/0 for Pj for every
j ∈ [Nc], it engages in the partially synchronous Binary Consensus (BC) protocol BC, for the
question “Is my view of Pj’s record set to a non-⊥ value?”.

Namely, each peer Pi engages in BC with input bi,j = 1, if B̃i,j,p ← B̃i
j,p 6= ⊥ and bi,j = 0,

if B̃i,j,p ← ⊥, as set at the Collection phase. The BC properties guarantee termination and
agreement, i.e. all honest peers agree on the same value. Moreover, during Collection phase,
all Nc − tc ≥ tc honest peers have received each others’ (fixed) records, so they engage in BC
for an honest peer Pj on input 1. Hence, by the validity property of BC, the honest peers will
agree on 1 for Pj . After all Nc BC executions have terminated (the IC peers have decided), for
every j ∈ [Nc] \ {i}, Pi updates its view as follows: If B̃i,j,p 6= ⊥, but Pi decided 0 for Pj , then
it updates as B̃i,j,p ← ⊥.

The peer Pi considers the Consensus phase finished, only when it has completed the BC
protocols for all peers’ records. Then, they proceed to the Finalization phase described below.

� The Finalization phase: having updated its direct view Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉 for

every pair (p, x) ∈
⋃
j:B̃i,j,p 6=⊥ B̃i,j,p, peer Pi defines the set Ni,p(x) that denotes the number of

IC peers that, according to Pi’s view, have included (p, x) in their records. Formally, we write
Ni,p(x) :=

∣∣{j ∈ [Nc] : (p, x) ∈ B̃i,j,p}
∣∣. Then, Pi updates its original record Bi,p as follows:

(F.1). If (p, x) /∈ Bi,p, but Ni,p(x) ≥ tc + 1, then it adds (p, x) in Bi,p.

(F.2). If (p, x) ∈ Bi,p, but Ni,p(x) < tc + 1, then it removes (p, x) from Bi,p.

In any other case, Bi,p becomes unchanged8.
As shown in Lemma 3, at the end of the Finalization phase, all honest peers have included

all honestly posted items for which a receipt has been generated in their local records. Then,
they proceed to the Publication phase described below.

� The Publication phase: each peer Pi threshold signs its record Bi,p, as it has been updated
during the Finalization phase, by threshold signing each item in Bi,p individually. Formally,
we write ShareSig(tski, (p,Bi,p)) :=

⋃
(p,x)∈Bi,p ShareSig(tski, (p, x)). Then, it sends to AB the

message
(
(p,Bi,p), ShareSig(tski, (p,Bi,p))

)
.

In turn, the AB receives and records threshold signature shares for posted items. For every
item (p, x) that AB receives Nc − tc distinct successfully verified signatures shares (j, σj)j∈S ,
where S is a subset of ≥ Nc−tc IC peers, it adds (p, x) to the record Bp (initialized as empty) and
computes a TSS signature on (p, x) as TSign(tsk, (p, x))← Combine

(
pk, pk1, . . . , pkNc , (p, x), (j, σj)j∈S

)
.

7 Since there are Nc − tc ≥ tc + 1 honest peers, Pi will obtain at least tc + 1 matching non-⊥ views for every
honest’ peers record (including its own). Thus, it can safely fix bi,j to 0 if it receives less than tc + 1 matching
non-⊥ views for Pj .

8 In case (F.2), removal is a safe action for Pi, as every honestly posted item for which a receipt has been
generated, is stored in the records of at least Nc − 2tc ≥ tc + 1 honest peers during the Posting protocol (cf.
Theorem 2). Thus, Ni,p(x) < tc + 1 implies that either (i) (p, x) was maliciously posted, or (ii) a receipt for
(p, x) was not generated.

14 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

At the end of period p, AB fixes the signed record TSign(tsk, (p,Bp)) :=
⋃

(p,x)∈Bp TSign(tsk, (p, x))
and publishes the record

ABreceipt[p,Bp] :=
(
(p,Bp),TSign(tsk, (p,Bp))

)
.

Let Prec[p] be the set of all periods preceding p. The total view of AB at some moment T during
period p, denoted by Lpub,T is the union of the agreed and published BB records for all periods
in Prec[p]. Let VerifyPub(Lpub,T , params) :=

∧
p̃∈Prec[p]

∧
(p̃,x)∈Bp̃

TVf
(
pk,
(
p̃, x),TSign(tsk, (p̃, x)

))
.

7 Properties of the New BB System

In this section, we prove the properties of the BB system described in Sec. 6. We write TB to
denote the running time of algorithm B, omitting parameterization by the security parameter
κ for brevity. The parameters Nc, tc are considered polynomial in κ. Recall that since we have
only one AB peer, we denote the view of the AB as Lpub,T = Lpub,1,T .

In our setting, we assume that, given the running time of the protocol steps, the message
delivery delay δ and the synchronization loss bound ∆ are small enough with respect to the
intervals [Tbegin,p, Tbarrier,p], [Tbarrier,p, Tend,p] that specify phase length and changing in each period
p. We stress that this restriction does not violate partial synchronicity, as δ,∆ need not to be
known to the IC peers for executing the protocol.

Persistence. The Persistence of the new BB system holds in the asynchronous model, pre-
serving the security of the BB protocols per period under sequential composition due to period
advancement. This holds because the view of the AB in some moment T at period p, is the
union of the views of all periods preceding p which is invariant to the publishing order of each
view. The proof of the following theorem is given in Appendix C.1.

Theorem 1. Let Nc, tc, ts ∈ N, where tc < Nc/3 and ts ≥ Nc − tc − 1, and let δ = ∆ =∞. Let
TSS be a (ts, Nc)-EUFCMA-secure TSS. Then, the BB system described in Sec. 6 with Nc IC
peers over TSS achieves Persistence for tolerance thresholds (tc, 0).

Remark 1 (From Persistence to Confirmable Peristence). The new BB system does not support
Confirmable Persistence because although a malicious AB could not attack condition (P.1) of
Fig. 2 (this part of the proof of Theorem 1 is valid even against a malicious AB), it could breach
condition (P.2) by discarding all signature shares on items published at earlier periods. A way
to address this problem with a simple modification would be to replace a single AB with a
subsystem of Nw AB peers. Then, the IC peers would broadcast their local records to all peers
at the Publication phase and the AB peers would proceed as the centralized AB described in
Section 6. In addition, reading of the AB data would be via honest majority (i.e. tw < Nw/2) of
matching data on the AB peers, as in [16]. This way, any alteration of previous published data
by some AB peer would be detected by an auditor, while the fact that the majority of the AB
peers would be consistent, would also hold this peer accountable. Thus, a minority of malicious
AB peers could not attack (P.2) - and still not (P.1) of course - so Confirmable Persistence
would be achievable.

Confirmable Liveness. We prove the Confirmable Liveness of the new BB system in the
partially synchronous model against Byzantine adversaries. The proof is given in Appendix C.2.

Theorem 2 (Confirmable Liveness). Let Nc, tc, ts ∈ N such that (a) tc < Nc/3 and (b)
tc ≤ ts < Nc− tc, and δ,∆ ∈ R≥0. Let DS be an EUFCMA-secure signature scheme and TSS be
a (ts, Nc)-EUFCMA-secure TSS. Let BC be a BC protocol with tc-out-of-Nc fault tolerance, that
is partially synchronous for delay message bound δ and synchronization loss bound ∆. Then the
BB system described in Sec. 6 with Nc IC peers over DS, TSS, and BC achieves θ-Confirmable
Liveness for fault tolerance thresholds (tc, 0), delay message bound δ and synchronization loss
bound ∆, and for every θ ≥ ∆+ 3δ + 2Nc · TVf + TSig + TShareSig + TCombine.

On the Security Properties of e-Voting Bulletin Boards 15

References

1. Michel Abdalla, Sara K. Miner, and Chanathip Namprempre. Forward-Secure Threshold Signature Schemes.
In CT-RSA 2001, pages 441–456, 2001.

2. Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX 2008, pages 335–348, 2008.
3. Yonatan Aumann and Yehuda Lindell. Security Against Covert Adversaries: Efficient Protocols for Realistic

Adversaries. J. Cryptology, 23(2):281–343, 2010.
4. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a Transaction Ledger: A

Composable Treatment. pages 324–356, 2017.
5. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure Computation Without

Authentication. In CRYPTO 2005, pages 361–377, 2005.
6. Josh Benaloh. Verifiable secret-ballot Elections. PhD thesis, Yale University, 1987.
7. Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T. Kortum, Neal McBurnett, Olivier Pereira, Philip B.

Stark, Dan S. Wallach, Gail Fisher, Julian Montoya, Michelle Parker, and Michael Winn. STAR-Vote: A
Secure, Transparent, Auditable, and Reliable Voting System. In EVT/WOTE 2013, 2013.

8. Jose Beuchat. Realization of a Secure Distributed Bulletin Board. Bern University of Applied Sciences, 2012.
Master’s thesis.

9. Alexandra Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-
Hellman-Group Signature Scheme. In PKC 2003, pages 31–46, 2003.

10. Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan, Steve Schneider, Vanessa
Teague, Roland Wen, Zhe Xia, and Sriramkrishnan Srinivasan. Using Prêt à Voter in Victoria State Elections.
In EVT/WOTE 2012, 2012.

11. Craig Burton, Chris Culnane, and Steve Schneider. vVote: Verifiable Electronic Voting in Practice. IEEE
Security & Privacy, 14(4):64–73, 2016.

12. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In FOCS
2001, pages 136–145, 2001.

13. David Chaum. SureVote: Technical Overview. In WOTE 2001, 2001.
14. David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Alan Sherman, and Poorvi

Vora. Scantegrity: End-to-end voter-verifiable optical-scan voting. Security & Privacy, IEEE, 6(3):40–46,
2008.

15. David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A Practical Voter-Verifiable Election Scheme. In
ESORICS 2005, pages 118–139, 2005.

16. Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos, Stathis Maneas, Christos
Patsonakis, Alex Delis, Aggelos Kiayias, and Mema Roussopoulos. D-DEMOS: A Distributed, End-to-End
Verifiable, Internet Voting System. In ICDCS 2016, pages 711–720, 2016.

17. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In EUROCRYPT 1997, pages 103–118, 1997.

18. Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and Vanessa Teague. vvote: A verifiable voting system.
ACM Trans. Inf. Syst. Secur., 18(1):3:1–3:30, 2015.

19. Chris Culnane and Steve Schneider. A Peered Bulletin Board for Robust Use in Verifiable Voting Systems.
CoRR, abs/1401.4151, 2014.

20. Chris Culnane and Steve A. Schneider. A Peered Bulletin Board for Robust Use in Verifiable Voting Systems.
In CSF 2014, pages 169–183, 2014.

21. Gianluca Dini. A secure and available electronic voting service for a large-scale distributed system. Future
Generation Computer Systems, 19(1):69–85, 2003.

22. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the Presence of Partial Synchrony. J.
ACM, 35(2):288–323, April 1988.

23. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret Voting Scheme for Large Scale
Elections. In AUSCRYPT 1992, pages 244–251, 1992.

24. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Backbone Protocol: Analysis and Ap-
plications. In EUROCRYPT 2015, pages 281–310, 2015.

25. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Backbone Protocol with Chains of
Variable Difficulty. In CRYPTO 2017, pages 291–323, 2017.

26. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and Efficient Sharing of RSA
Functions. In CRYPTO 1996, pages 157–172, London, UK, UK, 1996. Springer-Verlag.

27. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, 1988.

28. Severin Hauser and Rolf Haenni. A Generic Interface for the Public Bulletin Board Used in UniVote. In
CeDEM 2016, pages 49–56, 2016.

29. James Heather and David Lundin. The Append-Only Web Bulletin Board. In FAST 2008, pages 242–256,
2008.

30. Sven Heiberg and Jan Willemson. Verifiable internet voting in estonia. In EVOTE 2014, pages 1–8, 2014.
31. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In WPES 2005,

pages 61–70, 2005.

16 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

32. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-End Verifiable Elections in the Standard
Model. In EUROCRYPT 2015, pages 468–498, 2015.

33. Roland Krummenacher. Implementation of a Web Bulletin Board for E-Voting Applications. MSE Seminar
on E-Voting. Institute for Internet Technologies and Applications, 2010.

34. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
35. Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008.
36. Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the Blockchain Protocol in Asynchronous Networks.

In EUROCRYPT 2017, pages 643–673, 2017.
37. Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In DISC,

2017.
38. R. A. Peters. A Secure Bulletin Board. Eindhoven University of Technology, 2005. Master’s thesis.
39. Michael K. Reiter. The Rampart Toolkit for Building High-integrity Services. In TPDS 1995, pages 99–110,

1995.
40. Daniel Sandler and Dan S. Wallach. Casting votes in the auditorium. In EVT, 2007.
41. Victor Shoup. Practical Threshold Signatures. In EUROCRYPT 2009, pages 207–220, 2009.
42. Filip Zagórski, Richard T Carback, David Chaum, Jeremy Clark, Aleksander Essex, and Poorvi L Vora.

Remotegrity: Design and use of an end-to-end verifiable remote voting system. In ACNS 2013, 2013.

A Security definitions of signature schemes and threshold signature
schemes

A.1 EUFCMA security of signature schemes

Le DS = (KGen, Sig,Vf) be a signature scheme. We provide the definition of EUFCMA security
game GADS(1κ) in Fig. 4.

The EUFCMA security game GADS(1κ).

1. The challenger CDS runs KGen to generate a keypair (pk, sk). The adversary A receives pk as input.
2. The adversary may ask the CDS to sign a number of messages. To query the i-th signature, A submits

a message mi to CDS, which returns σi ← Sig(sk,m).
3. A outputs a message m∗ and a signature σ∗.

The game outputs 1 (A wins) iff (i) Vf(pk,m∗, σ∗) = 1, and (ii) for every i, it holds that (m∗, σ∗) 6= (mi, σi).

Fig. 4. The EUFCMA security game GADS(1κ) between the challenger CDS and the adversary A.

Definition 3 (Security signature schemes). Let DS = (KGen,Sig,Vf) be a signature scheme.
We say that DS is EUFCMA-secure if for every PPT adversary A, it holds that

Pr[GADS(1κ) = 1] = negl(κ) .

A.2 (ts, N)-EUFCMA security of threshold signature schemes

Let TSS = (DistKeygen,ShareSig,ShareVerify,TVf,Combine) be a threshold signature scheme.
We provide the definition of (ts, N)-EUFCMA security game GATSS(1κ, ts, N) in Fig. 5.

Definition 4 (Security of threshold signature schemes). Let ts, N be values polynomial
in the security parameter κ. Let TSS = (DistKeygen,ShareSig,ShareVerify,TVf,Combine) be a
threshold signature scheme. We say that TSS is (ts, N)-EUFCMA-secure if for every PPT
adversary A, it holds that

Pr[GATSS(1κ, ts, N) = 1] = negl(κ) .

We define A’s advantage AdvtssA (κ, ts, N) as the probability that A wins the game GATSS(1κ, ts, N),
taken over all coin tosses, i.e.

AdvtssA (κ, ts, N) := [Pr[GATSS(1κ, ts, N) = 1] .

On the Security Properties of e-Voting Bulletin Boards 17

The (ts, N)-EUFCMA security game GATSS(1κ, ts, N).

1. First, A decides on the set Lcorr ⊂ {1, . . . , N } of corrupted players, and sends it to the challenger CTSS.
A is allowed to act on behalf of each Pi ∈ Lcorr. Then DistKeygen(1κ, ts, N) is executed. During this,
CTSS plays the role of all honest players Pi. At the end of this step, A gets access to pk.

2. A can make up to polynomial number of signing queries as follows: for i ∈ {1, . . . , N }\Lcorr, A submits
pair (i,m) to CTSS. Then, CTSS returns σi ← ShareSig(tski,m) to A.

3. A outputs a message m∗ and a signature σ∗. Let V = Lcorr ∪ S, where S is the subset of players for
which A made a signing query (i,m∗).

The game outputs 1 (A wins) iff (i) TVf(pk,m∗, σ∗) = 1, and (ii) |V| ≤ ts.

Fig. 5. The (ts, N)-EUFCMA security game GATSS(1κ, ts, N) between the challenger CTSS and the adversary A.

The Posting Protocol.

U → Pi: User U broadcasts item x with credential crU to all peers Pi, i ∈ [Nc].
Pi → Pj: Upon receiving (x, crU) from U , each IC peer Pi checks that (i) crU is valid for U (i.e (U, x) ∈

Accept), and (ii) x does not clash with any previously posted item x′ during p or previous periods.
If both checks are successful, then it broadcasts

(
(p, x, crU), Sigski(p, x, crU)

)
to all other IC peers.

Pi: Pi waits for messages
(
(p, x, crU), Sigskj (p, x, crU)

)
from peers Pj , j 6= i, and appends them to the

dataset of received signed items Di,p. Upon receiving Nc−tc valid signatures on (p, x, crU) (including
its own), Pi adds (p, x) to its local BB record Bi,p for period p.

Pi → U : Pi sends its TSS share ((p, x), ShareSigtski(p, x)) to U .

U : The user U waits for valid signatures
(
(p, x), ShareSigtskj (p, x)

)
from Nc− tc ≥ ts+ 1 peers Pj . When

this happens, let SU be a set of ts + 1 peers from which U can combine the share. The receipt for x
that U obtains is set as

rec[x] := TSigntsk(p, x)← Combine
(
pk, pk1, . . . , pkNc

, (p, x), (j, σj)j∈SU

)
.

Fig. 6. The Posting protocol of the CS BB system during period p w.r.t. the posting policy P =(
Accept, Select(·)

)
, for fault tolerance threshold of tc out-of Nc IC peers P1, . . . , PNc , and a (ts, Nc)-TSS. Se-

lection function Select(·) is the identity function.

A.3 Trivial TSS

In our work, we refer to the following trivial (ts, N)-TSS, where ts < N can be any non-negative
integer: given an EUFCMA-secure signature scheme DS, each party Pi has an independently
generated public and secret key. The signature share of Pi on m is equal to her signature on
m and signature shares are combined by concatenation. The TSS verification on (σ1, . . . , σt)
succeeds only if each individual signature verification succeeds and t > ts. Clearly, trivial TSS
is (ts, N)-EUFCMA-secure. We note that the trivial TSS slightly deviates from the previous
definition of TSS, as there is no secret key tsk shared between the parties.

B Appendix of Section 5

B.1 The Posting and Publishing protocols of the CS BB system

We provide detailed descriptions of the Posting and Publishing protocols of the CS BB system
in Fig. 6 and Fig. 7, respectively.

B.2 Illustrating the attack against the liveness of the CS BB system

We illustrate the steps of our liveness attack in Fig. 8 for the case where Nc = 4 and tc = 1.

18 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

The Optimistic Protocol.

Pi → Pj: Each Pi broadcasts
(
(p,Bi,p), Sigski(p,Bi,p)

)
to all Pj .

– Each Pi waits until it receives Nc−tc valid signatures
(
(p,Bj,p), ρj := Sigskj (p,Bj,p)

)
from different

IC peers (including its own). Let I be the set of those peers.
– If]

{
Pj ∈ I : Bj,p = Bi,p ∧ Vfpkj (ρj) = 1

}
< Nc − tc, then Pi broadcasts a message(

(p,Di,p), Sigski(p,Di,p)
)

to all IC peers, indicating that it engages in the Fallback protocol (see
below).

Pi → AB: Each Pi sends
(
(p,Bi,p),ShareSigtski(p,Bi,p)

)
to AB.

AB: Waits for messages
(
(p,Bj,p), σj = ShareSigtskj (p,Bj,p)

)
from at least Nc − tc ≥ ts + 1 peers Pj .

– Let S be a set of those ≥ Nc−tc peers that agree on the contents of the BB and let Bp be the board
of agreed-on contents. Compute TSigntsk(p,Bp)← Combine

(
pk, pk1, . . . , pkNc

, (p,Bp), (j, σj)j∈S
)
.

– Publish ABreceipt[p,Bp] :=
(
(p,Bp),TSigntsk(p,Bp)

)
.

The Fallback Protocol.

Pi → Pj: Each Pi broadcasts
(
(p,Di,p), σi = Sigski(p,Di,p)

)
to all Pj .

Pi: Each Pi updates its database with the new data, that is, with the signatures it is missing, and then
updates its board. More precisely, if Vfpkj ((p,Dj,p), σj) = 1, then Pi will insert all new signatures
in Dj,p to its database Di,p (i.e., Pi sets Di,p ← Di,p ∪ Dj,p). For any x, if Pi has Nc − tc valid
signatures on (p, x, crU) then it adds (p, x) to Bi,p.
– Pi broadcasts a message

(
(p,Bi,p), Sigski(p,Bi,p)

)
indicating that it re-engages in Step 1 of the

Optimistic protocol (see above) for the updated record Bi,p.

Fig. 7. The Publishing protocol of the CS BB system during period p, for fault tolerance threshold of tc out-of
Nc IC peers P1, . . . , PNc , and a (ts, Nc)-TSS.

B.3 Confirmable Persistence of CS BB

In the Posting protocol of the CS BB system, if the centralized AB is honest, then it will
neither accept inconsistently signed data nor remove any existing published items. As a result,
CS satisfies the properties (bb.1) and (bb.4), which are captured in our Persistence definition.

As for Confirmable Persistence, all data published by the AB must be signed by a TSS
signature. Thus, even if AB is malicious, then, clearly, any attack that includes illegitimate item
posting or published item removal will be detected as long as the ts out-of Nc TSS fault tolerance
threshold is preserved, since the malicious AB can not forge signatures on inconsistent records
without the consent of at least a number of honest peers. This raises the following conflict: TSS
fault tolerance must satisfy the restrictions in equation Eq. (1), namely that ts + 1 > 2Nc/3,
however, the robustness requirement ts < Nc/2 stated in [26] must also hold, otherwise liveness
is trivially breached. These two requirements are clearly contradictory.

Since the robustness is necessary, we study the security of CS in the case of ts < Nc/2. The
following paragraph argues that for ts < Nc/2 and tc ≥ Nc/4, there is an attack against con-
firmable persistence. Specifically, the attack achieves winning condition (P.1) in Fig. 2 (property
(bb.1)). Subsequently, we show that for tc < Nc/4 CS does achieve confirmable persistence.

Description of the Confirmable Persistence attack. Assume that Nc ≥ 4, Nc/4 ≤ tc <
Nc/3 and a (ts, Nc)-EUFCMA-secure TSS, where tc ≤ ts < Nc/2. Our attack consists of the
three steps described below and illustrated in Fig. 9, for the case of Nc = 10, tc = 3 and ts = 4:

Step 1: Let th = ts − tc. Assume that in period p a user U posts an item (p, x) but does
not obtain a receipt. More precisely, assume that the adversary blocked the communication so
that at the end of the posting protocol, (p, x) ∈ Bi,p for only one honest peer Pi.

Step 2: During the Optimistic protocol, the adversary blocks messages so that all tc =
ts− th corrupted peers and exactly (ts+1)− tc = th+1 honest peers (thus, in total ts+1 peers)
threshold sign a record Bp such that (p, x) 6∈ Bp and send it to the AB. More precisely, only

On the Security Properties of e-Voting Bulletin Boards 19

Uh

P4

{xh}

P3

{xh}

P2

{xh}

P1

{xh}

rec[xh]

Step 1.

P4

{xh, xc, x̂c}

P3

{xh}

P2

{xh, xc}

P1

{xh, xc}

Step 4.

Uc

P4

{xh, xc}

P3

{xh}

P2

{xh, xc}

P1

{xh, xc}

rec[xc]

Step 2.

P4

{xh, xc, x̂c}

P3

{xh, xc}

P2

{xh, xc, x̂c}

P1

{xh, xc, x̂c}

Step 5.

AB

P1 : {xh, xc, x̂c}
P2 : {xh, xc, x̂c}
P3 : ?
P4 : ?

Step 7.

Ûc

P4

{xh, xc, x̂c}

P3

{xh}

P2

{xh, xc}

P1

{xh, xc}

Step 3.

AB

P4

{xh, xc, x̂c}

P3

{xh, xc}

P1

{xh, xc, x̂c}

P2

{xh, xc, x̂c}

Step 6.

Fig. 8. Attacking the liveness of CS for Nc = 4 and tc = 1, where Hin = {P1, P2} and Hout = {P3}. The malicious
entities are colored in red. The elements in {·} denote the local records of each IC peer of publishable items for
period p at the end of the given step.

the said ts + 1 peers will obtain Nc − tc signatures on Bp. Thus, a malicious AB can construct
a receipt on Bp.

Step 3: The remaining Nc − tc − (th + 1) honest peers together with tc corrupted peers
execute the Fallback and the Optimistic protocol, and agree on a B′p s.t. (x, p) ∈ B′p. Since
Nc ≥ 4 and Nc/4 ≤ tc ≤ ts < Nc/2, we have that

Nc ≥ 2ts − tc + 2⇒ Nc − (th + 1) ≥ ts + 1 .

Thus, a malicious AB can construct a receipt on B′p. By the above, a malicious AB can output
two valid threshold signatures for a period p, i.e.,

w = ABreceipt[p,Bp] =
(
(p,Bp), σ = TSigntsk((p,Bp))

)
∧

w′ = ABreceipt[p,B′p] =
(
(p,B′p), σ

′ = TSigntsk((p,B
′
p))
)

∧ w 6= w′ ∧ TVf(pk, (p,Bp), σ) = TVf(pk, (p,B′p), σ
′) = 1,

hence, Confirmable Persistence is violated.

The extent of the Confirmable Persistence attack. We show that even with ts < Nc/2, CS
BB can still tolerate a threshold of tc < Nc/4 malicious peers. More generally, if we forget about
the robustness bound (which is only for liveness), then CS BB has Confirmable Persistence for
tc < (ts + 1)/2.

To prove this claim, we make use of Lemma 1 showing that if an adversary A wins the
Confirmable Persistence game GA,δ,∆,tcC.Prst (1κ,E), then for every period p, at least th + 1 honest
peers have contributed their signature share for the TSS of the published record for p.

20 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

P1 P2 P3

P4 P5 P6

P7 P8 P9

P10

Step 1. During the Posting
protocol, P10 is the only hon-
est peer that received the post
request for x. The honest peers
P1, . . . , P6 colored in gray are
unaware of x.

P1 P2 P3

P4 P5 P6

P7 P8 P9

P10

Step 2. During the Optimistic
protocol only the ts + 1 =
5 peers P1, P4, P7, P8, P9 obtain
Nc − tc = 7 signatures and send
their TSS shares for Bi,p 63 (x, p)
to the malicious AB.

P1 P2 P3

P4 P5 P6

P7 P8 P9

P10

Step 3. The Nc − tc + 1 =
8 peers P2, P3, P5, . . . , P10 start
Fallback and Optimistic proto-
cols, and after that send their
TSS shares on B′ip 3 (x, p) to the
malicious AB.

Fig. 9. Attack against Confirmable Persistence for Nc = 10, tc = 3 and ts = 4. The corrupted nodes P7, P8, P9

are colored in red.

Lemma 1. Let Nc, tc, t
′
c, ts ∈ N such that tc ≤ ts, t

′
c ≤ tc, and let δ = ∆ = ∞. Let TSS =

(DistKeygen,ShareSig,ShareVerify,TVf,Combine) be a (ts, Nc)-EUFCMA-secure TSS. Let A be

an arbitrary PPT adversary that corrupts t′c IC peers and th := ts − t′c. If GA,δ,∆,tcC.Prst (1κ,E) = 1
for the CS BB system then for any period p, with probability 1 − negl(κ) there is a set H :=
{Pik}k∈[th+1] of honest IC peers that output ((p,Bp), ShareSig(tskik , (p,Bp))) for k ∈ [th + 1],
where Bp is the published record for p.

Proof. Let T > Tend,p be a moment after the end of period p. If GA,δ,∆,tcC.Prst (1κ,E) = 1 then
VerifyPub

(
Lpub,T

)
= accept, therefore ABreceipt[p,Bp] = ((p,Bp), σ = TSign(tsk, (p,Bp))) ∈

Lpub,T such that TVf(pk, (p,Bp), σ) = 1. Let H = {Pik} be the set of honest IC peers that
output ShareSig(tskik , (p,Bp)).

Suppose to the contrary that less than th + 1 honest peers output a threshold signature on
(p,Bp). We construct the following adversary ATSS that breaks the static (ts, Nc)-EUFCMA

security of TSS by emulating the game GA,δ,∆,tcC.Prst (1κ,E) playing the role of the challenger. The
security reduction is executed as shown below:

1. After A responds with the set of corrupted IC peers Lcorr, ATSS in turn sends Lcorr to the
challenger CTSS of the (ts, Nc)-EUFCMA security game and hence corrupts the same subset
of peers.

2. ATSS engages in the Setup phase with A playing the role of SA and the honest IC peers as
follows:

(a) ATSS specifies the posting policy P =
(
Accept,Select(·)

)
and a signature scheme DS =

(KGen,Sig,Vf). It sends the description of P,DS and TSS to A.

On the Security Properties of e-Voting Bulletin Boards 21

(b) ATSS engages with A in the joint execution of DistKeygen(1κ, ts, Nc) by the IC peers,
by forwarding the messages of A during the interaction of itself and C in the joint
execution at the beginning of the (ts, Nc)-EUFCMA security game. At the end of the
joint execution, both ATSS and A obtain the TSS public key pk.

(c) On behalf of each honest peer Pi, ATSS runs KGen(1κ) to obtain a signing key ski and
a verification key vki. It sends the generated verification keys to A which provides ATSS

with the malicious peers’ verification keys (if this does not happen, then ATSS aborts).
(d) When interacting with a corrupted user U controlled by A for the computation of private

input sU , ATSS acts normally on behalf of SA.
3. Whenever an honest peer Pi engaging in the emulation of Posting and Publishing protocol

executions has to provide a TSS share signature on some message (i,m), then ATSS makes
the query (i,m) to CTSS and obtains the response σi ← ShareSig(tski,m). Then, ATSS uses
σi in the emulation step.

4. After GA,δ,∆,tcC.Prst (1κ,E) is completed, if for the aforementioned T > Tend,p, A (playing the role
of a malicious AB) has returned to ATSS a ABreceipt[p,Bp] = ((p,Bp), σ) ∈ Lpub,T such that
TVf(pk, (p,Bp), σ) = 1, then ATSS returns ((p,Bp), σ) to CTSS.

Since tc ≤ ts, if A wins GA,δ,∆,tcC.Prst (1κ,E), then it has corrupted no more than ts IC peers. In
addition, A makes no singing queries for (p,Bp) during its engagement with the BB protocols,
which means that, by assumption, A obtains less than th + 1 additional threshold signatures,
i.e. the ones provided by the honest peers. In total, A obtains no more than t′c + th ≤ ts
threshold signatures, so the restrictions of the (ts, Nc)-EUFCMA security game (cf. Fig. 5) are
preserved. Therefore, TVf(pk, (p,Bp), σ) = 1 implies that ((p,Bp), σ) is a successful forgery

against the static (ts, Nc)-EUFCMA security of TSS. Thus, if A wins GA,δ,∆,tcC.Prst (1κ,E) with non-
negligible probability α, then ATSS outputs a successful forgery with the same probability α,
which contradicts to the (ts, Nc)-EUFCMA-security of TSS. We conclude that, with probability
1−negl(κ), there exists a set H of th+1 honest peers that output ((p,Bp), σ) for k ∈ [th+1]. ut

Given Lemma 1, we can prove the following theorem.

Theorem 3. Let Nc, tc, ts ∈ N, such that ts ≤ Nc and let δ = ∆ =∞. Let DS = (KGen,Sig,Vf)
be an EUFCMA-secure signature scheme and TSS = (DistKeygen, ShareSig, ShareVerify,TVf,
Combine) be a (ts, Nc)-EUFCMA-secure TSS. For all tc < (ts + 1)/2 the CS BB system, with
Nc IC peers over DS and TSS achieves Confirmable Persistence for tolerance threshold (tc, 1).

Proof. LetA be an any PPT adversary against the Confirmable Persistence game GA,δ,∆,tcC.Prst (1κ,E)
that corrupts t′c ≤ tc IC peers. As before th := ts − t′c. Note that condition ts ≥ tc of Lem. 1 is
satisfied since 2tc < ts + 1. We show that with probability 1− negl(κ) neither of the properties
(P.1) nor (P.2) can hold if VerifyPub(Lpub,j,T , params) = accept for every moment T .

There is a moment T ′ such that if VerifyPub
(
Lpub,T ′ , params

)
= accept, then (P.1) cannot

hold: Suppose to the contrary that there exists an item (p, x), honest peers H′ = {Pik}k∈[tc+1],
and moments T ′, T ′′, such that
(i) T ′ ≤ T ′′,
(ii) (x, p) ∈ Lpub,T ′ , and
(iii) (x, p) /∈ Lpost,ik,T ′′ , for any k ∈ [tc + 1].

Since VerifyPub
(
Lpub,T ′

)
= accept and TSS is (ts, Nc)-unforgeable, it follows from Lem. 1

that for some period p at least th + 1 honest peers signed Bp such that (p, x) ∈ Bp no later
than T ′. Recall that an honest peer threshold signs Bp if it has obtained Nc − tc signatures on
(p,Bp).

First, we look at the case where less than Nc− tc− t′c of the signatures are created by honest
peers. We show that this allows us to construct an efficient adversary As that breaks EUFCMA
security of DS. Let CDS be the challenger of EUFCMA game (cf. Fig. 3). The construction of
As is as follows.

22 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

1. Challenger CDS generates a keypair (pk, sk) and sends pk to As.
2. Adversary As runs A that returns Lcorr and in particular the set of corrupted IC peers IC

where |IC| = t′c.
3. As assigns the key pk to a random honest peer Pi 6∈ IC and sets S ← ∅.
4. As runs Setup phase as usual and interacts with A exactly as the challenger of the Con-

firmable Persistence game would (in particular, it interacts for the honest entities), only
with the following exceptions:
(a) If As needs to sign a message under pk, then it asks it from CDS (As itself does not know

sk).
(b) Whenever an honest peer receives a valid signature ρ of a message (p,Bp) under a public

key pk′ of some IC peer, it adds ρ to S if S has no signatures under pk′ before.
5. Finally, if Pi’s signature σ is in S and Pi is the honest peer that did not sign (p,Bp), then
As returns σ as a forgery.

We know that |S| ≥ Nc − tc and hence at least Nc − tc − t′c of the signatures in S are valid
signatures of distinct honest peers. We assumed that less than Nc − tc − t′c of honest peers
output a signature on (p,Bp), therefore A has forged a signature of at least one honest peer.
Since public keys of all honest peers come from the same distribution and As assigned pk to
a random honest peer, then at least with the probability 1

Nc−t′c
, A forged a signature for pk.

Therefore As wins the EUFCMA game with a non-negligible probability in κ.
In the second case, we assume that at least Nc − tc − t′c of the signatures are from honest

peers. For these peers (p, x) ∈ Bi,p. However, the honest peers only sign one local record so these
Nc−tc−t′c peers are all different from the tc+1 honest peers that have not included x in their list
of posted items at moment T ′′ ≥ T ′ hence, later than p. Since (Nc− tc− t′c) + (tc+ 1) > Nc− tc,
we have a contradiction with condition (ii).

There is a moment T ′ such that if VerifyPub
(
Lpub,T ′ , params

)
= accept, then (P.2) cannot

hold: First, let us show that for a single period p with probability 1− negl(κ), adversary A can
output a valid threshold signature for only one database.

Assume to the contrary that A outputs

w =ABreceipt[p,Bp] = (p,Bp, σ = TSigntsk(p,Bp)) ,

w′ =ABreceipt[p,B′p] = (p,B′p, σ
′ = TSigntsk(p,B

′
p))

for Bp 6= B′p, such that Vfpk((p,Bp), σ) = Vfpk((p,B
′
p), σ

′) = 1.
From Lem. 1, we get that the set H of th + 1 honest peers threshold-signed (p,Bp) and the

set H′ of th + 1 honest peers threshold-signed (p,B′p). According to the protocol description,
H ∩H′ = ∅.

An honest peer threshold-signs Bp if it has obtained Nc − tc signatures on (p,Bp). Suppose
now that less than Nc − tc − t′c of the signatures are from honest peers. In that case we can
construct an adversary As that breaks unforgeability of Σ, the construction of As is the same
as above.

Therefore, at least Nc − tc − t′c of the signatures are from honest peers, denoted by the set
S. Since th + 1 > tc, it holds that

|S|+ |H′| ≥ Nc − 2tc + th + 1 > Nc − tc ,

so at least one honest peer Pi threshold signs B′p and sends signature on Bp. If Pi first threshold-
signs B′p, then the protocol is over for Pi, and it would not sign Bp. So, it must first sign Bp
and then threshold sign the database B′p, which implies Bp ⊆ B′p.

Arguing similarly, we get that there must me be some honest peer Pj that first signed B′p and
later threshold signed Bp, which implies that B′p ⊆ Bp. Therefore, Bp = B′p which contradicts
our assumption.

Now we show that (P.2) can not hold. We have that Lpub,T ′ =
⋃
p̃∈Prec[p′]

(
ABreceipt[p̃, Bp̃]

)
,

where p′ is the period number at moment T ′, and VerifyPub
(
Lpub,T ′

)
= accept. Suppose there

On the Security Properties of e-Voting Bulletin Boards 23

exists a moment T ′′ ≥ T ′ and an item (p, x) such that (p, x) ∈ Lpub,T ′ and (p, x) /∈ Lpub,T ′′ .
As (p, x) ∈ Lpub,T ′ , it follows that there exists p ≤ p′ such that (p, x) ∈ Bp. On the contrary,

as (p, x) /∈ Lpub,T ′′ and T ′′ is later than p, we have that there is another published record B̂p
s.t. (p, x) 6∈ B̂p. Since for every period p adversary can output a valid signature for exactly one
record, we have a contradiction. ut

Discussion. Theorem 3 implies that

1). If ts < Nc/2 (robustness bound), then we can show the bound tc < Nc/4+1/2. Together
with the attack in beginning of this Section, we get that tc < Nc/4 and this bound is tight.

2). If ts = 2Nc/3 (original CS bound), then tc < Nc/3 which is exactly the bound that
Culnane and Schneider claim.

Moreover, the attack described in the beginning of this Section depends on the bound
ts < Nc/2. We argue that there are simple (but perhaps not ideal) ways to bypass ts < Nc/2
bound and hence possible to avoid Confirmable Persistence attack. However, it can be seen as
a warning that a TSS scheme can not be utilized as a black-box tool in order to realize CS BB
system.

Reason for the robustness bound tc < Nc/2, is that typically TSS is studied in the case
when tc = ts. Hence, if ts ≥ Nc/2, then signing is only possible with the help from malicious
peers and robustness cannot be achieved because they can block the signature creation.

In [41] Shoup proposes a more general (k, ts, Nc)−TSS construction where ts is the number
of malicious peers and k ≥ ts + 1 is the number of signature shares needed to combine a
valid signature. This scheme also assumes that ts < Nc/2 but k can be larger than ts + 1.
Such definition seems to be more appropriate for the CS BB setting since we may take k =
b2Nc/3c+1, ts = dNc/3e−1 and still maintain robustness. Besides [41], we are aware of only [1]
that proposes a (k, ts, Nc)− TSS. Both schemes however use a trusted dealer which preferably
should be avoided in the e-voting scenario.

Another possibility is to use the trivial (k, ts, Nc)-TSS scheme described in Sec. A.3. Trivial
scheme has robustness for any ts such that ts ≤ Nc − ts − 1, since key generation is done
locally and there are enough honest peers to produce a valid signature. Of course, this TSS
construction loses the main advantage of TSS, which is to achieve lower communication and
verification complexity than sending and verifying Nc signatures individually.

We do not claim that it is impossible to construct a (k, ts, Nc)-TSS which would avoid the
issues mentioned above. However, care must be taken when instantiating CS BB, since most
TSS schemes in the literature are not proved secure as (k, t,Nc)− TSS. Setting the parameter
ts greater than Nc/2 in case of (ts, Nc)− TSS might not be secure even if tc < Nc/2.

C Appendix for Section 7

C.1 Proof of Theorem 1

First, we prove the following Lemma stating that if an adversary A wins the Confirmable
Persistence game GA,δ,∆,tcC.Prst (1κ,E), then for every period p and (p, x) ∈ Bp that is published
by the AB, at least th + 1 honest peers have contributed their TSS signature share for (p, x).
Note that since it holds for Confirmable Persistence game it also holds for the Persistence game
GA,δ,∆,tc,twPrst

(
1κ,E

)
.

Lemma 2. Let Nc, tc, t
′
c, ts ∈ N such that tc ≤ ts, t

′
c ≤ tc, and let δ = ∆ = ∞. Let TSS =

(DistKeygen,ShareSig,ShareVerify,TVf,Combine) be a (ts, Nc)-EUFCMA-secure TSS. Let A be

an arbitrary PPT adversary that corrupts t′c IC peers and th := ts − t′c. If GA,δ,∆,tcC.Prst (1κ,E) = 1
for the BB system described in Sec. 6, then for any period p, T > Tend,p and (p, x) ∈ Lpub,T ,
with probability 1− negl(κ) there is a set H := {Pik}k∈[th+1] of honest IC peers that provide AB
with ShareSig(tskik , (p, x)) for k ∈ [th + 1].

24 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

Proof. Let T > Tend,p be a moment after the end of period p. If GA,δ,∆,tcC.Prst (1κ,E) = 1 then
VerifyPub

(
Lpub,T

)
= accept, therefore ABreceipt[p,Bp] = ((p,Bp), σ = TSign(tsk, (p,Bp))) ∈

Lpub,T such that
∧

(p,x′)∈Bp
TVf

(
pk,
(
p, x′),TSign(tsk, (p, x′)

))
= accept. Let H = {Pik} be the set

of honest IC peers that output ShareSig(tskik , (p, x)), where (p, x) ∈ Bp.
Suppose to the contrary that less than th + 1 honest peers output a threshold signature

on (p, x). We construct the following adversary ATSS that breaks the static (ts, Nc)-EUFCMA

security of TSS by emulating the game GA,δ,∆,tcC.Prst (1κ,E) playing the role of the challenger. The
security reduction is executed as shown below:

1. After A responds with the set of corrupted IC peers Lcorr, ATSS in turn sends Lcorr to the
challenger CTSS of the (ts, Nc)-EUFCMA security game and hence corrupts the same subset
of peers.

2. ATSS engages in the Setup phase with A playing the role of SA and the honest IC peers as
follows:

(a) ATSS specifies the posting policy P =
(
Accept, Select(·)

)
and a signature scheme DS =

(KGen,Sig,Vf). It sends the description of P,DS and TSS to A.

(b) ATSS engages with A in the joint execution of DistKeygen(1κ, ts, Nc) by the IC peers,
by forwarding the messages of A during the interaction of itself and C in the joint
execution at the beginning of the (ts, Nc)-EUFCMA security game. At the end of the
joint execution, both ATSS and A obtain the TSS public key pk.

(c) On behalf of each honest peer Pi, ATSS runs KGen(1κ) to obtain a signing key ski and
a verification key vki. It sends the generated verification keys to A which provides ATSS

with the malicious peers’ verification keys (if this does not happen, then ATSS aborts).

(d) When interacting with a corrupted user U controlled by A for the computation of private
input sU , ATSS acts normally on behalf of SA.

3. Whenever an honest peer Pi engaging in the emulation of Posting and Publishing protocol
executions has to provide a TSS share signature on some message (i,m), then ATSS makes
the query (i,m) to CTSS and obtains the response σi ← ShareSig(tski,m). Then, ATSS uses
σi in the emulation step.

4. After GA,δ,∆,tcC.Prst (1κ,E) is completed, if for the aforementioned T > Tend,p, A (playing the role
of a malicious AB) has returned to ATSS a ABreceipt[p,Bp] = ((p,Bp), σ) ∈ Lpub,T such that
ABreceipt[p,Bp] = ((p,Bp), σ = TSign(tsk, (p,Bp))) ∈ Lpub,T such that∧

(p,x′)∈Bp

TVf
(
pk,
(
p, x′),TSign(tsk, (p, x′)

))
= accept ,

then ATSS returns ((p,Bp), σ) to CTSS.

Since tc ≤ ts, if A wins GA,δ,∆,tcC.Prst (1κ,E), then it has corrupted no more than ts IC peers.
In addition, A makes no singing queries for (p, x) ∈ Bp during its engagement with the BB
protocols, which means that, by assumption, A obtains less than th + 1 additional threshold
signatures, i.e. the ones provided by the honest peers. In total, A obtains no more than t′c +
th ≤ ts threshold signatures, so the restrictions of the (ts, Nc)-EUFCMA security game (cf.
Fig. 5) are preserved. Therefore, TVf

(
pk,
(
p, x),TSign(tsk, (p, x)

)
= 1 implies that ((p, x), σ)

is a successful forgery against the static (ts, Nc)-EUFCMA security of TSS. Thus, if A wins

GA,δ,∆,tcC.Prst (1κ,E) with non-negligible probability α, then ATSS outputs a successful forgery with
the same probability α, which contradicts to the (ts, Nc)-EUFCMA-security of TSS. We conclude
that, with probability 1− negl(κ), there exists a set H of th + 1 honest peers that provide AB
with ShareSig(tskik , (p, x)) ut

Then, we apply Lemma 2 to prove Theorem 1 below:

On the Security Properties of e-Voting Bulletin Boards 25

Proof. Let A be an arbitrary PPT adversary against Persistence game GA,δ,∆,tc,twPrst

(
1κ,E

)
that

corrupts t′c ≤ tc IC peers. We set th := ts − t′c. Note that the condition tc ≤ ts of Lemma 2
is satisfied since ts ≥ Nc − tc − 1 > 2tc − 1 and therefore ts ≥ 2tc ≥ tc. We show that, with
probability 1− negl(κ), neither (P.1) nor (P.2) from Fig. 1 hold.

(P.1) cannot hold: Note that since AB is honest, then VerifyPub(Lpub,T , params) = accept
for every moment T . Suppose to the contrary that there exists an item (p, x), honest peers
H′ = {Pik}k∈[tc+1], and moments T ′, T ′′, such that
(i) T ′ ≤ T ′′,
(ii) (p, x) ∈ Lpub,T ′ , and
(iii) (p, x) /∈ Lpost,ik,T ′′ , for any k ∈ [tc + 1].

As VerifyPub
(
Lpub,T ′

)
= accept and TSS is (ts, N)-EUFCMA-secure, it follows from Lemma 2

that with probability 1 − negl(κ) there are at least th + 1 honest peers that provide AB with
ShareSig(tskik , (p, x)) no later than moment T ′. By condition (ii) above, we have that (th +
1) + (tc + 1) ≥ ts + 2 > Nc − tc, so there exists an honest peer that threshold signed an item
(p, x) that’s not in its database. According to protocol description, an honest peer never does
it. Hence, we have a contradiction.

(P.2) cannot hold: This is trivially true for our protocol. Clearly, for all moments T ′ < T ′′

and all (p, x) ∈ Lpub,j,T ′ , we have (p, x) ∈ Lpub,j,T ′′ since honest AB never removes items. ut

C.2 Proof of Theorem 2

IC Consensus in the Publishing protocol. As a first step, we prove that all honest peers
will include all honestly posted items for which a valid receipt has been generated.

Lemma 3. Let Nc, tc ∈ N such that tc < Nc/3 and δ,∆ ∈ R≥0. Let DS be an EUFCMA-secure
signature scheme and BC be a Binary Consensus (BC) protocol with tc-out-of-Nc fault tolerance,
that is partially synchronous for message delivery delay bound δ and synchronization loss bound
∆. Let (p, x) be an honestly posted item for which the user has obtained a valid receipt. Then,
every honest IC peer Pi engaging at the Publishing protocol over DS and BC, will include
(p, x) in Bi,p at the end of the Finalization phase, with 1− negl(κ) probability.

Proof. By the EUFCMA security of DS, with 1− negl(κ) probability, a malicious peer will not
forge a signed message for some honest peer. In the rest of the proof, we assume that all valid
signatures under ski are indeed generated by pki. We prove the lemma via the following claim:

Claim 1 Let Pi, Pi′ be two honest IC peers that have engaged in the BC protocol for Pj’s record
with inputs bi,j and bi′,j respectively. Then, the direct views of Pi, Pi′ for the record of Pj when
engaging in the BC protocol are such that if B̃i,j,p, B̃i′,j,p 6= ⊥, then B̃i,j,p and B̃i′,j,p are both
equal to some record B̃j,p.

Proof of Claim 1: Assume that B̃i,j,p, B̃i′,j,p 6= ⊥. By the description of the Collection
phase, whenever an honest peer sets an opinion bit to 0 for some peer, the respective record is
set to ⊥. Thus, it holds that bi,j = bi′,j = 1. W.l.o.g., assume that B̃i,j,p = B̃j,p; we will show
that B̃i′,j,p = B̃j,p. We recall that updating a non-⊥ record to a different non-⊥ record is not
allowed at Collection phase. By protocol description, Pi has set B̃i,j,p to B̃j,p due to either one
of the following cases:

1. Pi = Pj, i.e. B̃i,j,p is the record Bi,p that Pi has set at the end of the Posting protocol :
in this case, P ′i will eventually receive the message

(
(record, Bi,p),Sigskj (record, Bi,p)

)
broadcast by Pi at the Collection phase. Given that all Nc − tc ≥ tc + 1 honest peers
will re-broadcast Bi,p and that, except from negl(κ) probability, no malicious peer can forge
Pi’s signature, P ′i will eventually set di′,i to tc + 1, and by case (C.1), fix bi′,i = 1 and
B̃i′,j,p = B̃i′,i,p = Bi,p, .

26 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

2. B̃i,j,p was set to B̃j,p when Pi received
(
(record, B̃j,p),Sigskj (record, B̃j,p)

)
by peer Pj:

then Pi has re-broadcast this message at the Collection phase, in the format
(
Vi,j ,Sigski(Vi,j)

)
,

where Vi,j :=
(
(view, j), ((record, B̃i,j,p),Sigskj (record, B̃i,j,p))

)
. The latter implies that

Pi′ has eventually received it and set B̃i′
i,j,p ← B̃j,p. Therefore, since bi′,j 6= 0, the case (C.2)

can not hold, so it must hold that B̃i′,j,p = B̃i,j,p = B̃j,p.

3. B̃i,j,p was set to B̃j,p by checking case (C.1): in this case, the variable di,j has reached the
value tc + 1, i.e., there are at least tc + 1 non-⊥ records in Pi’s view must be equal to B̃j,p.
Since there are no more than tc malicious peers, at least one honest peer Pk has obtained
B̃j,p, in order to broadcast it at the Collection phase. There are two subcases:

3.1) If Pk = Pi′ , then since bi′,j 6= 0, Pi′ never updated as B̃i′,j,p ← ⊥ according to (C.2), so
it holds that B̃i′,j,p = B̃j,p.

3.2) If Pk 6= Pi′ , then both Pi and Pi′ have eventually received B̃j,p at Collection phase (at
least by Pk). Therefore, since bi,j 6= 0 and bi′,j 6= 0, case (C.2) can not hold, so it must
hold that B̃i′,j,p = B̃j,p.

(End of Proof of Claim 1) a

By Claim 1, we get that all honest peers agree on each others’ records before entering in the
Consensus phase. This implies the following facts:

– For each honest peer Pk, all honest peers will engage in BC on input 1, thus they will decide
on 1, by the validity property. The latter implies that if for some peer Pj s.t. B̃i,j,p 6= ⊥, but
Pi decided 0 for Pj , then it can safely set B̃i,j,p ← ⊥, as Pj must be malicious.

– By the description of the CS Posting protocol (cf. Section 5 and Fig. 6, every honestly
posted item (p, x) requires Nc − 2tc ≥ tc + 1 honest peers for receipt generation. Therefore,
before entering the Consensus phase all Nc − tc honest peers will include (p, x) in their
records.

By the above two facts, we have at the Finalization phase, the view of every honest peer
Pi contains all Nc − tc honest peers’ records which, in turn contain all honestly posted items
for which a receipt has been generated. Therefore, when finalizing its record Bi,p the following
hold:

– For all honestly posted item (p, x) for which a receipt has been generated, it holds that
Ni,p(x) ≥ Nc − tc ≥ tc + 1. Thus, by case (F.1), Pi will add (p, x) in Bi,p.

– For every item (p, x̂) s.t. Ni,p(x̂) < tc+1, Pi can safely remove (p, x̂) according to case (F.2),
since Ni,p(x̂) < tc + 1 implies that either (i) (p, x̂) was maliciously posted, or (ii) a receipt
for (p, x̂) was not generated.

We conclude that for every honestly posted item (p, x) for which a receipt has been generated,
every honest IC peer Pi , will include (p, x) in Bi,p at the end of the Finalization phase, with
1− negl(κ) probability. ut

Given Lemma 3, we prove Theorem 2 below

Proof. For θ ≥ ∆+ 3δ + 2Nc · TVf + TSig + TShareSig + TCombine, consider an adversary A against

θ-Confirmable Liveness, that wins GA,δ,∆,tc,0θ−C.Live (1κ,E). Assume that conditions (L.1) and (L.2) of

GA,δ,∆,tc,0θ−C.Live (1κ,E) must hold. Namely,

(L.1). For some honest user U , A provides C with the message (post, U, x) at global time Clock =
T , where T is during a period p = [Tbegin,p, Tend,p], and

(L.2). No Publishing protocol execution happens during global time interval [T, T + θ].

On the Security Properties of e-Voting Bulletin Boards 27

In our BB system, Publishing protocol starts at global time Clock = Tend,p, which suggests
that U engaged at the Posting protocol at global time Clock = T ≤ Tend,p − θ.

We will show that condition (L.3) can not hold, which implies that A can not win the game
and completes the proof. We analyze the following cases.

(L.3.a) can not hold: By global time Clock ≤ T + θ, U will obtain a valid receipt rec[x] for x with
1− negl(κ) probability.

Based on the description of the Posting protocol in Fig. 6, we show that the waiting time
for U is upper bounded by the value θ∗ = ∆ + 3δ + 2Nc · TVf + TSig + TShareSig + TCombine. In
our computation, we always consider time advancement according to the description of the CS
Posting protocol and under the restrictions posed in Fig. 3, that is, message delay bound δ
and synchronization loss bound ∆. Moreover, recall that A can not tamper the global clock.

By (L.1), when U broadcasts (x, crU), the global time is Clock = T . Hence, taking into
account the message delay bound δ, each peer Pi will receive x by global time Clock[Pi] ≤ T +δ.

W.l.o.g., we may assume that the time for verifying the validity of crU is the same as verifying
a signature (in fact, crU could be a signature). Upon receiving x, Pi (i) checks the validity of
crU (in TVf time) and (ii) computes and broadcasts the value (i, (p, x), Sig(ski, p, x)) to all other
IC peers (in TSig time) by

Clock ≤ T + δ + TVf + TSig .

According to the Posting protocol description the honest user U broadcast (x, crU) to all
peers, so each peer Pi will receive each other honest peers’ signatures by global time

Clock ≤ (T + δ + TVf + TSig) + δ = T + 2δ + TVf + TSig .

In order for an honest peer Pi to add (p, x) to Bi,p, it must receive and verify the validity
of Nc − tc − 1 signatures from the other peers, as the adversary can also send at most tc
invalid messages on behalf of malicious IC peers9. The time required for verification is at most
tc + (Nc − tc − 1) · TVf = (Nc − 1) · TVf and the signature share will be created in time TShareSig.
Therefore, each honest Pi will send its TSS share by global time

Clock ≤ (T + 2δ + TVf + TSig) + (Nc − 1) · TVf + TShareSig

= T + 2δ +Nc · TVf + TSig + TShareSig .

The user U will obtain all honest peers’ TSS shares by global time

Clock ≤ T + 3δ +Nc · TVf + TSig + TShareSig ,

and requires at most Nc ·TVf to verify all shares (again, A can send invalid shares). Finally, the
user U will require at most TCombine time to combine the TSS shares and obtain her receipt by
global time

Clock ≤ (T + 3δ +Nc · TVf + TSig + TShareSig) +Nc · TVf + TCombine =

= T + 3δ + 2Nc · TVf + TSig + TShareSig + TCombine

hence, by internal time

Clock[U] ≤ T +∆+ 3δ + 2Nc · TVf + TSig + TShareSig + TCombine.

Consequently, we set the upper bound θ∗ for the waiting time of U as

θ∗ := ∆+ 3δ + 2Nc · TVf + TSig + TShareSig + TCombine

9 The malicious IC peers can send messages arbitrarily. However, for simplicity and without loss of generality
for the liveness guarantee, we treat the messages of each malicious peer as a block. Thus, Pi can receive at
most tc malicious messages.

28 Kiayias, Kuldmaa, Lipmaa, Siim and Zacharias

The validity of the receipt that U computes derives directly from the fact that Nc− tc > ts ≥ tc
and TSS is (ts, Nc)-EUFCMA-secure with 1− negl(κ) probability.

(L.3.b) can not hold: There is a moment T ′ s.t. for every T ′′ ≥ T ′, (p, x) is included in the view
of AB.

To prove this statement, we apply Lemma 3, which states that at the end of the Finalization
phase of the Publishing protocol, every honest IC peer Pi will include (p, x) in Bi,p at the end
of the Finalization phase, with 1− negl(κ) probability. Recall that Lemma 3 holds under the
partial synchronicity assumptions considered in the theorem’s statement.

Therefore, by Lemma 3, we get that at the Publication phase, every honest peer Pi will
threshold sign and send to AB the message

(
(p,Bi,p),ShareSig(tski, (p,Bi,p))

)
that includes the

TSS share ShareSig(tski, (p, x)) for (p, x). Consequently, AB will receive Nc−tc valid TSS shares
on (p, x) by the end of period p, so it will (i) add (p, x) to Bp, (ii) compute a TSS signature
on (p, x) as TSign(tsk, (p, x)) ← Combine

(
pk, pk1, . . . , pkNc , (p, x), (j, σj)j∈S

)
and (iii) include

TSign(tsk, (p, x)) in the published record ABreceipt[p,Bp] :=
(
(p,Bp),TSign(tsk, (p,Bp))

)
.

We conclude that there is a moment T ′ > Tend,p s.t. for every T ′′ ≥ T ′, (p, x) is included
in the view of AB, defined as the union of the agreed and published BB records preceding the
period p′ that T ′ belongs (therefore also p).

ut

	On the Security Properties of e-Voting Bulletin Boards

