Lecture Notes in Computer Science

11008

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zurich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology Madras, Chennai, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7408

John Hooker (Ed.)

Principles and Practice of Constraint Programming

24th International Conference, CP 2018 Lille, France, August 27–31, 2018 Proceedings

Editor John Hooker D Carnegie Mellon University Pittsburgh, PA USA

 ISSN 0302-9743
 ISSN 1611-3349 (electronic)

 Lecture Notes in Computer Science
 ISBN 978-3-319-98333-2
 ISBN 978-3-319-98334-9 (eBook)

 https://doi.org/10.1007/978-3-319-98334-9
 (eBook)

Library of Congress Control Number: 2018950526

LNCS Sublibrary: SL2 - Programming and Software Engineering

© Springer Nature Switzerland AG 2018, corrected publication 2018, 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 24th International Conference on the Principles and Practice of Constraint Programming (CP 2018) held August 27–31, 2018, in Lille, France. Detailed information about the CP 2018 conference can be found at http://cp2018.a4cp.org.

The CP conference is the annual international conference on all aspects of computing with constraints including theory, algorithms, environments, languages, models, systems, and applications such as decision-making, resource allocation, scheduling, configuration, and planning. The organizers of CP 2018 made a particular effort to build bridges to related fields that may provide new applications for CP. This theme was reflected in invited plenary talks, tutorials, a panel session, and seven themed tracks in addition to the main technical track: Applications; CP and Data Science; CP and Music; CP and Operations Research; CP, Optimization, and Power System Management; Multiagent and Parallel CP; and Testing and Verification. Each track had its own track chair(s) and Program Committee to ensure that the papers would be peer reviewed by experts in the relevant field.

The 114 submitted papers were allocated to tracks specified by the author(s). Each paper received at least three reviews. A total of 395 reviews were provided by Program Committee members, and 44 by external reviewers. The review process in each themed track was managed by the respective track chair, while papers submitted to the Main Technical Track were assigned to a senior Program Committee member, who conducted the discussion for that paper. The senior Program Committee consisted of seven prominent researchers from the CP community as well as the 11 track chairs and the conference program chair. Authors had an opportunity to respond to the initial reviews. Following this, the senior Program Committee conducted an intense asynchronous online discussion of the papers via EasyChair over an 11-day period, involving the regular Program Committee members as needed.

The reviewing process was double blind, meaning that authors and reviewers were anonymous to each other throughout the review process. In addition, Program Committee members indicated potential conflicts of interest by selecting from a list of submitting authors those with whom they had professional relationships. This prevented members from seeing the reviews or participating in the discussion of any papers with which they had a conflict of interest. In addition, papers submitted by track chairs to their own track were transferred to other track chairs, who managed the review process and obtained reviewers as necessary from the relevant Program Committees. The final deliberations of the senior Program Committee were conducted so as to respect all conflict-of-interest restrictions.

The senior Program Committee selected 50 papers for presentation at the conference, resulting in an acceptance rate of 44%. The committee also awarded the Best Paper Prize to Emmanuel Hebrard and George Katsirelos for their paper, "Clause Learning and New Bounds for Graph Coloring." This paper was presented in a plenary session, along with a presentation by the recipient of the ACP Doctoral Research Award. In addition, the authors of six outstanding papers were offered an opportunity to publish a longer version in *Constraints* rather than in the conference proceedings, and three accepted this offer. Because the longer versions would not appear in time for the conference, the original conference versions of the papers were posted on the conference website along with this proceedings volume. Abstracts of these papers appear at the end of the volume.

The first day of the conference was allocated to four workshops and the Doctoral Program. The workshops were the International Workshop on Graphs and Constraints, the Second Workshop on Progress Towards the Holy Grail, Constraints and AI Planning, and the 17th International Workshop on Constraint Modelling and Reformulation. The Doctoral Program afforded 26 participating students an opportunity to present their work, meet one-on-one with a senior researcher, and attend invited talks targeted to the experiences of a PhD student.

The main conference program featured three invited talks that described opportunities to apply CP technology in related fields. Srinivas Bollapragada, Chief Scientist at General Electric's Global Research Center, presented industrial scheduling problems that have heretofore been addressed by operations research methods. James Cussens, Senior Lecturer in Computer Science at the University of York, showed how CP can contribute to machine learning. Malte Helmert, Head of the AI Research Group at the University of Basel, discussed the role of constraints in automated planning. In addition, the program included several hour-long tutorials that showed how to formulate problems for modelling and solution software systems in related fields. Finally, a plenary panel session discussed opportunities for collaboration between the CP and automated planning communities.

A conference is a more complicated affair than is often thought, presenting literally hundreds of issues that must be resolved for a successful event. Our thanks go to Conference Chairs Gilles Audemard and Christophe Lecoutre for securing financial support and making the many necessary arrangements. In addition, we thank Publicity Chair George Katsirelos, Workshop Chair Sébastien Tabary, and Doctoral Program Chairs Anastasia Paparrizou and Nadjib Lazaar for their service.

The quality of a conference program relies on the hard work of many reviewers. CP 2018 is indebted to 117 members of eight Program Committees, some of whom served on multiple committees. We also thank the track chairs for recruiting their Program Committees and managing the review process in their tracks; they include Meinolf Sellmann (Applications), Michele Lombardi and Tias Guns (CP and Data Science), Charlotte Truchet (CP and Music), David Bergman and Andé Ciré (CP and Operations Research), Bhagyesh Patil (CP, Optimization, and Power System Management), Ferdinando Fioretto and William Yeoh (Multiagent and Parallel CP), and Arnaud Gotlieb and Nadjib Lazaar (Testing and Verification). Special thanks go to the senior Program Committee for moderating discussions and making the tough final decisions.

Finally, we are grateful to our financial sponsors, which include *Artifical Intelligence*, Association for Constraint Programming, Association Française pour la Programmation par Contraintes, Centre de Recherche en Informatique de Lens, Centre

National de la Recherche Scientifique, Cosling, European Association for Artificial Intelligence, Horizontal Software, Huewei, N-SIDE, ROADEF, Siemens, and Université d'Artois.

June 2018

John Hooker

Workshops and Tutorials

Workshops

Constraints and AI Planning

International Workshop on Graphs and Constraints		
Gilles Pesant	École Polytechnique de Monréal, Canada	
Malte Helmert	University of Basel, Switzerland	
Michael Cashmore	King's College, London, UK	
Christopher Beck	University of Toronto, Canada	

Stefan Mengel	CRIL, Université d'Artois, France
Florent Capelli	Université de Lille

Second Workshop on Progress Towards the Holy Grail

Eugene Freuder	University	College	Cork.	Ireland
Lugene i reuder	University	Concge	COIK,	netanu

17th International Workshop on Constraint Modelling and Reformulation

Kevin Leo	Monash University, Australia
Alan Frisch	University of York, UK

Tutorials

Xpress Mosel Tutorial: Modelling and Solving Optimization Problems with Various Solvers

Sébastien Lannez	FICO, France
------------------	--------------

Automated Modeling with Conjure and Savile Row

Özgür Akgün	University of St. Andrews, UK
Peter Nightingale	University of St. Andrews, UK

MiniZinc: An Expressive Extensible Modelling Language

Peter StuckeyUniversity of Melbourne, AustraliaGuido TackMonash University, Australia

Model-Based Optimization: Principles and Trends

Robert Fourer	Northwestern Univers	ity, USA
---------------	----------------------	----------

Machine Learning for SAT Solvers

Jia Hui Liang	University of Waterloo,	Canada
---------------	-------------------------	--------

Conference Organization

Program Chair

John Hooker	Carnegie Mellon University, USA
Conference Chairs	
Gilles Audemard Christophe Lecoutre	CRIL, Université d'Artois, France CRIL, Université d'Artois, France
Track Chairs	
Applications	
Meinolf Sellmann	General Electric Global Research Center, USA
CP and Data Science	
Michele Lombardi Tias Guns	Università di Bologna, Italy Vrije Universiteit Brussel, Belgium
CP and Music	
Charlotte Truchet	Université de Nantes, France
CP and Operations Researc	h
David Bergman André Ciré	University of Connecticut, USA University of Toronto, Canada
CP, Optimization, and Pow	er System Management
Bhagyesh Patil	Cambridge Centre for Advanced Research and Education in Singapore
Multiagent and Parallel CP	
Ferdinando Fioretto William Yeoh	University of Michigan, USA Washington University in St. Louis, USA
Testing and Verification	
Arnaud Gotlieb Nadjib Lazaar	SIMULA Research Laboratory, Norway LIRMM Montpellier, France

Workshop Chair

Sébastien Tabary	CRIL, Université d'Artois,	France
------------------	----------------------------	--------

Doctoral Program Chairs

Nadjib Lazaar	LIRMM Montpellier, France
Anastasia Paparrizou	CRIL, Université d'Artois, France

Publicity Chair

George Katsirelos	INRA Toulouse, France
-------------------	-----------------------

Senior Program Committee

Maria Garcia de la Banda	Monash University, Australia
Laurent Michel	University of Connecticut, USA
Gilles Pesant	Polytechnique Montréal, Canada
Louis-Martin Rousseau	Polytechnique Montréal, Canada
Peter Stuckey	University of Melbourne, Australia
Pascal Van Hentenryck	Georgia Institute Of Technology, USA
Roland Yap	National University of Singapore
Track chairs (ex officio)	

Main Technical Track Program Committee

Carlos Ansótegui	Universitat de Lleida, Spain
Fahiem Bacchus	University of Toronto, Canada
Roman Barták	Charles University, Czech Republic
Chris Beck	University of Toronto, Canada
Nicolas Beldiceanu	IMT Atlantique (LS2N), France
Clément Carbonnel	University of Oxford, UK
Mats Carlsson	RISE, Sweden
David Cohen	Royal Holloway, University of London, UK
Simon De Givry	INRA, France
Sophie Demassey	CMA, MINES ParisTech, France
Agostino Dovier	Università degli Studi di Udine, Italy
Pierre Flener	Uppsala University, Sweden
Carmen Gervet	Université de Montpellier, France
Arnaud Gotlieb	SIMULA Research Laboratory, Norway
Emmanuel Hebrard	LAAS, CNRS, France
Matthias Heizmann	Universität Freiburg, Germany
Hiroshi Hosobe	Hosei University, Japan
Said Jabbour	Université d'Artois, France
Peter Jeavons	University of Oxford, UK
Philip Kilby	NICTA, Australia

Zeynep Kiziltan	Universitá di Bologna, Italy
Philippe Laborie	IBM France
Jimmy Lee	The Chinese University of Hong Kong, SAR China
Boonping Lim	Australian National University
Andrea Lodi	École Polytechnique de Montréal, Canada
Samir Loudni	Université de Caen Normandie, France
Ines Lynce	Ténico Lisboa, Portugal
Arnaud Malapert	Université Nice Sophia Antipolis, France
Ciaran McCreesh	University of Glasgow, UK
Kuldeep S. Meel	National University of Singapore
Claude Michel	Université Nice Sophia Antipolis, France
Ian Miguel	University of St. Andrews, UK
Peter Nightingale	University of St. Andrews, UK
Barry O'Sullivan	University College Cork, Ireland
Justin Pearson	Uppsala Universitet, Sweden
Laurent Perron	Google France
Thierry Petit	Worcester Polytechnic Institute, USA
Patrick Prosser	University of Glasgow, UK
Claude-Guy Quimper	Université Laval, Canada
Jean-Charles Régin	Université Nice-Sophia Antipolis, France
Andrea Rendl	Satalia, UK
Emma Rollon	Universitat Politècnica de Catalunya, Spain
Francesca Rossi	Università di Padova, Italy
Pierre Schaus	Université catholique de Louvain, Belgium
Thomas Schiex	INRA, France
Christian Schulte	KTH Royal Institute of Technology, Sweden
Paul Shaw	IBM France
Mohamed Siala	Insight Centre for Data Analytics, Ireland
Helmut Simonis	Insight Centre for Data Analytics, Ireland
Christine Solnon	INSA, France
Peter J. Stuckey	University of Melbourne, Australia
Guido Tack	Monash University, Australia
Michael Trick	Carnegie Mellon University, USA
Christel Vrain	Université de Orléans, France
Mohamed Wahbi	Insight Centre for Data Analytics, Ireland
William Yeoh	Washington University in St. Louis, USA
Alessandro Zanarini	Université de Montréal, Canada
Roie Zivan	Ben Gurion University of the Negev, Israel

Track Program Committees

Applications

Carlos Ansótegui	Universitat de Lleida, Spain
David Bergman	University of Connecticut, USA
André Ciré	University of Toronto, Canada

Carnegie Mellon University, USA Fidelity Investments, USA

Universität Paderborn, Germany

University of Adelaide, Australia

École Polytechnique de Montréal, Canada

Katholieke Universiteit Leuven, Belgium University College Dublin, Ireland

Eindhoven University of Technology, The Netherlands

INRA, France J. P. Morgan, USA

IBM Czech Republic

TU Darmstadt, Germany

University of Wyoming, USA

Università di Bologna, Italy

University of Michigan, USA Université de Orléans, France

Université de Montpellier, France

Willem-Jan Van Hoeve
Serdar Kadioğlu
George Katsirelos
Yuri Malitsky
Louis-Martin Rousseau
Kevin Tierney
Petr Vilim
Markus Wagner

CP and Data Science

Patrick De Causmaecker Georgiana Ifrim Kristian Kersting Lars Kotthoff Nadjib Lazaar Michela Milano Pascal Van Hentenryck Christel Vrain Yingqian Zhang

CP and Music

Gerard Assayag	IRCAM, France
Elaine Chew	Queen Mary University of London, UK
Tim Dwyer	Monash University, Australia
Mathieu Giraud	CNRS, CRIStAL and Université de Lille, France
Dorien Herremans	Singapore University of Technology and Design
Camilo Rueda	Pontificia Universidad Javeriana-Cali, Colombia

CP and Operations Research

Fidelity Investments, USA
Chinese University of Hong Kong, SAR China
Google France
Università di Padova, Italy
IBM, Czech Republic

CP, Optimization, and Power System Management

Bruno François	École Centrale de Lille, France
Nandha Kandaswamy	Singapore University of Technology and Design
Seshadri Kumar	IIT Hyderabad, India
Rémy Rigo-Mariani	Cambridge Centre for Advanced Research
	and Education in Singapore
P. S. V. Nataraj	IIT Bombay, India

Pascal Van Hentenryck	University of Michigan, USA
Ahmed Zidna	Université de Lorraine, France

Multiagent and Parallel CP

Roberto Amadini	University of Melbourne, Australia
Filippo Bistaffa	IIIA-CSIC, Spain
Agostino Dovier	Università di Udine, Italy
Andrea Formisano	Università di Perugia, Italy
Tal Grinshpoun	Ariel University, Israel
T. K. Satish Kumar	University of Southern California, USA
Tiep Le	New Mexico State University, USA
Amnon Meisels	Ben Gurion University of the Negev, Israel
Gauthier Picard	MINES Saint-Etienne, France
Enrico Pontelli	New Mexico State University, USA
Mohamed Wahbi	University College Cork, Ireland
Makoto Yokoo	Kyushu University, Japan
Roie Zivan	Ben Gurion University of the Negev, Israel

Testing and Verification

Sébastien Bardin Catherine Dubois Vijay Ganesh Matthias Heizmann Roberto Castaneda Lozano Mehdi Maamar Marie Pelleau Pascal Van Hentenryck Lebbah Yahia CEA LIST, France ENSIIE-Samovar, France University of Waterloo, Canada Universität Freiburg, Germany SICS, Sweden CRIL Lens, France Université Cote d'Azur, France Universitý of Michigan, USA Université d'Oran 1, Algeria

Additional Reviewers

Özgür Akgün Ekaterina Arafailova Arthur Bit-Monnot Guillaume Burel Sara Ceschia Supratik Chakraborty Eldan Cohen Yves Crama Nguyen Dang Alban Derrien Daniel Dietsch Daniel J. Fremont Alexandre Goldsztejn Vitor Hama Hassan Hijazi Alexey Ignatiev Mikolas Janota Christopher Jefferson Amina Kemmar Javier Larrosa Alexandre Lemos Kevin Leo Olivier Lhomme Tong Liu Samba Ndojh Ndiaye Saeed Nejati Bertrand Neveu Alexandre Papadopoulos Alberto Policriti Badran Raddaoui Philippe Refalo Lakhdar Sais Domenico Salvagnin Vaskar Sarkar Joe Scott Claudio Sole James Trimble Sicco Verwer Hong Xu

Local Organizing Committee

Yazid Boumarafi Zied Bouraoui Frédéric Boussemart Guillaume Cavory Gael Glorian Fred Hemery Yacine Izza Jerry Lonlac Mehdi Maamar Valentin Montmirail Sylvain Merchez Anastasia Paparrizou Cédric Piette Nicolas Szczepanski Sébastien Tabary Hélène Verhaeghe Hugues Wattez

Abstracts of Invited Talks

Potential Applications of CP in Industrial Scheduling

Srinivas Bollapragada

General Electric Global Research Center, USA bollapragada@research.ge.com

Abstract. Scheduling and planning algorithms have the potential to realize significant gains in key industrial sectors such as rail, aviation, power, oil & gas, and healthcare. Improving system level efficiencies even by one percent can save billions of dollars per year in each of these sectors. For example, increasing the average speed of trains by one mile per hour saves the rail industry \$2.5 billion per year. This talk will describe some of our optimization algorithms based industrial applications that saved hundreds of millions of dollars for our customers.

Towards the Holy Grail in Machine Learning

James Cussens

University of York, UK james.cussens@york.ac.uk

Abstract. The holy grail in machine learning—like that in CP—is that the user merely states the (machine learning) problem and the "system" solves it for them. In the Bayesian approach the user would state what they know as a prior distribution and then a posterior distribution is "learned" by conditioning on the observed data. Point estimates, expectations, predicted values and so on can then be extracted from this posterior.

The reality of machine learning is rather different (witness "gradient descent by grad student" in deep learning!) but progress towards this holy grail is happening right now with the development of probabilistic programming languages like stan. I will argue that the CP community has a contribution to make here. In particular, where the discrete structure of probabilistic model has to be learned (rather than just the continuous parameters of a given model) CP has much to offer. Constraints are also the natural choice when we wish to provide the user with a flexible and expressive language in which to declare any domain knowledge. I will use a number of examples of how CP is already being used in machine learning, including (but not restricted to) my own work on using integer programming to learn the structure of Bayesian networks.

Constraints at the Heart of Classical Planning

Malte Helmert

University of Basel, Switzerland malte.helmert@unibas.ch

Abstract. The last two decades have seen significant advances in domainindependent planning. Besides improved scalability through better planning algorithms, several breakthroughs have been made in the theoretical understanding of classical planning heuristics. This talk discusses the critical role that constraints play in the modern theory of classical planning heuristics and presents the new opportunities and challenges brought about by a constraint-based view of classical planning.

Contents

Main Technical Track

Automatic Discovery and Exploitation of Promising Subproblems for Tabulation Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, Peter Nightingale, and András Z. Salamon	3
Propagating Regular Membership with Dashed Strings Roberto Amadini, Graeme Gange, and Peter J. Stuckey	13
A Constraint-Based Encoding for Domain-Independent Temporal Planning Arthur Bit-Monnot	30
Decremental Consistency Checking of Temporal Constraints: Algorithms for the Point Algebra and the ORD-Horn Class Massimo Bono and Alfonso Emilio Gerevini	47
Domain Reduction for Valued Constraints by Generalising Methods from CSP	64
Solver-Independent Large Neighbourhood Search Jip J. Dekker, Maria Garcia de la Banda, Andreas Schutt, Peter J. Stuckey, and Guido Tack	81
Solution-Based Phase Saving for CP: A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers <i>Emir Demirović, Geoffrey Chu, and Peter J. Stuckey</i>	99
An SMT Approach to Fractional Hypertree Width	109
On the Non-degeneracy of Unsatisfiability Proof Graphs Produced by SAT Solvers	128
Sequential Precede Chain for Value Symmetry Elimination Graeme Gange and Peter J. Stuckey	144
An Incremental SAT-Based Approach to Reason Efficiently on Qualitative Constraint Networks	160

Clause Learning and New Bounds for Graph Coloring	179
Portfolio-Based Algorithm Selection for Circuit QBFs	195
Making Compact-Table Compact Linnea Ingmar and Christian Schulte	210
Approximation Strategies for Incomplete MaxSAT Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao	219
A Novel Graph-Based Heuristic Approach for Solving Sport Scheduling Problem Meriem Khelifa, Dalila Boughaci, and Esma Aïmeur	229
Augmenting Stream Constraint Programming with Eventuality Conditions Jasper C. H. Lee, Jimmy H. M. Lee, and Allen Z. Zhong	242
A Complete Tolerant Algebraic Side-Channel Attack for AES with CP <i>Fanghui Liu, Waldemar Cruz, and Laurent Michel</i>	259
Evaluating QBF Solvers: Quantifier Alternations Matter	276
Quantified Valued Constraint Satisfaction Problem	295
MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules Dmitry Malioutov and Kuldeep S. Meel	312
Objective as a Feature for Robust Search Strategies	328
PW-CT: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints Anthony Schneider and Berthe Y. Choueiry	345
Automatic Generation and Selection of Streamlined Constraint Models via Monte Carlo Search on a Model Lattice Patrick Spracklen, Özgür Akgün, and Ian Miguel	362
Efficient Methods for Constraint Acquisition Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis	373
A Circuit Constraint for Multiple Tours Problems Philippe Vismara and Nicolas Briot	389

Towards Semi-Automatic Learning-Based Model Transformation Kiana Zeighami, Kevin Leo, Guido Tack, and Maria Garcia de la Banda	403
Finding Solutions by Finding Inconsistencies	420
The Effect of Structural Measures and Merges on SAT Solver Performance Edward Zulkoski, Ruben Martins, Christoph M. Wintersteiger, Jia Hui Liang, Krzysztof Czarnecki, and Vijay Ganesh	436
Learning-Sensitive Backdoors with Restarts Edward Zulkoski, Ruben Martins, Christoph M. Wintersteiger, Robert Robere, Jia Hui Liang, Krzysztof Czarnecki, and Vijay Ganesh	453

Applications Track

Process Plant Layout Optimization: Equipment Allocation Gleb Belov, Tobias Czauderna, Maria Garcia de la Banda, Matthias Klapperstueck, Ilankaikone Senthooran, Mitch Smith, Michael Wybrow, and Mark Wallace	473
A Constraint Programming Approach for Solving Patient Transportation Problems Quentin Cappart, Charles Thomas, Pierre Schaus, and Louis-Martin Rousseau	490
Unifying Reserve Design Strategies with Graph Theory and Constraint Programming Dimitri Justeau-Allaire, Philippe Birnbaum, and Xavier Lorca	507
Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse Carlos Ansotegui, Meinolf Sellmann, and Kevin Tierney	524
CP and Data Science Track	
User's Constraints in Itemset Mining Christian Bessiere, Nadjib Lazaar, and Mehdi Maamar	537
On Maximal Frequent Itemsets Mining with Constraints Said Jabbour, Fatima Ezzahra Mana, Imen Ouled Dlala, Badran Raddaoui, and Lakhdar Sais	554
A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining Imen Ouled Dlala, Said Jabbour, Badran Raddaoui, and Lakhdar Sais	570
Towards Effective Deep Learning for Constraint Satisfaction Problems Hong Xu, Sven Koenig, and T. K. Satish Kumar	588

XXVI Contents

CP and Music Track

Extending the Capacity of 1 / f Noise Generation	601
Guillaume Perez, Brendan Rappazzo, and Carla Gomes	

CP and Operations Research Track

Securely and Automatically Deploying Micro-services in an Hybrid	
Cloud Infrastructure.	613
Waldemar Cruz, Fanghui Liu, and Laurent Michel	
Improving Energetic Propagations for Cumulative Scheduling	629

CP, Optimization, and Power System Management Track

A Fast and Scalable Algorithm for Scheduling Large Numbers	
of Devices Under Real-Time Pricing	649
Shan He, Mark Wallace, Graeme Gange, Ariel Liebman,	
and Campbell Wilson	

Multiagent and Parallel CP Track

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs Liel Cohen and Roie Zivan		
A Large Neighboring Search Schema for Multi-agent Optimization	688	
Distributed Constrained Search by Selfish Agents for Efficient Equilibria Vadim Levit and Amnon Meisels	707	
Testing and Verification Track		
Metamorphic Testing of Constraint Solvers	727	
Algebraic Fault Attack on SHA Hash Functions Using Programmatic SAT Solvers Saeed Nejati, Jan Horáček, Catherine Gebotys, and Vijay Ganesh	737	
Correction To: PW-CT: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints Anthony Schneider and Berthe Y. Choueiry	E1	

	Contents	XXVII
Correction to: MLIC: A MaxSAT-Based Framework for Learni Interpretable Classification Rules	ng 	C1
Abstracts		
Encoding Cardinality Constraints Using Multiway Merge Selection Networks Michał Karpiński and Marek Piotrów		757
Not All FPRASs Are Equal: Demystifying FPRASs for DNF-C (Extended Abstract)	ounting	759
Constraint Games for Stable and Optimal Allocation of Demand Anthony Palmieri, Arnaud Lallouet, and Luc Pons	ds in SDN	760
Author Index		763