Skip to main content

Improving Energetic Propagations for Cumulative Scheduling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

Abstract

We consider the Cumulative Scheduling Problem (CuSP) in which a set of n jobs must be scheduled according to release dates, due dates and cumulative resource constraints. In constraint programming, the CuSP is modeled as the cumulative constraint. Among the most common propagation algorithms for the CuSP there is energetic reasoning [1] with a complexity of \(O(n^3)\) and edge-finding [21] with \(O(kn \log n)\) where \(k \le n\) is the number of different resource demands. We consider the complete versions of the propagators that perform all deductions in one call of the algorithm. In this paper, we introduce the energetic edge-finding rule that is a generalization of both energetic reasoning and edge-finding. Our main result is a complete energetic edge-finding algorithm with a complexity of \(O(n^2 \log n)\) which improves upon the complexity of energetic reasoning. Moreover, we show that a relaxation of energetic edge-finding with a complexity of \(O(n^2)\) subsumes edge-finding while performing stronger propagations from energetic reasoning. A further result shows that energetic edge-finding reaches its fixpoint in strongly polynomial time. Our main insight is that energetic schedules can be interpreted as a single machine scheduling problem from which we deduce a monotonicity property that is exploited in the algorithms. Hence, our algorithms improve upon the strength and the complexity of energetic reasoning and edge-finding whose complexity status seemed widely untouchable for the last decades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Unlike energetic reasoning that may need additional iterations to reach the maximum propagation for \(t_2^b\).

  2. 2.

    Unlike standard edge-finding that does not consider partial overlaps, which gives a short proof of its \(\mathcal {O}(n)\) fixpoint complexity [14].

References

  1. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound adjustments for cumulative scheduling problems. Ann. Oper. Res. 92, 305–333 (1999)

    Article  MathSciNet  Google Scholar 

  2. Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of energetic reasoning. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 229–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19754-3_23

    Chapter  MATH  Google Scholar 

  3. Bonifas, N.: A \(O(n^2 log(n))\) propagation for the Energy Reasoning, Conference Paper, Roadef 2016. (2016)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. In: de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C. (eds.) Computational Geometry. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04245-8_1

    Chapter  Google Scholar 

  5. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_22

    Chapter  Google Scholar 

  6. Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and resources constraints. In: 2nd International Workshop on Project Management and Scheduling, pp. 115–121 (1990)

    Google Scholar 

  7. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_11

    Chapter  MATH  Google Scholar 

  8. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 288–300. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_22

    Chapter  Google Scholar 

  9. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_24

    Chapter  Google Scholar 

  10. Kameugne, R., Fetgo, S.B., Fotso, L.P.: Energetic extended edge finding filtering algorithm for cumulative resource constraints. Am. J. Oper. Res. 3(06), 589 (2013)

    Article  Google Scholar 

  11. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Google Scholar 

  12. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative constraint. In: Milano, M. (ed.) CP 2012. LNCS, pp. 439–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_33

    Chapter  Google Scholar 

  13. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program. Eur. J. Oper. Res. 96(1), 205–216 (1997)

    Article  Google Scholar 

  14. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. INFORMS J. Comput. 20(1), 143–153 (2008)

    Article  MathSciNet  Google Scholar 

  15. Mercier, L., Van Hentenryck, P.: Strong polynomiality of resource constraint propagation. Discrete Optim. 4(3–4), 288–314 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_42

    Chapter  Google Scholar 

  17. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)

    Article  MathSciNet  Google Scholar 

  18. Schutt, A., Wolf, A.: A new \({\cal{O}}(n^2\log n)\) not-first/not-last pruning algorithm for cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 445–459. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_36

    Chapter  Google Scholar 

  19. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_16

    Chapter  MATH  Google Scholar 

  20. Tesch, A.: A nearly exact propagation algorithm for energetic reasoning in \(\cal{O}(n^2 \log n)\). In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 493–519. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_32

    Chapter  Google Scholar 

  21. Vilím, P.: Edge finding filtering algorithm for discrete cumulative resources in \({\cal{O}}(kn {\rm log} n)\). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_62

    Chapter  Google Scholar 

  22. Vilím, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_22

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous reviewers for their helpful comments on the paper, especially for the advice to take a simpler representation of \(\tilde{\omega }(t)\) as given in the current version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tesch, A. (2018). Improving Energetic Propagations for Cumulative Scheduling. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics