
Validation and Inference of Schema-Level Workflow
Data-Dependency Annotations

Shawn Bowers1, Timothy McPhillips2, Bertram Ludäscher2

1 Dept. of Computer Science, Gonzaga University
2 School of Information Sciences, University of Illinois, Urbana-Champaign

bowers@gonzaga.edu, tmcphillips@absoluteflow.org, ludaesch@illinois.edu

Abstract. An advantage of scientific workflow systems is their ability to collect
runtime provenance information as an execution trace. Traces include the compu-
tation steps invoked as part of the workflow run along with the corresponding data
consumed and produced by each workflow step. The information captured by a
trace is used to infer “lineage” relationships among data items, which can help an-
swer provenance queries to find workflow inputs that were involved in producing
specific workflow outputs. Determining lineage relationships, however, requires
an understanding of the dependency patterns that exist between each workflow
step’s inputs and outputs, and this information is often under-specified or gen-
erally assumed by workflow systems. For instance, most approaches assume all
outputs depend on all inputs, which can lead to lineage “false positives”. In prior
work, we defined annotations for specifying detailed dependency relationships
between inputs and outputs of computation steps. These annotations are used to
define corresponding rules for inferring fine-grained data dependencies from a
trace. In this paper, we extend our previous work by considering the impact of
dependency annotations on workflow specifications. In particular, we provide a
reasoning framework to ensure the set of dependency annotations on a work-
flow specification is consistent. The framework can also infer a complete set of
annotations given a partially annotated workflow. Finally, we describe an imple-
mentation of the reasoning framework using answer-set programming.

1 Introduction

Within most scientific workflow systems, a workflow specification (or schema) is mod-
eled as a graph of nodes representing computational steps and edges representing the
data and control flow between steps [DF08,LBM09]. Each workflow step in a specifica-
tion is typically treated as a “black box” by the workflow system. For example, steps are
frequently configured to invoke external programs, execute scripts, or call web services,
where the step exposes only the inputs needed and the corresponding outputs returned
by the underlying calls. Once designed, workflow specifications serve as executable and
potentially reusable (e.g., using different input data and parameter settings) scientific
analyses. Because scientific workflow systems invoke and control the flow of data be-
tween steps during workflow execution, most systems provide support for recording (or
logging) information about a workflow run. A workflow trace stores information associ-
ated with a run as an instance of a workflow specification [DF08,BML12]. In particular,

ar
X

iv
:1

80
7.

09
89

9v
1 

 [
cs

.D
B

] 
 2

5 
Ju

l 2
01

8



2

traces are modeled as graphs with nodes representing the invocations of steps and edges
representing the data passed between each step’s execution. Traces are often used to in-
fer the lineage of workflow data products. For instance, given a data product output by a
run, many systems use the trace to determine the steps that were invoked as well as the
input and intermediate data products that contributed to its generation [DF08,BML12].

However, because steps in a workflow specification are black boxes, workflow sys-
tems often “overestimate” the lineage relationships from a workflow trace [BML12].
For instance, many systems assume that all data input to a step is used to produce all
outputs, when in fact only a portion of input data may produce any particular output
[CW03,BML12]. Additionally, most systems consider only a single, often underspec-
ified notion of dependency between a step’s inputs and outputs, e.g., where data items
are said to be “influenced by” or “contribute to” other data items [CAA11]. Taken to-
gether, the lineage information inferred from workflow traces may result in lineage
relationships that are not only unclear, but often misleading or even incorrect.

In [BML12], we developed a set of declarative rules for specifying dependency
patterns of individual computation steps. The inputs and outputs of a step are annotated
with rules, which are then used to infer the specific input data used to produce an output
for each invocation of a step within a trace. However, to be effective, this approach
requires a complete set of annotations for every step within a workflow specification.

Contributions. We describe extensions to our prior work that supports partially anno-
tated workflow specifications and employs reasoning techniques to validate and help
infer a complete set of annotations. We consider different use cases related to annotat-
ing a workflow specification and provide a set of dependency types that can be used
to help clarify the lineage relationships present within a workflow trace. Finally, we
describe a prototype implementation (using answer-set programming) of our approach
that we plan to add to the YesWorkflow system [MSK+15] as future work.

Organization. In Section 2 we describe an abstract model of workflow specifications,
give an overview of the dependency types we consider for annotations, and discuss
use cases related to our framework. In Section 3 we describe the constraints associated
with the dependency types as well as the corresponding inferences for reasoning over
partially annotated workflow specifications. In Section 4 we present a prototype imple-
mentation of the reasoning approaches described in Section 3. Finally, in Sections 5 and
6 we describe related and future work, respectively.

2 Workflow Dependency Annotations

This section describes an abstract model for workflow specifications used in the rest of
the paper, an overview of the types of dependencies we consider for workflow annota-
tions, and three example use cases related to annotation inference.

Workflow Specifications. We consider an abstract workflow model that conforms to
YesWorkflow and similar dataflow-oriented scientific workflow models [DF08,BML12].
A workflow W = (P,D,E) consists of a set of program blocks P (workflow steps, i.e.,
computations), data blocks D (representing data items or data containers), and input and
output edges E ⊆ P×L×D×{in,out} where L is a set of labels that uniquely identify



3

normalize filterd
1

d
3

d
5

d
2

d
4

x
range

x
1

x
2

x
3

x
4

x
cutoff

DependsOn

SameAsDerivedFrom

DerivedFrom

DerivedFrom

DerivedFrom

 

 

 

 

 
 

 

Fig. 1. Example workflow with program blocks normalize and filter, data blocks d1, . . . ,d5,
and dataflow edges (solid, black) between nodes; user-declared dependency annotations (dashed,
red edges); and inferred dependencies (dotted, blue edges), based on the given user annotations.

edges within W . We use relations in(pi,xi,di) and out(p j,x j,d j) to denote input and
output edges, respectively, for pi, p j ∈ P, xi,x j ∈ L, and di,d j ∈ D. Figure 1 shows an
example workflow consisting of two program blocks (normalize and filter), five
data blocks (d1, . . . ,d5), four input edges (x1, x3, xrange, and xcutoff), and two output
edges (x2 and x4). Also shown in Figure 1 are a set of initial dependency annotations
(red, dashed) together with the corresponding inferred annotations (blue, dotted). The
normalize block takes input data items d1 and scales them to fit within the given
range (consisting of a minimum and a maximum value). The output of normalize is
then passed to filter, which outputs the data item if it is smaller than a given cutoff
value d4. In general, an input edge in(p1,x1,d1) states that data items are input to the
program block p1 and an output edge out(p1,x2,d2) states that data items are output by
p1. Data blocks allow for data items to be passed as input to multiple program blocks
(e.g., to create workflow branches as in d2 in Figure 4). In contrast, data blocks typically
receive only from a single writer, to avoid conflicts (e.g., d3 6= d4 in Figure 4).3

Dependency Annotations. The set of dependency annotations A ⊆ L× L× T for
a workflow specification W associates different dependency types t ∈ T to in-
put and output edges of W . Dependency annotations are represented by a relation
dep rule(x1,x2, t) for input edges x1 ∈ L, output edges x2 ∈ L, and dependency
types t ∈ T . The dashed, red arrows in Figure 1 represent four explicit, user-supplied
annotations: dep rule(x1,x2,DerivedFrom), dep rule(xrange,x2,DerivedFrom),
dep rule(x3,x4,SameAs), and dep rule(xcutoff,x4,DependsOn). In the example, we
say that the output of normalize is “derived from” the input d1 and the range d2, and
the output of filter “depends on” the cutoff d4 and is the “same (data item) as”
the input d2. We note that annotations can be expressed over a single program block
(e.g., the explicit annotations in Figure 1) or can span multiple program blocks (e.g.,
the inferred annotations in Figure 1).

Dependency Types. We consider a set of pairwise disjoint dependency types for speci-
fying annotations. The FlowsFrom type simply represents the cases where an input data
item was received and an output item was produced by a program-block invocation, but
the output value is not determined by or computed from the input. A FlowsFrom anno-

3 If data blocks denote containers (e.g., file folders or queues) multiple writers may be allowable.



4

p
1

p
2

d
1

d
2

d
3x

1
x

2
x

3
x

4

DerivedFrom

DerivedFrom, 
ValueOf, or SameAs?

DerivedFrom, 
ValueOf, or SameAs?

Fig. 2. Example workflow with initial user annotation (dashed, red) from the output x4 to the
input x1. Which of the undeclared dependency options (dotted, blue) are correct?

tation typically denotes that the input is simply a “trigger” to tell the program block to
be invoked. The DependsOn type represents cases where a control dependence exists
between the corresponding inputs and outputs (explained in more detail in Section 3).
The DerivedFrom type represents cases where outputs are computed from inputs (again,
described further in Section 3). The ValueOf type represents the cases where an output
produces a new data item (with a new object identifier) containing a copy of the input
data item’s value. Finally, the SameAs type represents the cases where the input data
item was passed through to the output (i.e., the output is the same exact data item as the
input data item).

Use Case 1: Inferring Dependency Annotations. Given a workflow specification that
is partially annotated, we consider the case of inferring new annotations from a given
set of user-supplied annotations. Figure 1 gives a simple example where each program
block is annotated (dashed, red arrows) and the corresponding annotations that are im-
plied by the given annotations are also shown (blue arrows). In this example, each indi-
vidual workflow step is annotated by a user, and the goal is to infer the annotations that
span multiple steps. In general, understanding the dependency relationships that span
workflow steps as a result of the composition of program blocks is useful for verify-
ing the intent and/or construction of the workflow (e.g., to ensure that certain workflow
outputs are actually derived from certain workflow inputs). Having a complete set of
annotations is also useful when answering queries at the trace level, e.g., to determine
the inputs that specific outputs were derived from (as opposed to the inputs that were
simply copied from the input or were used for basic control flow).

Use Case 2: Constraining Dependency Annotations. In this case, higher-level anno-
tations that span multiple program blocks (e.g., between workflow inputs and outputs)
are used to help guide annotation choices for the rest of the workflow specification.
As a simple example, we may know that the output is (or should be) derived from the
input as shown in Figure 2 by the dashed red annotation. Specifying this annotation
first limits the choices for the lower-level annotations (in this case of program blocks).
The corresponding choices are shown by the dotted blue annotations in Figure 2. In this
case, different combinations of annotations over the two program blocks are compatible
(consistent) with the initial (dashed red) annotation of Figure 2.

Use Case 3: Validating Dependency Relationships. Finally, we consider the case
where there is a mix of (potentially partial) higher-level (i.e., indirect) and lower-level
(i.e., direct) annotations of a workflow specification that a workflow designer wants
to ensure are compatible (consistent). Figure 3 is one such example where the work-
flow specification consists of a subworkflow (named generate sample as shown on



5

generate
sample

d
2

d
type

d
iter

x
out

x
iter

d
1x

in

DerivedFrom

initial
sample

perturbd
1

d
2

d
type

d
iter

x
type

n x
1

x
2

s

x
iter

DependsOn

DerivedFromDependsOn

DependsOn

x
type

d
in

p
1 p2 d

out

Fig. 3. Workflow specification consisting of an annotated subworkflow (dashed red, bottom) and
an inconsistent higher-level annotation assertion (dashed purple, top) that spans workflow steps.

the bottom of the figure). Each subworkflow step is annotated (in red) and the contain-
ing workflow (shown on the top of the figure) has a higher-level annotation asserting
that the output should be derived from the input. However, the given annotations are
incompatible (i.e., inconsistent) since the composition of the two subworkflow steps in-
troduce an implied DependsOn relationship between the input and output of generate
sample. Thus, based on the workflow specification, din and dout cannot participate in
a DerivedFrom relationship (as shown at the top in purple).

The reasoning framework we describe in the rest of this paper is designed to han-
dle each of these three cases. In particular, we assume that a workflow specification
is either fully or partially annotated, from which the reasoning framework (i) ensures
consistency of the given annotations (e.g., as in Figure 3); (ii) infers all specific implied
annotations (e.g., as in Figure 1); and (iii) provides the allowable annotation options
when there are multiple possible implied annotations (e.g., as in Figure 2).

3 Reasoning over Dependency Types

This section describes our reasoning framework for dependency type validation and
inference. We first give a more detailed description of the annotation types and then
describe the annotation composition rules and constraints used within our framework.

3.1 Dependency Types

In the following, we assume a simple program block p with input edge in(p,x1,d1) and
output edge out(p,x2,d2) as shown below.

pd
1

d
2x

1
x
2

Let D1 be the set of allowable values (the domain) of p with respect to the input edge
x1 and D2 be the set of possible output values (the range) with respect to the output



6

edge x2. We write p : D1 → D2 to denote the signature of p with respect to x1 and
x2. We assume data items are passed to and from program blocks as objects o with
unique identifiers id(o) and corresponding values val(o). For a domain D and a se-
quence of data items ō, we write val(ō)⊆ D if for every data item oi ∈ ō, val(oi) ∈ D.
Given the program block signature p : D1→ D2, an invocation p(ō1) = ō2 states that p
read a sequence of data items ō1 on x1 such that val(ō1) ⊆ D1, and wrote a (possibly
empty) sequence of data items ō2 on x2 such that val(ō2) ⊆ D2.4 Program blocks are
not required to be deterministic, and so different invocations over the same input may
produce different output. The image p[ō1] of ō1 under p is the set of all possible output
sequences produced by invocations of p receiving ō1. Note that if p has multiple input
edges, the same notion of image still applies since we are interested in the relationship
between a single input and output edge (although additional constraints are imposed in
some cases as described below).

Following the traditional convention used in programming language implementa-
tion [FOW87,CAA11], we use the ideas of “control” and “data” dependence between
statements when defining the dependency types below. For example, consider the fol-
lowing statements (adapted from [FOW87]).

S1: C = A * B

S2: E = C * D + 1

S3: if (E > 0) then

S4: H = F + G

Statement S2 is said to have a data dependence on S1 since the value of E depends on
the value of C. A data dependence is also referred to as a “read-after-write” dependence
since C is read as part of S2 to compute a value to write to E. Note that data dependence
relationships can either be direct or indirect. For instance, in the example above, E
directly depends on C (via S2) but indirectly depends on A (via S1 and S2). Below,
we write raw dep(p,x1,x2) to denote that within a program block p, output edge x2
has either a direct or indirect read-after-write dependence on input edge x1. Similarly,
statement S4 is said to have a control dependence on statement S3 since the execution of
statement S4 (and hence, the value of H) depends on the execution of S3 (specifically,
the value of E). However, note that H’s value is not computed from E’s value (which
would imply a data dependence). A control dependence can also be either direct or
indirect. We assume that if an x2 is indirectly control dependent on x1 then either: (i) x2
is control dependent on another variable that is either directly or indirectly control or
data dependent on x1; or (ii) x2 is data dependent on a variable that is either directly or
indirectly control dependent on x1. Below, we write ctl dep(p,x1,x2) to denote that x2
has either a direct or indirect control dependence on x1. We define the dependency types
below in terms of the constraints they impose between possible inputs and outputs of
program-block invocations as well as their corresponding control and data dependences.

4 The use of sequences of data items allows for more complex program blocks such as fil-
ters and aggregators as well as workflow computation models supporting implicit iteration
[ABCG18,BML12].



7

FlowsFrom. A FlowsFrom annotation implies that x2 does not have a control or data
dependence on x1, which is expressed by the constraint:

¬ctl dep(p,x1,x2) ∧ ¬raw dep(p,x1,x2).

FlowsFrom simply suggests that the input was present when p was executed, e.g., the
input was used as a “trigger” to invoke a program block p.
DependsOn. A DependsOn annotation implies that x2 has a control dependence, but
not a data dependence on x1, which is expressed by the constraint:

ctl dep(p,x1,x2) ∧ ¬ raw dep(p,x1,x2).

DerivedFrom. A DerivedFrom annotation implies that x2 has a data dependence on
x1, but that not all outputs have the same value(s) as their corresponding inputs (which
would suggest a ValueOf or SameAs relationship):

raw dep(p,x1,x2) ∧ (∃ō2 ∈ p[ō1] : val(ō2) 6⊆ val(ō1)).

As explained further below, we consider DerivedFrom to be a “stronger” dependency
relationship than DependsOn. Thus, while it is possible for x2 to have both a control and
data dependence on x1, it would be represented as DerivedFrom within our framework.
ValueOf. A ValueOf annotation implies that the values of data items received on x1 are
output on x2 (e.g., by copying inputs to new outputs). Unlike with SameAs, ValueOf
assumes new data items are created as a result, and so the identifiers for the input and
output data items differ:

(∀ō2 ∈ p[ō1] : val(ō2)⊆ val(ō1)) ∧ (∃ō2 ∈ p[ō1] : id(ō2) 6⊆ id(ō1)).

We use id(ō) to denote the set of identifiers of the sequence of data items ō. Note that
ValueOf implies a data dependence from x2 to x1 since data items must be read from
input x1 and then written into data items that are output to x2.
SameAs. A SameAs annotation differs from ValueOf by requiring all outputs to be the
same as data items from the inputs:

∀ō2 ∈ p[ō1] : o ∈ ō2→ o ∈ ō1.

Here, o ∈ ō holds if the object o is a member of the sequence ō. A SameAs relationship
also implies a data dependence from x2 to x1 since the input data items must be read
from x1 and then written to x2.

3.2 Composing Dependency Annotations

Annotation inference within a workflow specification is largely based on understanding
how annotations “propagate” under compositions (or “sequences”) of workflow steps.
Here we assume two connected program blocks p1 : D1→ D2 and p2 : D2→ D3:

p
1

d
1

d
2x

1
x
2

p
2

d
3x

3
x
4



8

When p1 and p2 are connected by a data block as above, we write p1 ◦ p2 to denote
the connection. We also define the ordering ≺ to represent the intuitive “dependency
strength” of annotation types. In particular, if ti ≺ t j then we say ti is a “weaker” de-
pendency type than t j (or similarly, that t j is a “stronger” dependency type than ti). The
dependency types are ordered according to dependency strength as follows.

FlowsFrom ≺ DependsOn ≺ DerivedFrom ≺ ValueOf ≺ SameAs

For instance, a DependsOn relationship suggests a “weaker” dependency than a De-
rivedFrom relationship. The definitions of the annotation types with the ordering above
imply the following annotation composition rules for a sequence of program blocks
p1 ◦ p2, with in(p1,x1,d1), out(p1,x2,d2), in(p2,x3,d2), and out(p2,x4,d3) as de-
fined above, and � denoting weaker or of equal strength (and where all variables are
assumed below to be universally quantified).

dep rule(x1,x2, ti)∧dep rule(x3,x4, t j)∧ ti � t j↔ dep rule(x1,x4, ti)

dep rule(x1,x2, t j)∧dep rule(x3,x4, ti)∧ ti � t j↔ dep rule(x1,x4, ti)

These rules can also be applied to indirect annotations (spanning multiple blocks) as
well, which is further described in Section 4. As an example of propagation, in Fig-
ure 1, normalize has a DerivedFrom annotation and filter has a SameAs annota-
tion. Since DerivedFrom is “weaker” than SameAs, the composite annotation is De-
rivedFrom. Similarly, in Figure 2 the composite annotation is DerivedFrom, which im-
plies that p1 and p2 have either DerivedFrom annotations or “stronger” types (i.e., Val-
ueOf or SameAs), since DerivedFrom must be the “weaker” annotation. Additionally
(and not shown in Figure 2), note that at least one of p1 or p2 must have a Derived-
From annotation to satisfy the composition rules above. The example in Figure 3, while
slightly more complex, follows the same idea in that along the path from xout to xin,
the generate sample subworkflow implies a DependsOn annotation, and since De-
pendsOn is strictly weaker than DerivedFrom, the higher-level DerivedFrom annotation
violates (is inconsistent with) the composition rules.

According to the composition rules, weaker annotations propagate through
program-block compositions, which is due to the nature of the dependencies estab-
lished by the weaker annotation. For instance, if x2 FlowsFrom x1, then d2 (via x2) does
not have a control or data dependence on d1 (via x1). Thus, since the value of d1 does
not participate in the computation of d2, d1 also does not participate in the computation
of the values that have a control or data dependence on d2. A similar situation exists
when p2 has a FlowsFrom annotation. Determining indirect control dependences (i.e.,
when looking at sequences of statements involved in control and data dependences) was
described in the beginning of this section, and follows from the idea that control depen-
dence can be indirectly established through other control and/or data dependences. The
same ideas apply to copying the values of data items. If d2 is a (value) copy of d1 with
potentially different data item identifiers as d1 (i.e., x2 has a ValueOf relationship with
x1), but d2 is passed through to d3 (i.e., x4 has a SameAs relationship with x3), then
d3 will also have the same value but a different identifier as d1 (since d2 and d3 are
the same data item). The same situation occurs when the two annotations are flipped,
i.e., p1 has a SameAs relationship and p2 has a ValueOf relationship. Finally, when p1



9

p
1

p
4

d
1

d
2

d
5x

1
x
2

x
7

x
9

DerivedFrom

p
2

p
3

d
3

d
4

x
3

x
4

x
5

x
6

x
8

FlowsFrom

DerivedFrom
SameAs

DerivedFrom

Fig. 4. Example workflow specification with multiple paths between the input and output.

and p2 have the same exact annotation, the same annotation is also propagated, which
follows from similar arguments as those above.

3.3 Additional Annotation Constraints

We also consider an additional “global” constraint on the dependency annotations of a
workflow specification related to inferring annotations when there are two or more paths
of program-block compositions within a workflow specification. Consider the example
annotated workflow specification of Figure 4, which shows two paths (i.e., sequences
of program block compositions) between x1 and x9. While the top path (through p2)
implies a FlowsFrom relationship from x9 to x1 (since FlowsFrom is the weakest type
along the path), the bottom path implies a stronger DerivedFrom relationship from x9
to x1. Since we allow at most one dependency type between an input and an output, we
use the annotation inferred from the path with the strongest type.

4 Prototype Implementation

This section describes a prototype implementation of our annotation reasoning frame-
work using the Potassco5 suite of answer-set programming (ASP) tools. Potassco imple-
ments ASP using a syntax similar to Datalog with additional support for nonmonotonic
reasoning based on the answer set semantics [GK14]. Potassco programs are often writ-
ten using a generate-and-test algorithmic approach where the result of a program is a
set of minimal models, or “answer sets”, that satisfy the rules and constraints defined
within the program. Our implementation follows this same approach by:

(i) “guessing” dependency annotations for each input-output pair in a workflow
specification without a corresponding user-supplied annotation (the generate step);

(ii) ensuring that each of the input-output pair annotations satisfy the program-block
annotation compositions described in the previous section (the test step); and

(iii) ensuring that annotations satisfy the additional constraints described in the pre-
vious section, i.e., ensuring the “strongest” indirect annotations are used between inputs
and outputs with multiple paths of program blocks between them (the test step).

5 See: https://potassco.org/

https://potassco.org/


10

In the generate-and-test approach, conceptually all possible models are created—
which in our case means that all possible combinations of input-output pair combina-
tions along a dataflow path are considered—and only those models (answer sets) that
satisfy the given constraints are returned. Our prototype implementation uses the answer
sets for a workflow specification and then (i) outputs all annotations that are contained
in each answer set (i.e., the annotations that are “entailed” by the program); and then
(ii) outputs the annotation choices (i.e., the union of annotations across answer sets) for
the annotations that are not entailed (e.g., as is the case with the blue annotations in
Figure 2).

Our prototype uses a “choice rule” to generate annotations for input-output pairs
not already annotated as part of the workflow specification:

{dep_rule(I,O,R) : dep_type(R)} = 1 :- up_stream(I,O).

Where up stream(I,O) finds all potential input-output annotation pairs:

up_stream(I,O) :- in(I,P,_), out(O,P,_).

up_stream(I,O) :- in(I,P1,_), out(O1,P1,D1), in(I2,P2,D1), up_stream(I2,O).

The following constraint ensures that all annotations satisfy the composition rules:

:- dep_rule(I,O,R), not valid_dep_path(I,O,R).

In ASP the head of the (constraint) rule above is assumed to be false. Thus, if the
body is satisfied the constraint fails. To satisfy the constraint, the body must not be
true. So, in the constraint above, either there does not exist a dependency between the
input I and output O, or the dependency forms a valid dependency path. The relation
valid dep path(I,O,R) is true if there is a valid annotation with type R between the
input I and output O as defined below.

valid_dep_path(I,O,R) :- in(I,P,_), out(O,P,_), dep_rule(I,O,R).

valid_dep_path(I,O,R) :- in(I,P,_), out(O1,P,_), O != O1,

dep_rule(I,O1,R1), connected(O1,I1), I != I1,

valid_dep_path(I1,O,R2), compose(R1,R2,R).

The connected(O,I) relation is true if the output O shares a data block with the input
I (implying two program blocks share a dataflow connection from O1 to I1):

connected(O,I) :- out(O,_,D), in(I,_,D).

The compose(R1,R2,R) relation implements the basic dependency composition rules
defined in the previous section:

compose(R1,R2,R1) :- weaker(R1,R2).

compose(R1,R2,R2) :- weaker(R2,R1).

The weaker(R1,R2) relation encodes the “strength” of dependency ordering over
types (i.e., the � relation; see Section 3). Thus, weaker(R1,R2) is true for types R1
and R2 iff R1 � R2. The two compose rules select the weaker relation of R1 and R2. If
R1 is weaker than R2, then the first compose rule selects R1, and if R2 is weaker than
R1, then the second compose rule selects R2. Finally, the first rule of valid dep path
considers the case where the path is a single program block, and the second rule con-
siders the case where a path consists of multiple program blocks. For the the second



11

valid dep path rule, we require O and O1 as well as I and I1 to be different values,
respectively, for the case where I and O form a simple cycle. Without the inequalities,
checking valid dep path for I and O would require valid dep path for I and O to
be already known (from the body of the rule). We note that workflow cycles, however,
are supported by the rules. The following constraint ensures that annotations are the
“strongest” along multiple program-block paths.

:- dep_rule(I,O,R), valid_dep_path(I,O,R1), R != R1, weaker(R,R1).

The constraint ensures there is not a stronger type between the input I and output O than
the one given (guessed or inferred) by the annotation dep rule(I,O,R).

5 Related Work

We focus on the PROV model, data provenance, and other workflow-based approaches:
The PROV model [MM13] defines a general wasInfluencedBy relationship with

wasDerivedFrom as the main lineage relationship between entities. PROV also defines
subtypes of wasDerivedFrom, including wasRevisionOf, wasQuotedFrom, and hadPri-
marySource. Although DependsOn and DerivedFrom are similar to wasInfluencedBy
and wasDerivedFrom, because our approach is designed for computation via work-
flows, we adopt the more specific notions of dependency (i.e., control and data de-
pendence) from [CAA11]. Our approach is also similar to PROV-O [SLM13], which
models provenance at the schema level. We also consider compositions of dependency
annotation types, which are not considered within PROV-O.

Cui and Widom [CW03] define three types of transformations for ETL workflows—
dispatchers, aggregators, and black-boxes—and for each a set of techniques for infer-
ring data-level lineage. They also define a number of specialized (i.e., a hierarchy of)
transformation types for computing data lineage. While our approach also provides de-
pendency types for transformations (in our case, program blocks), the focus in [CW03]
is to compute data-level workflow lineage (the input items that contributed to output
items), and does not consider the differences between dependency, derivation, and so
on. The approach used in LabelFlow [ABCG18] is also similar to that in [CW03], in
which different types of workflow steps are considered and used for data annotation
propagation (i.e., arbitrary metadata attribute-value pair “labels”). Like [CW03], La-
belFlow focuses on workflow execution by inferring data-level labels for intermediate
and final workflow data products.

Cheney et al. [CAA11] employ dependency analysis techniques (program slicing),
which are focused on calculating data dependencies to infer “dependency provenance”
for a query language based on the nested relational calculus. Unlike other approaches
for inferring lineage from queries, [CAA11] employs dependency analysis to formal-
ize the notion of lineage relationships. Huq et al. [HAW13] describe a tool to compute
data-level lineage for workflows defined as Python scripts using Program Dependence
Graphs (PDGs) [FOW87]. However, control dependencies are converted to data de-
pendencies to simplify lineage relationships for scientists. PDGs are closely aligned
with program slicing techniques, and offer a formal interpretation of dependency also
adopted by our model.



12

In [DBK+15], data dependencies are inferred from scripts and are then connected to
YesWorkflow specifications; a prototype linking YesWorkflow models and noWorkflow
traces has been described in [PDM+16]. Our approach differs from, but complements
these approaches by explicitly supporting lineage assertions for both control and data
dependency information (among other types of dependencies) for workflow specifica-
tions and enables validation and inference procedures over lineage annotations.

6 Conclusion and Future Work

This paper defines provenance dependency types for modeling lineage constraints
within scientific workflow specifications along with a reasoning framework that can
validate dependency annotations and infer a complete set of annotations for workflow
specifications, including the allowable choices (possible worlds) when multiple anno-
tation types are possible. We plan to extend YesWorkflow [MSK+15], which uses an-
notations to declare workflow specifications for executable scripts, with dependency
annotations and the reasoning framework described here. We also plan to develop sup-
port for annotating subworkflows within YesWorkflow. While the dependency types
described here cover a wide range of cases, additional types may be needed for some
workflows. For instance, although not described in this paper, we have recently de-
veloped extensions for supporting a NotFlowsFrom dependency type, which is needed
in some subworkflows to capture cases where subworkflow inputs are not connected
(i.e., not “up-stream”) from subworkflow outputs. Adding NotFlowsFrom required only
minimal changes to the rules presented in Section 4. Finally, we also intend to explore
using static dependency annotations in YesWorkflow models to infer trace-level (run-
time) data lineage relationships, thus combining our prior work in [BML12] with the
reasoning framework presented here.

Acknowledgements.
Work supported in part through NSF awards OAC-1541450 and SMA-1637155.



13

References

ABCG18. P. Alper, K. Belhajjame, V. Curcin, and C. Goble. LabelFlow Framework for Anno-
tating Workflow Provenance. Informatics, 11(5), 2018.

BML12. S. Bowers, T. M. McPhillips, and B. Ludäscher. Declarative Rules for Inferring Fine-
Grained Data Provenance from Scientific Workflow Execution Traces. In IPAW, pp.
82–96, 2012.

CAA11. J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency analysis. Mathe-
matical Structures in Computer Science, 21(6):1301–1337, 2011.

CW03. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
The VLDB Journal, 12(1):41–58, 2003.

DBK+15. S. C. Dey, K. Belhajjame, D. Koop, M. Raul, and B. Ludäscher. Linking Prospective
and Retrospective Provenance in Scripts. In TaPP, 2015.

DF08. S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges and
opportunities. In SIGMOD, 2008.

FOW87. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and
Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

GK14. M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, 2014.

HAW13. M. R. Huq, P. M. G. Apers, and A. Wombacher. ProvenanceCurious: a tool to infer
data provenance from scripts. In EDBT, pp. 765–768, 2013.

LBM09. B. Ludäscher, S. Bowers, and T. McPhillips. Scientific Workflows. In Encyclopedia
of Database Systems, pp. 2507–2511. Springer, Boston, MA, 2009.

MM13. L. Moreau and P. Missier. PROV-DM: The PROV Data Model. W3C
recommendation, W3C, April 2013. http://www.w3.org/TR/2013/

REC-prov-dm-20130430/.
MSK+15. T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, R. K. Bocinsky,

Y. Cao, J. Cheney, F. Chirigati, S. Dey, J. Freire, C. Jones, J. Hanken, K. W. Kintigh,
T. A. Kohler, D. Koop, J. A. Macklin, P. Missier, M. Schildhauer, C. Schwalm, Y. Wei,
M. Bieda, and B. Ludäscher. YesWorkflow: A User-Oriented, Language-Independent
Tool for Recovering Workflow Information from Scripts. Intl. J. of Digital Curation,
10(1):298–313, 2015.

PDM+16. J. F. Pimentel, S. Dey, T. McPhillips, K. Belhajjame, D. Koop, L. Murta, V. Bragan-
holo, and B. Ludäscher. Yin & Yang: Demonstrating Complementary Provenance
from noWorkflow & YesWorkflow. In IPAW, pp. 161–165, 2016.

SLM13. S. Sahoo, T. Lebo, and D. McGuinness. PROV-O: The PROV Ontology.
W3C recommendation, W3C, April 2013. http://www.w3.org/TR/2013/

REC-prov-o-20130430/.

https://link.springer.com/chapter/10.1007/978-3-642-34222-6_7
https://link.springer.com/chapter/10.1007/978-3-642-34222-6_7
https://www.usenix.org/conference/tapp15/workshop-program/presentation/dey
https://www.usenix.org/conference/tapp15/workshop-program/presentation/dey
https://doi.org/10.1007/978-0-387-39940-9_1471
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.2218/ijdc.v10i1.370
https://doi.org/10.2218/ijdc.v10i1.370
https://doi.org/10.1007/978-3-319-40593-3_13
https://doi.org/10.1007/978-3-319-40593-3_13
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/

