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Abstract. Provenance of food describes food, the processes in food
transformation, and the food operators from the source to consumption;
modelling the history food. In processing food, the risk of contamination
increases if food is treated inappropriately. Therefore, identifying criti-
cal processes and applying suitable prevention actions are necessary to
measure the risk; known as due diligence. To achieve due diligence, food
provenance can be used to analyse the risk of contamination in order
to find the best place to sample food. Indeed, it supports building ra-
tionale over food-related activities because it describes the details about
food during its lifetime. However, many food risk models only rely on
simulation with little notion of provenance of food. Incorporating the
risk model with food provenance through our framework, prFrame, is
our first contribution. prFrame uses Belief Propagation (BP) over the
provenance graph for automatically measuring the risk of contamina-
tion. As BP works efficiently in a factor graph, our next contribution is
the conversion of the provenance graph into the factor graph. Finally, an
evaluation of the accuracy of the inference by BP is our last contribution.

1 Introduction

Provenance of food is well understood by both business and the public. Notions
of Appellation d’Origine Contrôllée are regulatory labels indicating that some
food products can be trusted to originate from a given region, thus vouching for
the authenticity and quality of the products. Likewise, organic labels encompass
more or less stringent guarantees that adequate processes have been followed
in the production of food products. The provenance model PROV (PROV-DM)
complemented by domain-specific ontologies [1][2] have been used to describe
processes of the food supply chain, enabling such descriptions to be shared and
queries over them to be answered. These capabilities allow confidence in food
products and processes to increase. For instance, the requirement for food oper-
ators to identify suppliers one level up and customers one level down can easily
be addressed using provenance-based modelling of the food supply chain [3].

Regulations demand that food operators undertake due diligence [4]. While
this term is not formally defined in law, it is usually understood to include



identifying all the food safety critical stages of food production, storage and
distribution, then identifying suitable control measures to adequately prevent
the risk of food safety failures and putting in place appropriate management
control procedures to ensure they effectively happen [4][5].

Our claim in this paper is that provenance models such as PROV can be the
basis for food operators to develop a rationale for control procedures. Indeed,
our discussions with them show that food samples are analysed to check contam-
ination levels as part of a due diligence process to manage risk. However, such
samplings are costly in terms of resources, and a rationale needs to be developed
on how best to sample food supply chains. Regulators and food operators are
constantly on the lookout for better ways to measure, track, and analyse risk
in the food supply chain. In this paper, we discuss two techniques, adapted to
operate over provenance graphs, which result in a powerful tool to reason, esti-
mate, and understand risk of contamination across the food supply chain, over
which we have partial knowledge of level of contamination.

First, PROV provenance can be used to model the food supply chain in the
Modular Process Risk Model (MPRM), which is a tool for Quantitative Micro-
bial Risk Assessment (QMRA) [6]. MPRM uses Monte-Carlo (MC) simulation,
which is a computer-based technique allowing variation of randomly distributed
inputs to be propagated through mathematical models [7], to generate bacterial
concentration with the aim to understand the distribution of bacteria in the food
supply chain. This approach relies on the directed nature of provenance graphs,
and propagate bacterial concentration along edges of these graphs, according to
evidenced formulae of micro-organisms transmissions. However, MPRM does not
support any actual knowledge of contamination level as it relies on distributions
of bacterial concentration, derived from past studies.

Second, in this context, Belief Propagation (BP) is a technique that takes
observations of contamination levels in the food supply chain to calculate the
marginal distribution for each unobserved node, conditional on these observed
nodes [8]. BP, initially defined by Pearl, has been showed to operate on trees, but
also to provide useful approximations for graphs. It requires a notion of Factor
Graph (a bipartite graph containing nodes for variables and factors), which we
demonstrate can be easily derived from provenance graphs.

The aim of this paper is to introduce a prFrame, as a framework to estimate
risk of contamination in a food supply chain described by provenance, which
allows for observations (by directly sampled contamination levels) to be taken
into account, as well as estimates to be inferred for unobserved part of the chain.
We demonstrate the effectiveness of the methodology within this framework lies
when new evidence (i.e. sampling report) can easily be incorporated to more
accurately estimate the actual risk.

The concrete contributions of the paper are as follows:

1. A Monte-Carlo based simulation technique to derive contamination levels of
provenance-based descriptions of a food supply chain.

2. A transformation of food supply chain provenance graphs into factor graphs
to enable sum-product algorithm as a variant of Belief Propagation.



3. An evaluation framework, allowing contamination levels to be systemati-
cally hidden in a provenance described supply chain (effectively creating
unobserved nodes) to generate estimations of contamination levels through
Belief Propagation.

Following this introduction, background to support our work is given in sec-
tion 2. We present our case study and our approach with prFrame in section
3 and 4 subsequently. Section 5 shows how our approach can be applied and
section 6 concludes the paper and suggests potential future work.

2 Background

In this section, some theoretical concepts are presented. In general, we have two
intersected concepts, namely provenance to describe what happened to food and
BP to infer the risk of contamination over the provenance graph.

2.1 Provenance

The World Wide Web Consortium (W3C) defines provenance as a record that
describes the people, institutions, entities, and activities involved in producing,
influencing, or delivering a piece of data or a thing in the world [9]. It contains
the description of data and the processes involved during the data lifetime, such
as how something is derived, who is responsible for certain actions, what the
consequences and the risks of an activity are, etc. As provenance describes the
lifetime of something, it can provide a crucial information for investigation.

The Provenance Data Model (PROV-DM) and Provenance Ontology (PROV-
O) [9][10] enable the modelling of something in provenance. As PROV-O is de-
signed to be domain agnostic, it often gets extended in specific domains. For
instance, Markovic et al. extend the PROV-O to monitor food safety by docu-
menting constraints that may be associated with an HACCP plan [2] and Bat-
lajery et al. provide prFood ontology to capture and model food and risk along
the food supply chain [1]. Another works by Ali and Moreau [11], Packer et al.
[12], and Markovic et al. [13] also extend PROV-O for their specific purposes.

2.2 Belief Propagation

BP is an approach to perform inference based on message passing algorithm.
Here, we focus on sum-product, as an algorithm in the BP family.

Theory of belief propagation In Probabilistic Graphical Model (PGM),
probability theory and graph theory are utilised to capture the knowledge in
graph-based representations [14]. Probability is about measuring uncertainty of
an occurrence in the world, which refers to the degree of confidence that an event
will occur [15]. For example, the probability P (X) of an event X quantifies the
degree of confidence that X will occur. With P (X)=1, we are certain that one



of the outcomes in X occurs and P (X)=0 indicates that all outcomes in X are
impossible. Other probability values between 0 and 1 represent options that lie
between them. Probability can be expressed in 2 fundamental rules, sum rule and
product rule, which become the basic calculations of sum-product algorithm.

(a) sum rule P (X) =
∑
Y

P (X,Y ) (b) product rule P (X,Y ) = P (Y |X)P (X) (1)

In Equation 1, P (X) is referred to as marginal distribution over the distribu-
tion of random node X and is simply verbalized as the probability distribution
of X. In many cases, the questions often involve the values of several random
nodes or a Joint Probability Distribution (JPD), written as P (X,Y ). Similarly, a
Conditional Probability Distribution (CPD) can be verbalized as the probability
of Y given X or P (Y |X) that specifies the belief in Y under the assumption that
X is known (observed) with certainty [16]. Entering an evidence to update our
belief about the probability is often mentioned as propagation and its mechanism
with BP is described in the following paragraph.

Mechanics behind belief propagation BP relies on an iterative message
passing algorithm inherently from bayesian procedure to perform an inference
efficiently. This technique explores the conditional independence relationship
over a Factor Graph. A factor graph is a bipartite graph that expresses the
global function into a product of local functions [18]. This graph consists of 2
types of nodes, namely a variable node for each node in the network and a factor
node for each factor f(x) in the joint distribution between nodes.

The message passing algorithm allows the nodes to communicate their local
state by sending messages over the edges [14][19][20]. By local, we mean that a
given node updates the outgoing messages on the basis of incoming ones from the
previous iterations. In general, the messages are passed around and get updated
until a stable belief state is reached (convergence). However, depending on the
type of graph, some may not reach the convergence due to circular reasoning.
In the context of food provenance, the circular process exists in the event of
splitting and joining food. Thus, having the provenance of food with a tree-based
structured, such as the sequential linear chain from the source to consumption,
can guarantee the convergence. Although convergence is not guaranteed, BP has
been found to have outstanding empirical success in loopy graphs too [14].

3 Food supply chain as a use case

This section presents a case study where a notion of provenance is needed in the
food domain in order to achieve due diligence. The study involves a food risk
model for the food domain and its modelling by provenance.

3.1 Food provenance and food regulations

In order to achieve due diligence, food regulations (e.g. ISO 9000, Food Safety
Act (FSA) 1990, HACCP, etc.) are created for assuring food that people consume



is safe [4][21]. By identifying what, where, when, who, and how food is handled,
regulators and food operators can have an overview of potential contamination
and have more comprehensive way of understanding the risk.

Definition 1. Food Provenance is a record that describes a food product and
its ingredients; the processes involved in food transformation; and food operators
who are responsible for those processes in the food supply chain.

In modelling food provenance into the standardized provenance format, we use
PROV because of its capability to capture and describe the entities, activities,
and agents that may have influenced the piece of data about food. The mod-
elling is performed by codifying a food stage (e.g. Prepared, Cooked, etc.) as
prov:Entity, a food process (e.g. preparing, cooking, etc.) as prov:Activity, and a
food operator as prov:Agent. Figure 1 shows an excerpt of food provenance.
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Fig. 1. An excerpt of provenance graph of the food supply chain.

Figure 1 describes the provenance of food, which conveys its history and the
information about risk of contamination. To model the risk, the prFood ontology
[1] is used to capture the necessary data for risk calculation, such as bacterial
concentration, contamination level, risk factor, etc as attributes of entities.

Definition 2. Bacterial Concentration is the total bacteria in food.

Definition 3. Contamination Level is a range of values to categorize bacterial
concentration.

Definition 4. Risk Factor is any aspect that contributes to the risk of contami-
nation, such as improper storage, time and temperature abuse of food, etc. [22].

3.2 Modular Process Risk Model (MPRM)

MPRM is a process-driven framework to estimate the risk of food contamination
based on how food is handled [6]. This framework splits the food supply chain
into smaller modules and the transmission of bacteria is calculated based on the
well-known formulae with the MC simulation. The simulation selects a random
value from the distribution of a risk factor to generate bacterial concentration
after each food process, and it will be the input for the next process.

MPRM supports 6 basic processes that can affect the bacterial concentra-
tion after the food process. They are Growth, Inactivation, Partitioning, Mixing,
Removal, and Cross Contamination. Growth and inactivation are two basic mi-
crobial processes, which are strongly depending on the characteristic of bacteria
investigated and the surrounded environmental condition. Partitioning, mixing,



removal, and cross-contamination are 4 handling processes. Partitioning occurs
when a major unit of food is split up into several minor units, while mixing de-
scribes the opposite process. Removal is a process where some units are removed
and cross-contamination describes the transmission of bacteria between objects.

4 The prFrame Framework

This section discusses prFrame, our proposed framework that incorporates Prove-
nance, Risk Model, and PGM to achieve due diligence. With multiple food risk
models that use a MC simulation, the input-output interaction of bacterial con-
centration only works in one direction (forward, from source to destination),
making predicting the contamination level before a food process difficult, given
the bacterial concentration after that process. In addition, its capability to in-
corporate an actual bacterial concentration is limited. Meanwhile, BP is a non-
directional approach as it propagates information forward and backward. Thus,
inferencing is easier with additional observed information anywhere in the chain.
The pseudocode of prFrame is shown in Algorithm 1 and is described below.

Algorithm 1: prFrame Algorithm

Input : pG: Provenance Graph
Output: infBin: Inferred Bacterial

Level
1 var bConc: Bacterial Concentration ;
2 var preBin: Predicted Bacterial Level ;
3 〈bConc, preBin〉 ← monteCarlo(pG) ;
4 ;
5 var preBin: Predicted Bacterial Level ;
6 var binMtx: Bin Matrix ;
7 binMtx← computeBinMtx(preBin);

8 ;
9 var binMtx: Bin Matrix ;

10 var jpdMtx: JPD Matrix ;
11 var cpdMtx: CPD Matrix ;
12 〈jpdMtx, cpdMtx〉 ←

computeCpd(binMtx) ;

13 ;
14 var pG: Provenance Graph ;
15 var cpdMtx: CPD Matrix ;
16 var pGcpd: Provenance Graph with CPD;
17 pGcpd← attachCpd(pG, cpdMtx) ;

18 ;
19 var pGcpd: Provenance Graph with CPD;
20 var fG: Factor Graph ;
21 fG← convertPG(pGcpd) ;
22 ;
23 var fG: Factor Graph ;
24 var e: Observed nodes ;
25 var i: Inferred nodes ;
26 var infBin: Inferred Bacterial Level ;
27 infBin← beliefPro(fG, e, i) ;

4.1 Food risk model with monte-carlo simulation

Our framework begins with a given provenance graph that describes food. The
provenance graph is expected to hold data about risk factors as parameters to
simulate the flow of food based on MPRM. An MPRM basic process in a food
process depends on the activities described and the assumption hold in that food
process. For example, it is assumed that the number of microbes increases during
the transporting process; hence, the growth model becomes the basic process
for transporting. Changing or adding a basic process will affect the formula to
predict the number of microbes, which is not the scope of this paper. We refers



the readers to [22] for the details of risk factors and their distributions in each
food process as well as the formula for each MPRM basic process.

The simulation is needed as we do not know the exact risk factors, such
as time and temperature in processing food, leading us to only have partial
information about contamination levels. With this reason, we estimate bacterial
concentration by conducting MC simulation, which takes into account all the
possible values of risk factors in form of a distribution, to predict contamination
level along the provenance network. The MC simulation is performed the same as
in [22], which generates predicted bacterial concentration after each food process.

Each generated bacterial concentration is categorized into the contamina-
tion level. The aim for categorization is that it is easier to compare the ac-
tual data with the categorical data (contamination level) rather than with the
continuous data (bacterial concentration) in order to infer the updated risk of
contamination. Thus, each contamination level counts food that have bacterial
concentration within its defined range (Alg.1 line 3 ). In the end, a Bin matrix is
constructed to capture all possible combinations between contamination levels
before (upwards) and after (downwards). The column and row of the matrix
represent the levels upward and downward consecutively (Alg.1 line 7 ). For ex-
ample, Figure 2 shows that there are a total 24 food products in the transporting
process (Transported Food) and storing process (Stored Food). Four of them had
microbial level 1 after transporting and level 2 after storing.

Fig. 2. An example of a bin matrix. A blue square represents the level of contamination.

4.2 Belief propagation in the provenance network

A Joint Probability Distribution (JPD) is captured in a JPD matrix by divid-
ing each value in the Bin matrix with the total number in Bin matrix (total
food used that have undergone the food process). Subsequently, a CPD matrix
is derived by dividing each value of the JPD matrix with its corresponding row
as the row represents the level downward the food process (Alg.1 line 12 ). A
complete bin matrix, jpd matrix, and cpd matrix are presented in on-line ap-
pendix (https://goo.gl/hXvici). Next, the CPD matrix is added as an attribute
in the provenance graph (Alg.1 line 17 ) and the conversion into a factor graph
is performed (Alg.1 line 21 ).

In a factor graph, a factor can be described as a function that takes arguments
from the random nodes and return a value for every possible combinations over
those random nodes. A CPD is used as a factor, which holds the notion of
conditional probability for every prov:Entity that is linked with a prov:Activity



via both prov:usage (use) and prov:wasGeneratedBy (gen), in the present of a
prov:wasDerivedFrom (der) that identifies the origin and the result of the food
process for a CPD matrix. Algorithm 2 shows the pseudocode of the conversion.

Algorithm 2: function factorGraph(pGcpd)

Input : pGcpd: Provenance Graph with CPD
Output: fG: Factor Graph

1 var nx: Variable node ;
2 var fx: Factor node ;
3 var unEdgex: Undirected Edge ;
4 var o: Object ;
5 foreach o ∈ pGcpd do
6 if type(o)=prov:Entity AND type(o)=prFood:FoodStage then
7 nx ← convertEntity(o) ;

8 end
9 if type(o)=prov:Activity AND type(o)=prFood:FoodProcessing then

10 fx ← convertActivity(o) ;

11 end
12 if type(o)=prov:usage OR type(o)=prov:wasGeneratedBy then
13 unEdgex ← convertEdge(o) ;

14 end

15 end
16 return Factor Graph (fG)

Overall, the conversion maps each prov:Entity into a variable node (n1,...,nx)
(Alg.2 line 6 ) and each prov:Activity into a factor node fx (Alg.2 line 9 ) in the
factor graph. Only a prov:Activity that has the type prFood:FoodProcessing will
be converted into a factor node, and a prov:Entity of type prFood:FoodStage will
be converted to a variable node. The factor node fx holds the notion of CPD,
which is a factor to determine the probability of each variable nodes that are
connected to it (n1,...,nx). In the conversion, we ignore prov:Agent to make the
graph as simple as possible. Figure 3 shows an example of the conversion.

cpd_f =prFood:cpdMatrixx

0

n1
der

genuse

prov:Activity

prov:Entityprov:Entity

prov:type=prFood:FoodProcessing 
prFood:binMatrix=matrix(bin) 
prfood:jpdMatrix=jpd(binMatrix) 
prFood:cpdMatrix=cpd(jpdMatrix)

prov:type=prFood:FoodStage prov:type=prFood:FoodStage

n2

fx

Fig. 3. A conversion from provenance graph into factor graph.

In Figure 3, in order to link the factor nodes with the variable nodes, we
identify prov:wasGeneratedBy (gen) and prov:usage (use) and convert them into
undirected edges (Alg.2 line 12 ) provided a corresponding prov:wasDerivedFrom
(der) exists (as its notion has been encapsulated in the CPD matrix). For exam-
ple, the probability of nx given nx−1 has implied the derivation between nx and
nx−1. Finally, the sum-product algorithm that utilizes bayesian rules is applied



to calculate the likelihood of a certain event (Alg.1 line 27 ). The figures of initial
provenance graph and factor graph are available in on-line appendix.

4.3 Methodology to infer risk of contamination

As a framework, prFrame is intended to automatically infer the risk of food con-
tamination. It incorporates the general food risk model that uses MC simulation,
MPRM, with the inference technique, BP. BP infers the actual contamination
level by propagating belief based on the previous knowledge and the actual data
(i.e. sampling result). Our methodology compares the inference of contamination
level by BP (InfBin: Inferred Bacterial Level) with the prediction by the MC
simulation (prBin: Predicted Bacterial Level).

The aim in this methodology is to understand the accuracy of inference
across the food provenance network by capturing exhaustively experiments,
where nodes values are hidden and observed systematically, in order to evaluate
the performance of BP. To define an accuracy of inference, consider a bacterial
concentration in level 1 that was predicted by the MC simulation. There are
three possible inferences by BP. The first inference reveals with 100% proba-
bility that the prediction is in level 1. The second inference reveals with 97.6%
probability that the prediction is in level 1 and 2.4% probability in level 2. The
third inference reveals with 90% probability that the prediction is in level 1 and
5% probability is in both level 0 and level 2. Here, the most accurate inference
is the first inference, followed by the second and the third inferences.

5 Evaluation of the methodology

The complete list of chains for our first and second setup is shown in the on-line
appendix. To keep the calculation and propagation simple, we use an example of
a fixed linear network that represents the food chain as configured in [22]. It is
also possible to define more complicated network as provenance of food can be
non-linear network. However, the use of linear chain in this paper is guaranteed
to reach a convergence in inferring with BP for further measurement of accuracy.
The defined network comprises 6 food stages, namely Initial (I), Retailed(R),
Transported(T), Stored(S), Prepared(P), and Cooked(C). We then predict bac-
terial concentration and contamination level by performing MC simulation with
50,000 iterations to represent the travelling of food products through this chain
and results in 10,502 food being contaminated.

Each bacterial concentration will be categorized into a fixed determined bin
that represents contamination level. We consider 13 levels of bacteria because the
number is precise enough to categorize the bacterial concentration. While adding
more levels produces more precise result, it comes with higher computational. We
also introduce an inferred node, an unobserved node that its probabilities are in
our investigation when performing an inference. Finally, we perform an inference
with BP and compare the results against the prediction of MC simulation.



5.1 The effect of the distance and position between nodes

Our first setup intends to measure accuracy of inference based on the distance
between an observed node and an inferred node. We set node I as an observed
node and the remaining nodes will be inferred. Figure 4(a) shows that the ac-
curacy decreases as we infer the further nodes. Inferencing nodes R and T is
always correct as all of the inferences suggest the same level as predicted by
MC simulation. The inference becomes less accurate with total 10,432 correct
inferences (99.33%) in node S. In other words, it can be verbalized as there are
99.33% contaminated food with 88%-100% probability of being correct. Finally,
there are 97.86% and 88.87% correct inferences in node P and node C consec-
utively. In addition, inferring node C by observing node I, R, T, S, and P for
our second setup also suggest the same result.

In regards to the position of nodes, we condition some nodes (solid-filled-
node) and let BP does the inference in node S as a inferred node (dashed-
unfilled-node) as shown in several chains (ch.) in the on-line appendix. In Figure
4(b), inferencing node S with upward observed nodes (nodes I, R, and T) gives
the same result (ch.3a, ch.3b, and ch.3c). Among 10,502 inferences, only 159
inferences (1.51%) are with 100% probability of being correct. In fact, more up-
ward observed nodes produces the same result too (ch.3e). The inference becomes
more accurate if the inferred node is set in between the observed nodes (ch.3f,
ch.3g, and ch.3h) with 1.75% correct inferences. However, the result is less accu-
rate if we observe nodes I and C (ch.3i) with only 1.51% correct inferences. The
opposite result is shown in ch.3d and ch.3j, where a downward node is observed
with the remaining nodes unobserved. This scenario shows the deterioration of
the accuracy with 0.66% and 0.0% correct inferences consecutively.

(a) Inference with 89%-100% probability
of being correct in the first setup.

(b) Inference with 100% probability of be-
ing correct in third setup.

Fig. 4. The effect of distance and location of nodes in the accuracy of inferring.

5.2 Analysis of the result

From our evaluation, we conclude that the closer the distance between observed
node and inferred node is, the more accurate the inference will be. This can
be proved through the first and second setup. Moreover, the highest accuracy
of inference is achieved when the inferred node is placed between the observed
nodes. This is obvious as the upward and downward nodes can infer the middle
one with more certainty. In fact, the accuracy is similar when we add more



observed nodes, indicating that the only important nodes are one node upward
and one node downward the inferred node. Although inferred node is located in
between observed nodes, the accuracy decreases if there is unobserved node in
between those observed nodes, which provokes the uncertainty.

Our evaluation also reveals that observing several nodes prior the inferred one
will not improve the accuracy if the nodes downward the inferred node remain
unobserved. Again, it means that adding more nodes prior the inferred node does
not affect the inference as long as the downward nodes remaining unobserved.
The same result derived if the observed nodes are located downward the inferred
node with remain nodes unobserved. However, the inference is more accurate
when observing upward nodes than the downward nodes of the inferred node.

6 Conclusion and Future work

We have presented our work on using BP as an inference technique over the
provenance network through prFrame to infer the probability of a node, given
a condition of the others. We conclude that prFrame successfully combines BP
with the provenance network and our evaluation produces inferences with high
accuracy between 89% and 100% of being correct. In the food context, it can be
translated as the contaminated food are inferred with 89% to 100% chance of
being correct. We believe that more reliable results can be achieved with more
data captured in provenance, such as risk factors or sampling data. From an
implementation point of view, prFrame can accommodate the existence food
risk models in order to help food authority achieve due diligence in food.

In a case when a sampling report is used as the actual information, an infer-
ence can be performed after the fact that food has travelled to several places as
opposed to real time, because sampling analysis can take several days. In this
situation, provenance or the past description of food is an important information
to explain the reason behind the sampling result and assess the risk to identified
the next potential places to sampling food on the basis of the sampling report.

In the paper, we limit our work in a linear network only, while provenance
networks are mostly non-linear networks. In fact, many food chains in reality are
not a linear chain, such as tree structure. Our investigation reveals that as long
as the chain does not have cycle in it, the inference becomes converged. However,
even though the food chain have a cycle and the state belief cannot be achieved,
an approximate inference with BP has been proven as a good estimation as well.

Finally, in performing the inference, we did not take into account the type
of activity of food process to assess the accuracy of inference. We believe that a
deeper investigation is required in order to systematically characterise BP-band
in inference in provenance trace.
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