Skip to main content

Ensemble of Texture and Deep Learning Features for Finding Abnormalities in the Gastro-Intestinal Tract

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11056))

Included in the following conference series:

Abstract

An endoscopy is a strategy in which a specialist utilizes specific instruments to see and work on the inward vessels and organs of the body. This paper expects to predict the abnormalities and diseases in the Gastro-Intestinal Tract, utilizing multimedia data acquired from endoscopy. Deep Analysis of GI tract pictures can foresee diseases and abnormalities, in its early stages and accordingly spare human lives. In this paper, a novel ensemble method is presented, where texture and deep learning features are integrated to improve the prediction of the abnormalities in the GI tract e.g. Peptic ulcer disease. Multimedia content analysis (to extricate data from the visual information) and machine learning (for classification) have been explored. Deep learning has additionally been joined by means of Transfer learning. Medieval Benchmarking Initiative for Multimedia Evaluation provided the dataset, which includes 8000 pictures. The data is gathered from conventional colonoscopy process. Using logistic regression and ensemble of different extracted features, 83% accuracy and a F1 score of 0.821 is achieved on testing sample. The proposed approach is compared with several state-of-the-art methods and results have indicated significant performance gains when compared with other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper is an extension of our recently presented system in MediaEval Medico Multimedia competition [5]. In this paper, novel deep learning features from VGG-19 are introduced.

References

  1. Ervik, M., Lam, F., Ferlay, J., Mery, L., Soerjomataram, I., Bray, F.: Cancer Today. Lyon, France: International Agency for Research on Cancer. Cancer Today (2016). http://gco.iarc.fr/today. Accessed 01 Aug 2017

  2. Riegler, M., et al.: Multimedia for medicine: the medico task at MediaEval 2017. In: MediaEval 2017, 13–15 September 2017, Dublin, Ireland (2017)

    Google Scholar 

  3. Pogorelov, K., et al.: KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of ACM on Multimedia Systems Conference (MMSYS), pp. 164–169 (2017)

    Google Scholar 

  4. Pogorelov, K., et al.: A comparison of deep learning with global features for gastrointestinal disease detection. In: Proceedings of the MediaEval 2017 Workshop, Dublin, Ireland (2017)

    Google Scholar 

  5. Naqvi, S.A., Nadeem, S., Ziad, M., Tahir, M.A.: Ensemble of texture features for finding abnormalities in the gastro-intestinal tract. In: Proceedings of the MediaEval: Workshop, Dublin, Ireland (2017)

    Google Scholar 

  6. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  7. Zhu, R., Zhang, R., Xue, D.: Lesion detection of endoscopy images based on convolutional neural network features. In: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE (2015)

    Google Scholar 

  8. Cong, Y., et al.: Deep sparse feature selection for computer aided endoscopy diagnosis. Pattern Recogn. 48(3), 907–917 (2015)

    Article  Google Scholar 

  9. Alexandre, L.A., Casteleiro, J., Nobreinst, N.: Polyp detection in endoscopic video using SVMs. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 358–365. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_34

    Chapter  Google Scholar 

  10. Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Neural network-based colonoscopic diagnosis using on-line learning and differential evolution. Appl. Soft Comput. 4(4), 369–379 (2004)

    Article  Google Scholar 

  11. Hwang, S., Oh, J., Tavanapong, W., Wong, J., de Groen, P.: Polyp detection in colonoscopy video using elliptical shape feature. In: Proceedings of ICIP (2007)

    Google Scholar 

  12. Münzer, B., Schoeffmann, K., Böszörmenyi, L.: Detection of circular content area in endoscopic videos. In: Proceedings of CBMS (2013)

    Google Scholar 

  13. Münzer, B., Schoeffmann, K., Böszörmenyi, L.: Improving encoding efficiency of endoscopic videos by using circle detection based border overlays. In: Proceedings of ICME (2013)

    Google Scholar 

  14. Yoshida, H., Nappi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 20(12), 1261–1274 (2001)

    Article  Google Scholar 

  15. Figueiredo, P.N., Figueiredo, I.N., Prasath, S., Tsai, R.: Automatic polyp detection in Pillcam colon 2 capsule images and videos: preliminary feasibility report. Diagn. Ther. Endosc. 2011, 7 p. (2011). https://doi.org/10.1155/2011/182435. Article no. 182435

    Article  Google Scholar 

  16. Mamonov, A.V., et al.: Automated polyp detection in colon capsule endoscopy. IEEE Trans. Med. Imaging 33(7), 1488–1502 (2014)

    Article  Google Scholar 

  17. Li, B., Meng, M.Q.-H., Xu, L.: A comparative study of shape features for polyp detection in wireless capsule endoscopy images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009. IEEE (2009)

    Google Scholar 

  18. Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput. Biol. Med. 36(10), 1084–1103 (2006)

    Article  Google Scholar 

  19. Nawarathna, R.D., Oh, J.H., Yuan, X., Lee, J., Tang, S.J.: Abnormal image detection using texton method in wireless capsule endoscopy videos. In: Zhang, D., Sonka, M. (eds.) ICMB 2010. LNCS, vol. 6165, pp. 153–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13923-9_16

    Chapter  Google Scholar 

  20. Nawarathna, R., et al.: Abnormal image detection in endoscopy videos using a filter bank and local binary patterns. Neurocomputing 144, 70–91 (2014)

    Article  Google Scholar 

  21. Zhao, Q., Meng, M.Q.-H.: Polyp detection in wireless capsule endoscopy images using novel color texture features. In: 2011 9th World Congress on Intelligent Control and Automation (WCICA). IEEE (2011)

    Google Scholar 

  22. Bae, S.-H., Yoon, K.-J.: Polyp detection via imbalanced learning and discriminative feature learning. IEEE Trans. Med. Imaging 34(11), 2379–2393 (2015)

    Article  Google Scholar 

  23. Hwang, S.: Bag-of-visual-words approach based on SURF features to polyp detection in wireless capsule endoscopy videos. In: ISVC 2011, pp. 320–327 (2011)

    Google Scholar 

  24. Park, S., Lee, M., Kwak, N.: Polyp detection in colonoscopy videos using deeply-learned hierarchical features. Seoul National University (2015)

    Google Scholar 

  25. Ribeiro, E., Uhl, A., Wimmer, G., Häfner, M.: Exploring deep learning and transfer learning for colonic polyp classification. Comput. Math. Methods Med. 2016, 16 p. (2016). https://doi.org/10.1155/2016/6584725. Article no. 6584725

    Article  Google Scholar 

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  27. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006). ISBN 0387310738

    MATH  Google Scholar 

  28. Cai, D., He, X., Han, J.: Speed up kernel discriminant analysis. VLDB J. 20(1), 21–33 (2011)

    Article  Google Scholar 

  29. Tahir, M.A., et al.: A robust and scalable visual category and action recognition system using kernel discriminant analysis with spectral regression. IEEE Trans. Multimedia 15(7), 1653–1664 (2013)

    Article  Google Scholar 

  30. Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  31. Haralick, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Atif Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadeem, S., Tahir, M.A., Naqvi, S.S.A., Zaid, M. (2018). Ensemble of Texture and Deep Learning Features for Finding Abnormalities in the Gastro-Intestinal Tract. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11056. Springer, Cham. https://doi.org/10.1007/978-3-319-98446-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98446-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98445-2

  • Online ISBN: 978-3-319-98446-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics