
Towards an OpenMP Specification for Critical
Real-time Systems

Maria A. Serrano1,2, Sara Royuela1,2, and Eduardo Quiñones1

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{maria.serranogracia,sara.royuela,eduardo.quinones}@bsc.es
2 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

Abstract. OpenMP is increasingly being considered as a convenient
parallel programming model to cope with the performance requirements
of critical real-time systems. Recent works demonstrate that OpenMP
enables to derive guarantees on the functional and timing behavior of
the system, a fundamental requirement of such systems. These works,
however, focus only on the exploitation of fine grain parallelism and
do not take into account the peculiarities of critical real-time systems,
commonly composed of a set of concurrent functionalities. OpenMP al-
lows exploiting the parallelism exposed within real-time tasks and among
them. This paper analyzes the challenges of combining the concurrency
model of real-time tasks with the parallel model of OpenMP. We demon-
strate that OpenMP is suitable to develop advanced critical real-time
systems by virtue of few changes on the specification, which allow the
scheduling behavior desired (regarding execution priorities, preemption,
migration and allocation strategies) in such systems.

1 Introduction

There is an increasing demand to introduce parallel execution in critical real-time
systems to cope with the performance demands of the most advanced function-
alities, e.g., autonomous driving and unmanned aerial vehicles. In this regard,
OpenMP is a firm candidate [22,40] due to its capability to efficiently exploit
highly parallel and heterogeneous embedded architectures, and its programma-
bility and portability benefits. OpenMP is already supported in several embed-
ded platforms for instance, the Texas Instruments Keystone II [37] or the Kalray
MPPA [18]. Moreover, OpenMP is being evaluated to be supported in future ver-
sions of the Ada language [26], used to develop safety critical systems.

Current critical real-time systems are composed of a set of independent and
recurrent pieces of work, known as real-time tasks, implementing the functionali-
ties of the system. This model enables to exploit the inherent concurrency of the
system when the number of available cores is low, as it is the case of the Infineon
Aurix, a 32-bit micro-controller used in automotive that features six cores [5].
With the newest highly parallel embedded architectures targeting the critical
real-time market, the number of available cores has increased significantly, en-
abling to exploit fine-grain parallelism within each real-time task as well. This is
the case for instance, of the Kalray MPPA, featuring a fabric of 256 cores [18].

However, critical real-time systems must provide strong safety evidences on
the functional and timing behavior of the system. In other words, the system

This is a post-peer-review, pre-copyedit version of an chapter published in "Evolving OpenMP for Evolving Architectures". The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-98521-3_10

Fig. 1: Real-time task representation.

must guarantee that it operates correctly in response to its inputs, and that sys-
tem operations are performed within a predefined time budget. A recent work
evaluated the suitability of OpenMP from a functional perspective [29]. This
paper complements that work and evaluates OpenMP from a timing behavior
perspective. In this context, recent studies have shown the similarities between
the structure and syntax of the OpenMP tasking model and the Direct Acyclic
Graph (DAG) scheduling model [40], which enables to verify the timing con-
straints of parallel real-time tasks [13]. These similarities allow the analysis of
the timing behavior of a single real-time task parallelized with OpenMP [35,38].

This paper extends previous works, and analyses the use of OpenMP (as
it is in version 4.5 [3]) to implement critical real-time systems. We focus on
the design implications and the scheduling decisions to efficiently exploit fine
grain parallelism within real-time tasks and concurrency among them, while
guaranteeing the timing behavior according to current real-time practices.

2 Critical Real-Time Systems

2.1 The Three-Parameter Sporadic Tasks Model

Critical real-time systems are represented as a set of recurrent and independent
real-time tasks T = {τ1, τ2, ...τn}. Each execution of a real-time task is known
as a job; the time at which a job is triggered is known as release time and it is
denoted by ti. A recurrent task can be periodic, if there is an exact time between
two consecutive jobs, or sporadic, if there is a minimum time between jobs. In
both cases, they can be triggered either by an internal clock or by the occurrence
of an external event, e.g., a sensor.

Traditionally, the three-parameter sporadic tasks model [25] is used to char-
acterize critical real-time systems composed of sequential tasks that run concur-
rently on a platform. In this model, each task τi is represented with the tuple
〈Ci, Ti, Di〉, where Ci is the Worst-Case Execution Time (WCET), i.e., an es-
timation of the longest possible execution time of τi; Ti is the period, or the
minimum time between two consecutive jobs of τi; and Di is the deadline at
which τi must finish (see Figure 1). Critical real-time systems must guarantee
that, for each task, its deadline is met, i.e., ∀τi ∈ T , ti + Ci ≤ Di.

2.2 The Sporadic DAG Tasks Model

In the recent years, the complexity of real-time tasks have significantly increased
to incorporate advanced functionalities, e.g., image recognition. With the objec-
tive of providing the level of performance needed, the code within each real-time

𝝉𝟏 𝝉𝟐 𝝉𝟑

 𝝉𝟏 𝝉𝟐 𝝉𝟑

(a) 3-parameter sporadic tasks (b) Sporadic DAG tasks

Fig. 2: Real-time system models.

task can be further parallelized. In this context, the use of the sporadic DAG
task model [13] enables to characterize parallel real-time tasks3 with the tuple
τi = 〈Gi, Ti, Di〉. Gi = (Vi, Ei) is a DAG representing the parallelism exposed
within a real-time task. Vi = {vi,1, . . . , vi,ni

} denotes the set of nodes that can
potentially be executed in parallel, where ni is the number of nodes within τi.
Ei ⊆ Vi×Vi denotes the set of edges between nodes, representing the precedence
constraints existing between them: if (vi,1, vi,2) ∈ Ei, then vi,1 must complete
before vi,2 begins its execution. In this model, each node vi,j ∈ Vi is characterized
by its WCET, denoted by Ci,j . Finally, as in sequential real-time tasks, Ti and
Di represent the period and deadline of the parallel real-time task τi. This model
is considered in the integrated modular avionics (IMA) [2] and the AUTOSAR
[20] frameworks, used in avionics and automotive systems, respectively.

Figure 2 shows a taskset composed of three real-time tasks: in Figure 2a,
tasks are modelled with the three parameter sporadic tasks model, i.e., real-
time tasks are sequential and run concurrently; in Figure 2b, tasks are modelled
with the sporadic DAG tasks model, i.e., real-time tasks have been parallelized,
enabling to exploit both, concurrency and fine-grain parallelism.

2.3 Parallelizing a Single Real-time Task with OpenMP

Several works demonstrate that the OpenMP tasking model resembles the spo-
radic DAG task scheduling model when considering a single real-time task [40][41]
[35][24][38]. Hence, the OpenMP tasking model can be used to parallelize a real-
time task, modelled as a DAG, upon which timing guarantees can be provided.
Given an OpenMP-DAG G = (V,E), nodes in V correspond to the portions of
code that execute uninterruptedly between two Task Scheduling Points (TSPs),
referred as parts of a task region in the OpenMP specification, and considered as
task parts henceforward. Edges in E correspond to explicit synchronizations (for
instance, defined by the depend clause), TSPs (for instance, defined by the task

construct) and control flow precedence constraints (defined by the sequential
execution order of task parts from the same OpenMP task).

Figure 3a shows an example of a real-time task τ parallelized with the
OpenMP tasking model, and Figure 3b shows the corresponding OpenMP-DAG.
Nodes of the OpenMP-DAG represent the seven tasks parts generated within the
four explicit tasks and the implicit task executing the single region. For instance,
task T1 (line 6 of Figure 3a), is composed of task parts part10 and part11 (nodes
p10 and p11 in Figure 3b). Edges represent (1) the data dependence between T1

3 Parallel real-time tasks denote real-time tasks which exploit parallelism within them.
These tasks are also concurrent among them.

1 void pa ra l l e l RT ta sk () { / / τ
2 #pragma omp parallel
3 #pragma omp single nowait / / T0

4 {
5 part00
6 #pragma omp task depend (out : x) / / T1

7 {
8 part10
9 #pragma omp task / / T2

10 { part20 }
11 part11
12 }
13 part01
14 #pragma omp task / / T3

15 { part30 }
16 #pragma omp task depend (in : x) / / T4

17 { part40 }
18 }}

(a) Real-time task parallelized with OpenMP tasks.

𝒑𝟎𝟎

𝒑𝟎𝟏

𝒑𝟏𝟎

𝒑𝟏𝟏

𝒑𝟐𝟎

𝒑𝟑𝟎

𝒑𝟒𝟎

𝑻𝟏

𝑻𝟐

𝑻𝟑 𝑻𝟒

𝑫𝒂𝒕𝒂 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒄𝒊𝒆𝒔
𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝒇𝒍𝒐𝒘
𝑻𝑺𝑷 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏

𝝉 𝑻𝟎

(b) OpenMP-DAG.

Fig. 3: Example of an OpenMP real-time task.

and T4; (2) the TSP after the creation of tasks T1 to T4, e.g., at the end of task
part p10 task T2 is created; and (3) control flow dependences, e.g, task parts
p10 and p11 from T1 execute sequentially. All threads are synchronized in the
implicit barrier at the end of the parallel construct (not shown in Figure 3b).

3 Developing Critical Real-time Systems with OpenMP

This section analyses the use of the OpenMP tasking model to develop a critical
real-time system, from two different perspectives: 1) how to efficiently exploit
parallelism within real-time tasks and among them, and 2) how to express the
recurrence of real-time tasks.

3.1 Parallelizing Several Concurrent Real-time Tasks

In critical real-time systems, the scheduler plays a key role as it must guarantee
that all real-time tasks execute before its deadline. To do so, real-time schedulers
implement the following features (Section 4 provides a detailed analysis): 1) tasks
priorities, which determine the urgency of each real-time task to execute; 2)
preemption strategies, which determine when a real-time task can be temporarily
interrupted if a more urgent task is ready to execute; and 3) allocation strategies,
which determine the computing resources (cores) in which tasks can execute.

As introduced in the previous section, current works consider OpenMP only
to exploit parallelism within a single real-time task. As a result, each real-time
task defines its own OpenMP parallel environment. This becomes a black box
for the scheduler, which can not control the resources used by real-time tasks.

In order for the scheduler to have full control over the execution of the real-
time tasks (and their parallel execution), the complete taskset must be included
within a single OpenMP application. To do so, one option is to exploit nested
parallel regions, i.e., to enclose the real-time tasks, each defining its own parallel

1 #pragma omp parallel
2 #pragma omp single
3 {
4 #pragma omp task priority (p1) / / τ1 : OpenMP−DAG1

5 { RT task 1 () }
6 #pragma omp task priority (p2) / / τ2 : OpenMP−DAG2

7 { RT task 2 () }
8 . . .
9 #pragma omp task priority (pn) / / τn : OpenMP−DAGn

10 { RT task n () }
11 }

Fig. 4: Critical real-time system implemented with OpenMP parallel tasks.

region (see Figure 3a), within an outer parallel region. In this case, the OpenMP
framework manages two scheduling levels: one in charge of scheduling the real-
time tasks (outer parallel region), and another one in charge of scheduling the
parallel execution within each real-time task (inner parallel regions). Interest-
ingly, this approach enables the first level scheduler to use the priority clause
associated to the task construct to determine the priority of each real-time task
(see Section 4). However, this solution is not valid as the first-level scheduler
cannot control the parallel execution of each real-time task. In other words, the
team of threads of each real-time task is (again) a black box for the first-level
scheduler. Hence, preemption and allocation strategies cannot be implemented.

Clearly, the control of the OpenMP threads executing each of the real-time
tasks is key to support a fine-grain control over the whole parallel execution. To
do so, we propose to define a common team of OpenMP threads to execute all
the real-time tasks. Figure 4 shows the implementation of a real-time system in
which each real-time task τi ∈ T is encapsulated within an OpenMP task, and
implemented in a function RT task X(). The code in Figure 3a could represent an
example of one of these functions. However, the parallel and single constructs
(lines 2 and 3, respectively) must be removed, and a taskwait synchronization
construct must be included at the end of the function (line 18). These changes
are not shown due to lack of space. In this design, a single real-time scheduler will
be in charge of scheduling both, the OpenMP tasks implementing the real-time
tasks (with an associated priority given by the priority clause), and the nested
OpenMP tasks implementing the parallel execution of each real-time task.

3.2 Implementing Recurrent Real-Time Tasks in OpenMP

The OpenMP tasking model is very convenient to implement critical real-time
systems based on DAG scheduling models. However, OpenMP lacks an important
feature of these systems, the notion of recurrency. As presented in Section 2, the
execution of real-time tasks can be either periodic or sporadic triggered by an
event, e.g., an internal clock or a sensor.

With the objective of including recurrency in the OpenMP execution model,
we propose to incorporate a new clause, named event, associated to the task

construct. This clause enables to define the release time of the OpenMP tasks
implementing real-time tasks. The syntax of the event clause is as follows:

#pragma omp task event(event-expression)

where event-expression is an expression, if it evaluates to true the associated
OpenMP task is created. This expression represents the exact moment in time4

at which the real-time task release occurs or the external event that must oc-
cur for the real-time task to release a new job. The expression is true whenever
the task releases, and shall evaluate to false after the task creation. However,
the event clause is not enough to state the synchrony between the event that
triggers a real-time task and the actual execution of that task. In languages
such as Ada, which are intrinsically concurrent, events are treated at the base
language level, thus an Ada task triggering an event will launch an entry (a
functionality) of a different task. But OpenMP is defined on top of C, C++ and
Fortran, languages intrinsically sequential, that do not typically provide these
kind of features. Following, we analyze three different approaches to associate
the occurrence of an event and the execution of a real-time task:

– Managed by the base language: a simple approach would use the base lan-
guage to implement an infinite loop containing the set of real-time tasks with
their corresponding events and priorities. This solution however renders one
thread useless, executing the control loop. Interestingly, C++11 introduces
multi-threading support, adding features to define concurrent execution.

– Managed by the operating system: based on the previous approach, the thread
executing the control loop may be freed at the end of each iteration, and the
operating system may return the thread to the control loop in a period of
time shorter than the minimum period of a task (ensuring no job is missed).

– Managed by the OpenMP API : a different approach would be implementing
the concept of persistent task [27] in the OpenMP API, pushing the respon-
sibility for checking the occurrence of an event to the OpenMP runtime.

A deeper evaluation of the most suitable solution to implement critical real-
time system is of paramount importance to promote the use of OpenMP in
critical real-time environments. This evaluation is out of the scope of this paper
and remains as a future work.

Interestingly, this new event clause would allow to unequivocally identify
which OpenMP tasks implement real-time tasks, differentiating them from the
OpenMP tasks used to parallelize each real-time task. The real-time system
implemented in Figure 4 must therefore include the event clause associated to
each task construct at lines 4, 6 and 9.

4 Implementing Real-time Scheduling features in the
OpenMP Task Scheduler

One of the most important components of critical real-time systems is the real-
time scheduler, in charge of, not only assigning the execution of real-time tasks to
the underlying computing resources, but also guaranteeing that all tasks execute

4 Real-Time Operating Systems (RTOS) provide time management mechanisms and
timers to determine the release time or deadline of real-time tasks.

before its deadline. In the context of multitasking systems, the scheduling policy
is normally priority driven [16], i.e., real-time tasks have a priority assigned and
the preference to execute is given to the highest-priority tasks. A scheduler may
preempt a running task if a more urgent task is ready to execute. The interrupted
task resumes later its execution. Moreover, different scheduling algorithms place
additional restrictions as to where real-time tasks are allowed to execute. Overall,
real-time schedulers can be classified based on: 1) task priorities, 2) preemption
strategies and 3) allocation strategies. Following, we describe how these features
can be supported by the OpenMP specification.

4.1 Priority-driven Schedulers Algorithms

Depending on the restrictions of how to assign priorities to real-time tasks,
priority-based schedulers are classified as follows [11]: (1) Fixed Task Priority
(FTP), (2) Fixed Job Priority (FJP), and (3) Dynamic Priority (DM). In FTP,
each real-time task has a unique fixed priority. This is the case of the rate-
monotonic (RM) scheduler that assigns the priorities based on the period (i.e.,
tasks with smaller periods have higher priority). In FJP, different jobs of the
same real-time task may have different priorities. This is the case of the earliest
deadline first (EDF) scheduler that assigns greater priorities to the jobs with
earlier deadlines. In DM, the priority of each job may change between its release
time and its completion. This is the case of the least laxity (LL) scheduler that
assigns the priorities based on the laxity5 of a job.

In OpenMP, the priority clause associated to the task construct matches
the priority representation of real-time tasks for the FTP scheduling. However,
the OpenMP specification (version 4.5) states that ”the priority clause is a hint
for the priority of the generated task [..] Among all tasks ready to be executed,
higher priority tasks are recommended to execute before lower priority ones. [...]
A program that relies on task execution order being determined by this priority-
value may have unspecified behavior”. As a result, the current behavior of the
priority clause does not guarantee the correct priority-based execution order of
real-time tasks. Therefore, the development of OpenMP task schedulers in which
the priority clause truly leads the scheduling behavior is essential for real-time
systems. Moreover, the priority-expression value defined at real-time task level
must be inherited by the corresponding child tasks implementing parallelism
within each real-time task. By doing so, the OpenMP task scheduler can preempt
the OpenMP tasks conforming a low priority real-time task in favour of higher
priority tasks.

Regarding the implementation of EDF and LL schedulers, a new clause,
named deadline, associated to the task construct is needed. This clause will
enable to define the deadline of the real-time task upon which EDF and LL
schedulers are based. The syntax of the deadline clause is as follows:

5 The laxity of a job at any instant in time is defined as its deadline minus the sum
of its remaining processing time and the current time.

1 #pragma omp parallel
2 #pragma omp single
3 {
4 #pragma omp task deadline (D1) event (e1) / / τ1 : OpenMP−DAG1

5 { part00
6 #pragma omp task depend (out : x) / / T1

7 { part10
8 #pragma omp task / / T2

9 { part20 }
10 part11
11 }
12 part01
13 #pragma omp task / / T3

14 { part30 }
15 #pragma omp task depend (in : x) / / T4

16 { part40 }
17 }
18 . . .
19 #pragma omp task deadline (Dn) event (en) / / τn : OpenMP−DAGn

20 { . . . }
21 }

Fig. 5: OpenMP real-time system designed for a deadline-based scheduler.

#pragma omp task deadline(deadline-expression)

where the deadline-expression is the expression that determines the time instant
at which the OpenMP task must finish. Similarly to the priority clause, the
deadline-expression associated to an OpenMP task implementing a real-time
task must be inherited by all its child tasks. This allows the scheduler to iden-
tify those OpenMP tasks with the farthest deadline, and preempt them to assign
the corresponding OpenMP threads to those tasks with the closest deadline. The
deadline clause is not compatible with the priority clause, as both are meant
for determining the priority of a task for different scheduling algorithms.

Figure 5 shows an example of an OpenMP real-time system, when the sched-
uler is EDF or LL, and so the deadline clause is required. Real-time tasks τ1...τn
have a deadline and an event associated to them. Notice that, in case of a fixed
task priority scheduler, the deadline clause would be replaced by a priority

clause. Real-time task τ1 corresponds to the real-time task represented in Figure
3. All child tasks inherit the deadline of the parent task, for instance, T1, T2, T3

and T4 inherit the deadline D1.

4.2 Preemption Strategies

The real-time scheduling theory defines three different types of preemption strate-
gies: (1) fully-preemptive (FP), (2) non-preemptive (NP), and (3) limited preemp-
tive (LP). The FP strategy [9] preempts the execution of low priority tasks as
soon as a higher priority task releases. This strategy allows high-priority tasks
not to suffer any blocking due to low priority ones. However, it may lead to pro-
hibitively high preemption overheads, mainly related to task context switches
and migration delays [15], which may degrade the predictability and performance
of the system. The NP strategy [14] executes real-time tasks until completion
with no interruption. This strategy offers an alternative that avoids preemption

(a) Fully-preemptive scheduling. (b) Non-preemptive scheduling.

(c) Limited preemptive scheduling.

Fig. 6: Scheduling preemption strategies in a single core.

related overheads at the cost of potentially introducing significant blocking ef-
fects to higher priority tasks. So far, this strategy has only been considered for
sequential real-time tasks. The reason is that parallel real-time tasks may re-
quire a different number of computing resources during its execution, and the
NP strategy shall guarantee that these resources are always available to avoid
preemption operations. Finally, the LP strategy [17] has been proposed as an ef-
fective scheduling scheme that reduces the preemption-related overheads of FP,
while constraining the blocking effects of NP, thus improving predictability. In
LP, preemptions can only take place at certain points during the execution of a
real-time task, dividing its execution in non-preemptive regions.

Figure 6 illustrates the three preemption strategies presented above. It con-
siders a task set composed of two tasks: a high-priority task τhp, with a WCET
Chp = 2, and a period Thp = 5 time units, and a low-priority task τlp, with a
WCET Clp = 4, and a period Tlp = 7 time units. In order to facilitate the expla-
nation, we consider that: a single core is used and real-time tasks are sequential.
Moreover, the deadline is equal to the period, so arrows represent the release
time of a given job, and the deadline of the previous job. In the FP strategy
(Figure 6a), as soon as τhp is released, at times t = 3 and t = 8, τlp is preempted
and it resumes as soon as τhp has finished. In the NP strategy (Figure 6b), al-
though τhp is released at time instant t = 3, it must wait 1 time unit, until τlp
finishes. At the following τhp release, it must wait again 3 time units. In the LP
strategy (Figure 6c), τlp defines one preemption point (named as TSP). In the
first release of τhp, at time instant t = 3, the preemption point of τlp has already
passed, so τhp must wait until τlp has finished. In the second release, at time
instant t = 8, τhp must wait only until the preemption point of τlp, at t = 9.
Then τlp is preempted, and τhp starts its execution.

Interestingly, the OpenMP tasking model implements an LP strategy as ex-
plained in Section 2.3: OpenMP tasks are preemptable only at TSPs, dividing the
task into multiple non preemptive task part regions. Accordingly, the OpenMP
runtime can preempt OpenMP tasks and assign its corresponding threads to a

different OpenMP task based on the priorities. It is worth noting that OpenMP
provides the taskyield construct, which allows the programmer to explicitly de-
fine additional TSPs. However, regarding task scheduling points, the OpenMP
API states that “the implementation may cause it to perform a task switch” and
regarding the taskyield clause, “the current task can be suspended in favor of
execution of a different task”. This means that an implementation is not forced
to perform a task switch in any case. However, in real-time scheduling a TSP
must be evaluated, meaning that if a higher priority task is ready at that point,
then the lower priority one must be suspended. Therefore, limited preemptive
OpenMP schedulers must implement the evaluation of each TSP occurrence.

Interestingly, this laxity in the OpenMP specification, which establishes that
threads are allowed to, but not forced to, suspend a task at TSPs, supports the
implementation of NP strategies. By simply disabling the suspension of tasks
at those points, the OpenMP scheduler would be non-preemptive. In fact, for
sequential real-time tasks, this is the default preemption strategy, since there are
no implicit TSPs. In this case, it is worth noting that the taskyield construct
allows the implementation of the LP strategy in sequential real-time tasks as
well.

Finally, OpenMP does not support the implementation of FP scheduling
strategies because that would require the runtime to preempt the execution of
OpenMP tasks at any point of its execution. In any case, as we stated above, FP
is not a desirable strategy due to very high preemption overheads it may cause,
which can degrade the predictability of the system.

4.3 Allocation and Migration Strategies

There exist three strategies to allocate the execution of real-time tasks to the
underlying computing resources (in our case, cores): (1) the static allocation,
which statically assigns real-time tasks to cores at design time, with the objective
of increasing the predictability and minimizing the response time of the overall
system; (2) the dynamic allocation, in which the allocation is performed based
on runtime information, such as the state of the platform (e.g., computing and
communication resources available), the set of ready tasks, or the location of
input data; (3) the hybrid allocation, which statically allocates a subset of real-
time tasks, while the rest are dynamically scheduled.

Moreover, real-time schedulers define migration strategies to stablish the
cores in which real-time tasks are permitted to execute. These strategies can
be grouped in three categories: (1) global scheduling algorithms allow any real-
time task to execute upon any core, allowing jobs from the same real-time task
to migrate, (2) partitioned scheduling algorithms assign each real-time task to a
core so that each job of a real-time task executes always on the same core, and (3)
federated scheduling algorithms that combine global and partitioned schedulers
for a subset of tasks. Typically, the dynamic allocation strategy is built upon
global scheduling, whereas static allocation is built upon partitioned scheduling.

Although the OpenMP specification says nothing about allocation strategies,
current OpenMP systems are performance-driven, and so all runtime implemen-
tations are based on dynamic scheduling. However, static allocation strategies

have been proposed for OpenMP as well [24]. In case of migration strategies,
the OpenMP tied tasking model (the default one) limits the implementation of
global schedulers. Tied tasks are those that, when suspended, can only be re-
sumed by the same thread that started its execution. As a result, a real-time
task implemented as an OpenMP tied task will not be able to migrate. This is
not the case of untied task, that can be resumed by any thread in the team. In
this case the untied clause attached to the task directive is required.

OpenMP task to OpenMP thread Mapping

With the objective of increasing time predictability, most of the real-time sched-
ulers consider a direct mapping between real-time tasks and cores. This includes
two conditions: (1) threads are mapped to cores in a one-to-one manner, and (2)
threads are not allowed to migrate between cores.

OpenMP threads are an abstraction of the computing resource upon which
OpenMP tasks execute. As stated in Section 3, this paper considers a single team
of threads to execute all OpenMP tasks. This enables the real-time scheduler
to have full control over the execution of OpenMP tasks over threads. However,
OpenMP threads are further assigned to the operating system, hardware threads
and cores (referred to as places in OpenMP), existing other levels of scheduling
out of the control of the OpenMP scheduler.

Fortunately, the OpenMP specification provides mechanisms to consider a
single real-time scheduler and so fulfilling the two conditions stated above. On
one hand, the requires directive, which will be introduced in the next OpenMP
specification, version 5.0 [4], allows to specify the features an implementation
must provide in order for the code to compile and execute correctly. This may be
useful to express the minimum number of cores that the target architecture must
provide to guarantee a one-to-one mapping, as required by the system. On the
other hand, OpenMP defines the bind-var internal control variable together with
the proc bind clause, which allow to control the binding of OpenMP threads
to cores, enabling to define different thread-affinity policies. Finally, the place-
partition-var internal control variable controls the list of places available.

Overall, an OpenMP framework intended to implement a critical real-time
system must obey the following constraints: (a) place-partition-var := cores,
so that each OpenMP place corresponds to a single core; and (b) bind-var :=
close, so that OpenMP threads are consecutively assigned to places (forbidding
threads migration between places). Once OpenMP threads are assigned to cores,
this affinity must not be modified. Therefore, the proc bind clause must be
forbidden or ignored. Moreover, we propose to use the requires directive along
with the ext min cores clause and an integer value, to determine the minimum
number of threads (and so, cores) necessary to correctly execute the system.

4.4 Evaluation of Current OpenMP implementations

This section evaluates how priorities and preemptions are treated in the OpenMP
runtime implementation provided by GCC 8.1 [28] and Nanos++ [8]. To do so,
we consider the source code presented in Figure 7a, in which two real-time tasks,
T1 and T2, are created, T1 having lower priority than T2. Moreover, T1 includes an

1 #pragma omp parallel
2 #pragma omp single
3 {
4 while (1) {
5 #pragma omp task priority (1) // T1

6 {
7 work 11 () ;
8 #pragma omp taskyield
9 work 12 () ;

10 }
11 work 01 () ;
12 #pragma omp task priority (2) // T2

13 { work 21 () ; }
14 work 02 () ;
15 }}

(a) OpenMP code.

work 01()

work 02()

T1 Low priority task

work 11()

work 12()

T2 High priority task

work 21()

(b) Execution traces, GCC 8.1. (c) Execution traces, Nanos++.

Fig. 7: Real-time system example: LP scheduling and the priority clause.

explicit TSP by means of the taskyield construct. Therefore, T1 is divided into
two non-preemptive task parts. Sequential real-time tasks and two threads have
been considered for simplicity. Current OpenMP implementations only support
dynamic allocation and global scheduling.

Critical real-time systems must honor the priority of each task because these
determine preeminence of some tasks over others. Moreover, in the LP strategy,
low priority tasks are preempted at preemption points (TSPs) in favour of high
priority ones to guarantee that all tasks meet its deadline. Hence, in the example
shown in Figure 7a, T1 gets first the idle thread as it is created before T2.
However, if T2 is already created (and ready to execute) at the TSP of T1 (line
8), T1 must be preempted and the thread must be assigned to T2 to honor
priorities.

The execution traces6 of three iterations of the source code presented in
Figure 7a are shown in Figure 7b, using GCC 8.1, and Figure 7c, using Nanos++.
Green blocks represent the execution of the code within the single construct
(work 01 and work 02) in the thread Th 0. Blue blocks represent the execution
of T1 (work 11 and work 12) in Th 1. Red blocks represent the execution of T2

(work 21) in Th 1. The exact expected behavior is observed in Nanos++, since
T2 executes between the two task parts of T1. However, in GCC, T2 executes
after T1 completes, because the preemption point of T1 is not honored: T2 is not
executed as soon possible.

Overall, although current OpenMP runtimes are not ready to support the
development and execution of critical real-time systems, Nanos++ already im-
plements some of the fundamental features needed by critical real-time systems.
This is not the case of GCC 8.1.

6 Traces obtained with Extrae and Paraver performance monitoring tools [6,7].

5 Related work

The performance requirements of advanced embedded critical real-time systems
entails a booming trend to use multi-core, many-core and heterogeneous ar-
chitectures. As we stated in early sections of this paper, OpenMP has been
already considered to cope with these performance needs [21,1]. In this context,
OpenMP has been analyzed regarding the two features that are mandatory in
such restricted systems: timing analysis and functional safety.

From a timing perspective, there is a significant amount of work considering
the time predictability properties of OpenMP. Despite the fork-join was firstly
considered [22], the tasking model seems to be more suitable given its capabili-
ties to define fine grain, both structured and unstructured parallelism. For this
reason several works [40,35,38,24] studied the OpenMP tasking model and its
similarities with the sporadic DAG scheduling model. However, none of these
works consider a complete real-time system, but a unique non-recurrent real-
time task. The schedulability analysis of a full DAG task-based real-time system
has been addressed for homogeneous architectures under different scheduling
strategies [23,12,33,34,19,10]. Recently, a response-time analysis has been pro-
posed for a DAG task supporting heterogeneous computing [36]: the OpenMP
accelerator model is proposed to address heterogeneous architectures. From a
functional safety perspective, OpenMP is considered as a convenient candidate
to implement real-time systems, although some features and restrictions must
be addressed [29]. Based on the potential of existent correctness techniques for
OpenMP, it could be introduced in safe languages such as Ada [30,32,31], widely
used to implement safety-critical systems. The Ada Rapporteur Group is consid-
ering the introduction of OpenMP into Ada [26] to exploit fine grain parallelism.

Finally, as embedded systems usually have tight constraints regarding re-
sources such as memory (e.g., the Kalray MPPA has 2MB shared memory [18]),
different approaches for developing lightweight OpenMP runtime systems [41,39]
coexist. These studies are meant to efficiently support OpenMP in such con-
strained environments. For instance, the memory used at runtime is reduced
when the task dependency graph of the applications is statically derived.

6 Conclusions

OpenMP is a firm candidate to address the performance challenges of critical
real-time systems. However, OpenMP was originally intended for a different pur-
pose than critical real-time systems, for which guaranteeing the correct output is
as important as guaranteeing it within a predefined time budget. In this paper,
we evaluate the use of the OpenMP tasking model to develop and execute the
sporadic DAG-based scheduling model upon which many critical real-time sys-
tems are based on, e.g., IMA and AUTOSAR used in avionics and automotive
respectively. Concretely, we propose the use of a single team of threads to im-
plement and execute both, concurrent real-time tasks and the parallelism within
them. Two new clauses, event and deadline, are proposed to allow the imple-
mentation of recurrent real-time tasks and FJP and DM schedulers. Moreover,

we analyze some important features already provided in the OpenMP API: the
priority clause and the TSPs. The defined behavior of these two features is not
desirable for critical real-time systems. In both cases, it must be a prescriptive
modifier, instead of a hint (the case of the priority clause) or a possibility
of occurrence (the case of TSPs). In order to implement limited preemptive
scheduling, the most suitable preemptive strategy for OpenMP real-time sys-
tems, it must be guaranteed that, at each preemption point (TSP), if there is a
higher priority task ready, the running task is suspended in favor of the highest
priority task. Overall, correctly addressing all these features in the specification
is of paramount importance to use OpenMP in critical real-time systems.

Nevertheless, some design implications need a deeper analysis and evaluation.
This is the case, for instance, of the event-driven execution model not supported
in OpenMP, which remains as future work.

Acknowledgments

The research leading to these results has received funding from the Spanish Min-
istry of Science and Innovation, under contract TIN2015-65316-P, and from the
European Union’s Horizon 2020 Programme under the CLASS Project (www.class-
project.eu), grant agreement No 780622.

References

1. P-SOCRATES European Project (Parallel Software Framework for Time-Critical Many-core
Systems). http://p-socrates.eu

2. ARINC Specification 653: Avionics Application Software Standard Standard Interface, Part 1
and 4 (2012)

3. OpenMP Application Programming Interface. http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf (2015)

4. OpenMP Technical Report 6: Version 5.0 Preview 2. http://www.openmp.org/wp-
content/uploads/openmp-TR6.pdf (2017)

5. AURIXTM Safety joins Performance. https://www.infineon.com/cms/en/product/microcontroller/32-
bit-tricore-microcontroller/aurix-safety-joins-performance/ (2018)

6. Barcelona Supercomputing Center: Extrae Release 3.5.2. https://tools.bsc.es/extrae
7. Barcelona Supercomputing Center: Paraver Release 4.7.2. https://tools.bsc.es/paraver
8. Barcelona Supercomputing Center: OmpSs 1.0 Specification. https://pm.bsc.es/ompss-

docs/specs/ (2016)
9. Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Proceedings of the

28th IEEE International Real-Time Systems Symposium (RTSS) (2007)
10. Baruah, S.: The federated scheduling of constrained-deadline sporadic DAG task systems. In:

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE)
(2015)

11. Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-Time Systems.
Springer (2015)

12. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling of systems of
conditional sporadic dag tasks. In: Proceedings of the 27th IEEE Euromicro Conference on
Real-Time Systems (ECRTS) (2015)

13. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.: A generalized par-
allel task model for recurrent real-time processes. In: Proceedings of the 38th IEEE Real-Time
Systems Symposium (RTSS) (2012)

14. Baruah, S.K., Chakraborty, S.: Schedulability analysis of non-preemptive recurring real-time
tasks. In: Proceedings of the 20th International Parallel and Distributed Processing Symposium
(IPDPS) (2006)

15. Bastoni, A., Brandenburg, B., Anderson, J.: Cache-related preemption and migration delays:
Empirical approximation and impact on schedulability. Proceedings of OSPERT (2010)

16. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algorithms and ap-
plications, vol. 24. Springer Science & Business Media (2011)

17. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-time systems. a
survey. IEEE Transactions on Industrial Informatics 9(1) (2013)

18. De Dinechin, B.D., Van Amstel, D., Poulhiès, M., Lager, G.: Time-critical computing on a
single-chip massively parallel processor. In: Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE) (2014)

19. Fonseca, J., Nelissen, G., Nelis, V., Pinho, L.M.: Response time analysis of sporadic DAG tasks
under partitioned scheduling. In: Proceedings of the 11th IEEE Symposium on Industrial Em-
bedded Systems (SIES) (2016)

20. GbR, A.: AUTomotive Open System ARchitecture (AUTOSAR), Standard v4.1.
http://www.autosar.org (2014)

21. Hanawa, T., Sato, M., Lee, J., Imada, T., Kimura, H., Boku, T.: Evaluation of multicore pro-
cessors for embedded systems by parallel benchmark program using OpenMP. In: Proceedings
of the International Workshop on OpenMP (IWOMP) (2009)

22. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on multi-core
processors. In: Proceedings of the IEEE 31st Real-Time Systems Symposium (RTSS) (2010)

23. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.: Response-
time analysis of conditional DAG tasks in multiprocessor systems. In: Proceedings of the 27th
IEEE Euromicro Conference on Real-Time Systems (ECRTS) (2015)

24. Melani, A., Serrano, M.A., Bertogna, M., Cerutti, I., Quiñones, E., Buttazzo, G.: A static
scheduling approach to enable safety-critical openmp applications. In: Proceedings of the 22nd
IEEE Asia and South Pacific Design Automation Conference (ASP-DAC) (2017)

25. Mok, A.K.: Task management techniques for enforcing ED scheduling on periodic task set. In:
Proceedings of the 5th IEEE Workshop on Real-Time Software and Operating Systems (1988)

26. Pinho, L.M., Quiñones, E., Royuela, S.: Combining the tasklet model with OpenMP. In: 19th
International Real-Time Ada Workshop (2018)

27. Pop, A., Cohen, A.: A stream-computing extension to OpenMP. In: Proceedings of the 6th
International Conference on High Performance and Embedded Architectures and Compilers.
pp. 5–14. ACM (2011)

28. project, G.: GNU libgomp (November 2015), uRL: https://gcc.gnu.org/projects/gomp/
29. Royuela, S., Duran, A., Serrano, M.A., Quiñones, E., Martorell, X.: A functional safety OpenMP

for critical real-time embedded systems. In: Proceedings of the International Workshop on
OpenMP (IWOMP) (2017)

30. Royuela, S., Martorell, X., Quiñones, E., Pinho, L.M.: OpenM tasking model for Ada: safety and
correctness. In: Proceedings of the Ada-Europe International Conference on Reliable Software
Technologies (2017)

31. Royuela, S., Martorell, X., Quiñones, E., Pinho, L.M.: Safe Parallelism: Compiler Analysis Tech-
niques for Ada and OpenMP. In: Ada-Europe International Conference on Reliable Software
Technologies. Springer (2018)

32. Royuela, S., Pinho, L.M., Quiñones, E.: Converging Safety and High-performance Domains:
Integrating OpenMP into Ada. In: Design, Automation Test in Europe Conference Exhibition
(2018)

33. Serrano, M.A., Melani, A., Bertogna, M., Quiñones, E.: Response-time analysis of DAG tasks
under fixed priority scheduling with limited preemptions. In: Proceedings of the Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE) (2016)

34. Serrano, M.A., Melani, A., Kehr, S., Bertogna, M., Quinones, E.: An analysis of lazy and eager
limited preemption approaches under DAG-based global fixed priority scheduling. In: Proceed-
ings of the International Symposium on Real-Time Distributed Computing (ISORC) (2017)

35. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quiñones, E.: Timing char-
acterization of OpenMP4 tasking model. In: Proceedings of the IEEE International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES) (2015)

36. Serrano, M.A., Quiñones, E.: Response-time analysis of DAG tasks supporting heterogeneous
computing. In: Proceedings of the Annual Design Automation Conference (DAC) - to appear -
(2018)

37. Stotzer, E., Jayaraj, A., Ali, M., Friedmann, A., Mitra, G., Rendell, A.P., Lintault, I.: OpenMP
on the low-power TI keystone II ARM/DSP system-on-chip. In: Proceedings of the International
Workshop on OpenMP (IWOMP) (2013)

38. Sun, J., Guan, N., Wang, Y., He, Q., Yi, W.: Scheduling and analysis of real-time OpenMP task
systems with tied tasks. In: Proceedings of the IEEE Real-Time Systems Symposium (RTSS)
(2017)

39. Tagliavini, G., Cesarini, D., Marongiu, A.: Unleashing Fine-Grained Parallelism on Embedded
Many-Core Accelerators with Lightweight OpenMP Tasking. IEEE Transactions on Parallel and
Distributed Systems (2018)

40. Vargas, R., Quiñones, E., Marongiu, A.: Openmp and timing predictability: a possible union?
In: Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE)
(2015)

41. Vargas, R.E., Royuela, S., Serrano, M.A., Martorell, X., Quiñones, E.: A lightweight openmp4
run-time for embedded systems. In: Proceedings of the IEEE 21st Asia and South Pacific Design
Automation Conference (ASP-DAC) (2016)

