
A Proposal for Loop-Transformation Pragmas

Michael Kruse, Hal Finkel

Argonne Leadership Computing Facility,
Argonne National Laboratory, Argonne IL 60439, USA

mkruse@anl.gov, hfinkel@anl.gov

Abstract. Pragmas for loop transformations, such as unrolling, are im-
plemented in most mainstream compilers. They are used by application
programmers because of their ease of use compared to directly modifying
the source code of the relevant loops. We propose additional pragmas for
common loop transformations that go far beyond the transformations
today’s compilers provide and should make most source rewriting for the
sake of loop optimization unnecessary. To encourage compilers to imple-
ment these pragmas, and to avoid a diversity of incompatible syntaxes,
we would like to spark a discussion about an inclusion to the OpenMP
standard.

Keywords: OpenMP · Pragma · Loop Transformation · C/C++ · Clang
· LLVM · Polly

1 Motivation

Almost all processor time is spent in some kind of loop, and as a result, loops
are a primary targets for program-optimization efforts. One method for
optimizing loops is annotating them with OpenMP pragmas, such as
#pragma omp parallel for, which executes the loop iterations in multiple
threads, or #pragma omp simd which instructs the compiler to generate vector
instructions.

Compared to manually parallelizing the relevant code (e.g. using the pthreads
library) or manually vectorizing the relevant code (e.g. using SIMD-intrinsics or
assembly), annotating a loop yields much higher programmer productivity. In
conjunction with keeping the known-to-work statements themselves unchanged,
we can expect less time spent on optimizing code and fewer bugs. Moreover, the
same code can be used for multiple architectures that require different optimiza-
tion parameters, and the impact of adding an annotation can be evaluated easily.
Directly applied transformations also make the source code harder to understand
since most of the source lines will be for the sake of performance instead of the
semantics.

Pragmas allow separating the semantics-defining code and the performance-
relevant directives. Using Pragma("..."), the directives do not necessarily
need appear adjacent to the loops in the source code, but can, for instance,
be #included from another file.

ar
X

iv
:1

80
5.

03
37

4v
2

 [
cs

.P
L

]
 1

1
Ju

n
20

18

2 Michael Kruse, Hal Finkel

Most compilers implement additional, but compiler-specific pragmas. Often
these have been implemented to give the programmer more control over its
optimization passes, but without a systematic approach for loop transformations.
Table 1 shows a selection of pragmas supported by popular compilers.

Transformation Syntax Example Compiler

Threading #pragma omp parallel for OpenMP [25]
#pragma loop(hint parallel(0) msvc [22]
#pragma parallel icc [18]

Unrolling #pragma unroll icc [18], xlc [16], clang [2]
#pragma clang loop unroll(enable) clang [4]
#pragma GCC unroll n gcc [11]

Unroll and jam #pragma unroll and jam icc [18]
#pragma unrollandfuse xlc [16]
#pragma stream unroll xlc [16]

Loop fusion #pragma nofusion icc [18]
Loop distribution #pragma distribute point icc [18]

#pragma clang loop distribute(enable) clang[4]
Loop blocking #pragma block loop(n,loopname) xlc [16]
Vectorization #pragma omp simd OpenMP [25]

#pragma simd icc [18]
#pragma vector icc [18]
#pragma loop(no vector) msvc [22]
#pragma clang loop vectorize(enable) clang [4,3]

Interleaving #pragma clang loop interleave(enable) clang [4,3]
Software pipelining #pragma swp icc [18]
Offloading #pragma omp target OpenMP [25]

#pragma acc kernels OpenACC [24]
#pragma offload icc [18]

Assume iteration
independence

#pragma pragma ivdep icc [18]
#pragma GCC ivdep gcc [11]
#pragma loop(ivdep) msvc [22]

Iteration count #pragma loop count(n) icc [18]
Loop naming #pragma loopid(loopname) xlc [16]

Table 1: Loop pragmas and the compilers which support them

Our vision is to enable optimizations such as in Listing 1.1, which sepa-
rates the algorithm from its optimization thus keeping the code readable and
maintainable. It also illustrates how different transformations can be applied for
different compilation targets. Many BLAS implementations of dgemm use this
pattern [21], but pre-transformed in the source. As demonstrated in Section 4,
the performance is comparable to that of optimized BLAS libraries.

Many existing loop annotation schemes, including OpenMP, require the user
to guarantee some “safety” conditions (i.e., that the loop is safe to parallelize as
specified) for the use of the annotations to be valid. Making the user responsi-
bility for the validity of a loop transformation may not always be practical, for
instance if the code base is large or the loop is complex. Compiler assistance,

A Proposal for Loop-Transformation Pragmas 3

for (int i = 0; i < M; i+=1)

for (int j = 0; j < N; j+=1) {

#pragma omp section id(zero)

{ C[i][j] = 0; }

for (int k = 0; k < K; k+=1)

C[i][j] += A[i][k] * B[k][j];

}

#if __haswell__

#pragma omp loop(i,j) distribute sections(zero,k)

#pragma omp loop(i,j,k) tile sizes(96,2048,256) \

pit_ids(i1,j1,k1) tile_ids(i2,j2,k2)

#pragma omp loop(i1,...,j2) interchange permutation(j1,k1,i1,j2,i2)

#pragma omp loop(i2,k2) pack array(A)

#pragma omp loop(j2,k2) pack array(B)

#pragma omp loop(i2) simd

#elif __skylake__

[...]

Listing 1.1: Optimization of matrix-matrix multiplication using our proposed
pragmas. The tile sizes were derived using the analytical model in [21] for Intel’s
Kaby Lake architecture.

e.g. providing warnings that a transformation might not be safe, can be a great
help. Our use case is an autotuning optimizer, which by itself has only a mini-
mal understanding of the code semantics. Thus, we propose a scheme whereby
the compiler can ensure that the semantics of the program remains the same
(by ignoring the directive or exiting with an error) when automatically-derived
validity conditions are unsatisfied.

2 Proposal

In this publication, we would like to suggest and discuss the following ideas as
extensions to OpenMP:

1. The possibility to assign identifiers to loops and code sections, and to refer
to them in loop transformations

2. A set of new loop transformations
3. A common syntax for loop transformation directives

In the following, we discuss these elements of the proposal and a proof-of-
concept implementation in Clang. We do not discuss syntax or semantics specific
to Fortran, but the proposal should be straightforward to adapt to cover Fortran.

2.1 Composition of Transformations

As loop transformations become more complex, one may want to apply more
than one transformation on a loop, including applying the same transformation

4 Michael Kruse, Hal Finkel

multiple times. For transformations that result in a single loop this can be ac-
complished by “stacking up” transformations. Like a regular pragma that applies
to the loop that follows, such a transformation directive can also be defined to
apply to the output of the following transformation pragma.

The order of transformations is significant as shown in Listing 1.2. In the
former the order of execution will be the exact reversal of the original loop,
while in the latter, groups of two statements keep their original order.

#pragma omp unroll factor(2)

#pragma omp reverse

for (int i=0; i<n; i+=1)

Statement(i);

(a) Reversal followed by partial unrolling

#pragma omp reverse

#pragma omp unroll factor(2)

for (int i=0; i<n; i+=1)

Statement(i);

(b) Partial unrolling followed by reversal

Listing 1.2: Transformation composition of loop unrolling and loop reversal

2.2 Loop/Section Naming

In case a transformation has more than one input- or output-loop, transforma-
tions or its follow-up transformations require a means to identify which loop to
apply to.

As a solution, we allow assigning names to loops and refer to them in other
transformations. An existing loop can be given a name using

pragma omp id(loopname)
for (int i=0; i<n; i+=1) ...

and loops from transformations get their identifier as defined by the transforma-
tion, for instance as an option. As an example, Listing 1.3 shows a loop that is
strip-mined. The inner loop is vectorized while the outer is parallelized.

#pragma omp loop(outer) thread_parallelize

#pragma omp loop(inner) vectorize

#pragma omp stripmine strip_width(4) strip_id(inner) pit_id(outer)

for (int i = 0; i < n; i+=1)

Statement(i);

Listing 1.3: Loop strip mining with follow-up transformations

In some cases, it may be necessary to not only assign an identifier to the
whole loop, but also to individual parts of the loop body. An example is loop
distribution: The content of the new loops must be defined and named. Like
for (canonical) for-loops, OpenMP also has a notion of sequential code pieces:
sections and tasks. We reuse this idea to also assign names to parts of a loop,

A Proposal for Loop-Transformation Pragmas 5

#pragma omp section(A,B) distribute distributed_ids(loopA, loopB)

for (int i=0; i<n; i+=1) {

#pragma omp id(A)

{ StatementA(i); }

#pragma omp id(B)

{ StatementB(i); }

}

Listing 1.4: Loop distribution example

as shown in Listing 1.4. The transformation results in two loops, named loopA

and loopB, containing a call to StatementA, respectively StatementB.
Loop and section names form a common namespace, i.e. it is invalid to have

a section and a loop with the same name. When being used in a loop transfor-
mation, a section name stands for the loop that forms when distributed from
the remainder of the loop body.

To avoid boilerplate pragmas to assign loop names, loops are assigned implicit
names. Every loop is assigned the name of its loop counter variable, unless:

– it has a #pragma loop id(..) annotation,
– some other loop has an annotation with that name,
– or there is another loop counter variable with the same name.

For instance, fusing the loops in Listing 1.5a is legal, but the compiler should
report an ambiguity in Listing 1.5b.

#pragma omp loop(i,j) fuse

for (int i=0; i<n; i+=1) { .. }

for (int j=0; j<n; j+=1) { .. }

(a) Working example

#pragma omp loop(i,i) fuse

for (int i=0; i<n; i+=1) { .. }

for (int i=0; i<n; i+=1) { .. }

(b) Ambiguous implicit name

Listing 1.5: Implicit loop name example

2.3 Transformations

In addition to the loop transformations mentioned in Table 1, there are many
more transformations compilers could implement. Tables 2 and 3 contain some
pragmas that could be supported.

Table 2 contains the directives that apply to loops, many of which change
the order of execution. Transformations such as unrolling and unswitching do
not affect the code semantics and therefore can always be applied. The addi-
tional assume- and expect-directives do not transform code, but give hints to
the compiler about intended semantic properties.

Directive Short description

parallel for OpenMP thread-parallelism

6 Michael Kruse, Hal Finkel

Directive Short description

simd Vectorization
unroll Loop unrolling
split Index set splitting
peel Loop peeling (special kind of index set splitting)
specialize Loop versioning
unswitch Loop unswitching (special kind of loop versioning)
shift Add offset to loop counter
scale Multiply loop counter by constant
coalesce Combine nested loops into one
concatenate Combine sequential loops into one
interchange Permute order of nested loops
stripmine Strip-mining
block Like strip-mining, but with constant sized outer loop
tile Tiling (combination of strip-mining and interchange)
reverse Inverse iteration order
distribute Split loop body into multiple loops
fuse Loop Fusion/Merge: Inverse of loop distribution
wavefront Loop skewing
unrollandjam Unroll-and-jam/register tiling
interleave Loop interleaving
scatter Polyhedral scheduling
curve Space-filling curve (Hilbert-, Z-curve or similar)
assume coincident Assume no loop-carried dependencies
assume parallel Assume parallelism
assume min depdist Assume minimum dependence distance
assume unrelated Assume statements access only disjoint memory
assume termination Assume that a loop will eventually terminate
expect count Expect an average number of loop iterations

Table 2: Directives on loops

Most clauses are specific to a transformation (e.g. tile sizes), but some clauses
apply to all transformations, such as:

(no)assert Control whether the compiler has to abort with an error if, for any
reason, a transformation can not be applied. The default is noassert, but
the compiler may still warn about not applied transformations.

noversioning Disable code versioning. If versioning is required to preserve the
loop’s semantics, do not apply the transformation unless assume safety is
used as well. The combination assert noversioning can be used to ensure
that the transformed code always runs instead of a some fallback version.

assume safety Assume that the transformation is semantically correct in all
well-defined cases. This shifts the responsibility of correctness to the pro-
grammer. If the compiler was able to apply the transformation using code
versioning, in general, this will remove the runtime checks.

suggest only By default, a transformation pragma overrides any profitability
heuristic the compiler might use to apply a transformation. This clause can
be used together with assume safety to only imply that the transformation

A Proposal for Loop-Transformation Pragmas 7

is semantically correct, but leave it to the profitability heuristic to decide
whether to actually apply it, with only a bump in favor of applying the trans-
formation and/or its parameters. The compiler might also apply a different
transformation. For instance, parallel for assume safety suggest only

implies that a loop is parallelizable, but the compiler might choose to vec-
torize it instead.

Directives with assume -prefix inform the compiler that a property is always
true. It is the programmer’s responsibility to ensure that this the case and ex-
ecutions that violate the assumption have undefined behavior. Directives with
an expect -prefix suggest that compiler optimize the code assuming that the
property likely applies. Executions that violate the expectation may run slower,
but the behavior remains the same.

Directives in Table 3 apply to sections of code, which might be in, or include,
loops. For instance, assume associative and assume commutative inform the
compiler that a section behaves like a reduction, so reduction detection can apply
to more than a fixed set of operators.

Directive Short description

id Assign an unique name
parallel sections OpenMP multi-threaded section
target Accelerator offloading
ifconvert If-conversion
reorder Execute code somewhere else
pack Use copy of array slice in scope
assume associative Assume a calculation is associative
assume commutative Assume a calculation is commutative
assume disjoint access Memory accesses do not alias
assume nooverflow Assume (unsigned) integer overflow does not occur
assume noalias Assume pointer ranges do not alias
assume dereferenceable Assume that a pointer range is dereferenceable
expect dead Expect that code in a branch is not executed

Table 3: Directives on code, including loops

In the following we present a selected subset of these transformation in more
detail.

Loop Strip-mining/Blocking/Collapse/Interchange are vertical loop
transformations, i.e., transformations on or to perfectly nested loops.

Strip-mining is the decomposition of a loop into an inner loop of constant
size (called the strip) and an outer loop (which we call the pit) executing that
inner loop until all loop bodies have been executed. For instance, the result of
Listing 1.6a is the loop in Listing 1.6b.

The difference of loop blocking is that the pit’s size is specified in a clause.
However, the case if the iteration count is not known to be a multiple of the
strip/block size requires a different handling.

8 Michael Kruse, Hal Finkel

#pragma omp stripmine strip_size(2) \

pit_id(outer) strip_id(inner)

for (int i=0; i<128; i+=1)

Statement(i);

(a) Strip-mining pragma

#pragma omp id(outer)

for (int pit_i=0; pit_i<128; pit_i+=2)

#pragma omp id(inner)

for (int i=pit_i; i<pit_i+2; i+=1)

Statement(i);

(b) Output loop

Listing 1.6: Strip-mining example

Collapsing is the reverse operation: Combine two or more vertical loops into
a single loop. Only the case where the number of iterations does not depend on
anything in the outer loop needs to be supported. The transformation is already
available in OpenMP’s collapse-clause of the for-pragma.

Interchange is permuting the order of perfectly nested (i.e. vertical) loops.
Classically, only two loops are interchange, but we can generalize this to allow any
number of loops as long as they are perfectly nested. In contrast to the previous
transformations, interchange may change the execution order of iterations and
therefore requires a legality check.

Using these transformations, other transformations can be constructed. For
instance, tiling is a combination of strip-mining and interchange:

#pragma omp interchange permutation(outer_i,outer_j,inner_i,inner_j)

#pragma omp stripmine strip_size(4) pit_id(outer_i) strip_id(inner_i)

for (int i=0; i<128; i+=1)

#pragma stripmine strip_size(4) pit_id(outer_j) strip_id(inner_j)

for (int j=0; j<128; j+=1)

Statement(i);

For convenience, we also propose a tile-transformation which is syntactic
sugar for this composition.

Loop Distribution/Fusion/Reordering are horizontal transformations, i.e.
apply on loops that execute sequentially (and may nest other loops).

Loop distribution splits a loop body into multiple loops that are executed
sequentially. An example was already given in Listing 1.4. The opposite is loop
fusion: Merge two or more loops into a single loop. The reorder-pragma changes
the execution order of loops or statements.

Loop Counter Shifting/Scaling/Reversal modifies the iteration space that
the compiler associates with a loop. By itself, this does not do anything, but
might be required for other transformations, especially loop fusion. By default,
loop fusion would match iterations that have the same numeric value into the
same iteration of the output loop. If different iterations should be executed to-
gether, then the iteration space must be changed such that the instances executed
together have the same numeric value.

The scaling transformation only allows positive integer factors. A factor of
negative one would reverse the iteration order which accordingly we call loop

A Proposal for Loop-Transformation Pragmas 9

reversal. It may change the code’s semantics and therefore requires a validity
check.

Index Set Splitting/Peeling/Concatenation modify a loop’s iteration do-
main. They are horizontal loop transformations. Index set splitting creates mul-
tiple loops, each responsible for a fraction of the original loop’s iteration domain.
For instance, the result of Listing 1.7a is shown in Listing 1.7b.

#pragma omp split indices(i > n/2)

for (int i=0; i<n; i+=1)

Statement(i);

(a) Loop split pragma

for (int i=0; i<=n/2; i+=1)

Statement(i);

for (int i=n/2+1; i<n; i+=1)

Statement(i);

(b) Transformed code

Listing 1.7: Index set splitting

The difference of loop peeling is that the split loop is specified in number of
iterations at the beginning or end of the original loop. Therefore, it can be seen
as syntactical sugar for index set splitting.

Loop concatenation is the inverse operation and combines the iteration space
of two or more consecutive loops. For instance, the result of Listing 1.8a is
Listing 1.8b.

#pragma omp loop(A,B) concatenate

#pragma omp id(A)

for (int i=0; i<n; i+=1)

StatementA(i);

#pragma omp id(B)

for (int i=0; i<n; i+=1)

StatementB(i);

(a) Loop concatenation pragma

for (int i=0; i<n+n; i+=1) {

if (i < n)

StatementA(i);

else

StatementB(i-n);

}

(b) Transformed code

Listing 1.8: Index set concatenation

2.4 Syntax

The generalized loop transformation syntax we propose is as follows:

#pragma omp [loop(loopnames)] transformation option(argument) switch . . .

The optional loop clause can be used to specify which loop the transformation
applies on. How many loops can be specified depends on the transformation. If
the clause is omitted, the transformation applies on the following horizontal or

10 Michael Kruse, Hal Finkel

vertical loops, depending on the transformation. Alternatively, a number speci-
fied to mean the next n vertical or horizontal loops, like OpenMP’s collapse-
clause.

OpenMP’s current simd and for constructs require canonical for-loops, but
implementations may lift that restriction to support more kinds of transformable
loops, e.g. while-loops.

3 Implementation

To serve as a proof-of-concept, we are working on an implementation in Clang.
Independently from this proposal, we also want to improve Clang/LLVM’s loop
transformations capabilities to make it useful for optimizing scientific high-
performance applications.

3.1 Front-End: Clang

Clang’s current gneral loop transformation syntax, also shown in Table 1, is

#pragma clang loop transformation(option) transformation(option) . . .

and therefore differs from the proposed OpenMP syntax: the first keywords (omp
vs. clang loop), but also for the transformations themselves. Multiple options
can be given by using different variants of the same transformation at the same
time, which is ambiguous when composing transformations.

Instead, we implement a hybrid of both syntaxes, which is:

#pragma clang loop[(loopnames)] transformation option(argument) switch
. . .

The current syntax still needs to be supported for at least the transformations
currently possible with Clang.

Clang’s current architecture has two places where loop transformations occur,
shown in Fig. 1.

1. OpenMP’s parallel for is implemented at the front-end level: The gener-
ated LLVM-IR contains calls to the OpenMP runtime.

2. Compiler-driven optimizations are implemented in the mid-end: A set of
transformation passes that each consume LLVM-IR with loops and output
transformed IR, but metadata attached to loops can influence the passes’
decisions.

This split unfortunately means that OpenMP-parallel loops are opaque to
the LLVM passes further down the pipeline. Also, loops that are the result of
other transformations (e.g. LoopDistribute) cannot be parallelized this way be-
cause it must have happened before. An exception is, #pragma omp simd which
just annotates a loop inside the IR using llvm.loop.vectorize.enable to be
processed by the LoopVectorizer pass.

A Proposal for Loop-Transformation Pragmas 11

OpenM
P

ru
nt

im
e

ca
lls#pragma tranform

for (int i=...)
…

source.c IR

Assembly

Canonicalization passes

Loop optimization passes

Polly

LoopVectorizer

Late Mid-End passes

Target Backend

LLVM

Lexer

Parser

Preprocessor

Semantic Analyzer

IR Generation

Clang

#pragma

#pragma

Loop
m

et
ad

at
a

Fig. 1: Clang compiler pipeline

Multiple groups are working on improving the situation by adding parallel
semantics to the IR specification [29,28]. These and other approaches have been
presented on LLVM’s mailing list [10,5] or its conferences [27,9]. Until Clang’s
implementation of OpenMP supports generating parallel IR, we require users to
use a different pragma if they want the mid-end to apply thread-parallelism. In
Clang’s case, this is #pragma clang loop parallelize thread

3.2 LLVM-IR Metadata

Only existing loops can be annotated using the current metadata, but not loops
that result from other transformations. In addition, there is no transformation
order and at most one instance of a transformation type and can be specified.
Therefore, a new metadata format is required.

Our changes use loop annotations only to assign loop names. The transforma-
tion themselves are instead a sequence of metadata associated with the function
containing the loop. Each transformation has to lookup the loop it applies on
using the result of the previous transformations.

Current passes that consume the current metadata need to be modified to
read the changed format instead. Due to their fixed order in the pass pipeline
however, they can only apply on loops that originate in the source or are the
result of passes that execute earlier in the pipeline.

3.3 Loop Transformer: Polly

Polly [13] takes LLVM-IR code and ‘lifts’ is into another representation –schedule
trees [32] – in which loop transformations are easier to express. To transform
loops, only the schedule tree needs to be changed and Polly takes care for the
remainder of the work.

12 Michael Kruse, Hal Finkel

0 10 20 30 40 50 60 70 80 90

-O3 -march=native
Netlib CBLAS

ATLAS
OpenBLAS

manual
Polly

Intel MKL
theoretical peak

33.5s (1.6%)
5.8s (9%)

4.5s (12%)

0.59s (89%)

74.9s (0.7%)

3.9s (14%)
1.25s (42%)

0.53s

Execution time (s)

Fig. 2: Comparison of matrix-multiplication execution times on an Intel Core i7
7700HQ (Kaby Lake architecture), 2.8 Ghz, Turbo Boost off

We can implement most transformations from Table 2 as follows. First, let
Polly create a schedule tree for a loop nest, then iteratively apply each trans-
formation in the metadata to the schedule tree. For every transformation we
can check whether it violates any dependencies and act according to the chosen
policy. When done, Polly generates LLVM-IR from the schedule tree including
code versioning.

If desired, Polly can also apply its loop nest optimizer which utilizes a linear
program solver before IR generation. We add artificial transformational depen-
dencies to ensure that user-defined transformations are not overridden.

4 Evaluation

Although we intended this to be a proposal for further discussion, and hence
do not have a complete implementation yet, we can measure what the effects of
such pragmas are. Figure 2 shows the execution times of a single thread double
precision matrix-multiplication kernel (M = 2000, N = 2300, K = 2600).

The näıve version (Listing 1.1 without pragmas) compiled with Clang 6.0 ex-
ecutes in 75 seconds (gcc’s results are similar); Netlib’s reference CBLAS imple-
mentation in less than half that time. With the pragma transformations manually
applied the execution time shrinks to 3.9 seconds. The same transformations as
automatically applied by Polly runs in 1.14s, which is 42% of the processor’s
theoretical floating-point limit. LLVM’s loop vectorizer currently only supports
vectorizing inner loops, so we applied an additional unroll-and-jam step in the
manual version. Polly instead prepares its output for the SLP-vectorizer, which
may explain the performance difference.

By comparison, OpenBLAS and ATLAS both reach similar results with 4.5
and 5.8 seconds. Their binaries were obtained from the Ubuntu 16.04 software
repository, therefore are likely not optimized for the platform. Intel’s MKL li-
brary runs in 0.59 seconds, which is 89% of the theoretical flop-limited peak
performance.

A Proposal for Loop-Transformation Pragmas 13

5 Related Work

As already mentioned in Table 1, many compilers already implement pragmas
to influence their optimization passes. The most often implemented transfor-
mation is loop unrolling, for instance in gcc since version 8.1 [11]. The most
advanced transformation we found is xlc’s #pragma block loop. It is the only
transformation that uses loop names which might have been introduced only for
this purpose. The compiler manual mentions special cases where it is allowed
to compose multiple transformations, but in most cases it result in only one
transformation being applied or a compiler error [16].

Multiple research groups already explored the composition of loop transfor-
mations, many of them based on the polyhedral model. The Unifying Reordering
Framework [20] describes loop transformations mathematically, including seman-
tic legality and code generations. The Clint [34] tool is able to visualize multiple
loop transformations.

Many source-to-source compilers can apply the loop transformations them-
selves and generate a new source file with the transformation baked-in. The
instructions of which transformations to apply can be in the source file itself
like in a comment of the input language (Clay [1], Goofi [23], Orio [14]) or like
our proposal as a pragma (X-Language [7], HMPP [6]). Goofi also comes with a
graphical tool with a preview of the loop transformations. The other possibility
is to have the transformations in a separate file, as done by URUK [12] and
CHiLL [30]. POET [33] uses an XML-like description file that only contains the
loop body code in the target language.

Halide [26] and Tensor Comprehensions [31] are both libraries that include a
compiler. In Halide, a syntax tree is created from C++ expression templates. In
Tensor Comprehensions, the source is passed as a string which is parsed by the
library. Both libraries have objects representing the code and calling its methods
transform the represented code.

Similar to the parallel extensions to the C++17 [19] standard library, Intel’s
Threading Building Blocks [17], RAJA [15] and Kokkos [8] are template libraries.
The payload code is written using lambdas and an execution policy specifies how
it should be called.

Our intended use case – autotuning loop transformations – has also been
explored by POET [33] and Orio [14].

6 Conclusion

We propose adding a framework for general loop transformation to the OpenMP
standard. Part of the proposal are a set of new loop transformations in addition
to the already available thread-parallelization (#pragma omp for) and vectoriza-
tion (#pragma omp simd). Some of these have already been implemented using
compiler-specific syntax and semantics. The framework allows arbitrarily com-
posing transformation, i.e. apply transformations on already transformed loops.

14 Michael Kruse, Hal Finkel

Loops – existing in the source code as well as the loop resulting from transforma-
tions – can be assigned unique identifiers such that the pragmas can be applied
on already transformed loops.

Experiments show speedups comparable to hand-optimized libraries without
the cost in maintainability. We started implementing the framework using a
different syntax in Clang/LLVM using the Polly polyhedral optimizer to carry
out the transformations.

The proposal is not complete in that it does not specify every detail a specifi-
cation would have. As with any proposal, we are looking for feedback from other
groups including about applicability, syntax, available transformations and com-
patibility/consistency with the current OpenMP standard.

7 Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed plat-
forms, in support of the nations exascale computing imperative.

This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357.

References

1. Bagnères, L., Zinenko, O., Huot, S., Bastoul, C.: Opening Polyhedral Compiler’s
Black Box. In: 14th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO’16). IEEE (2016)

2. Attributes in Clang, http://clang.llvm.org/docs/AttributeReference.html
3. Auto-Vectorization in LLVM, http://llvm.org/docs/Vectorizers.html
4. Clang Language Extensions, http://clang.llvm.org/docs/LanguageExtensions.

html
5. Doerfert, J.: [rfc] abstract parallel ir optimizations. llvm-dev mailing list post (Jun

2018), http://lists.llvm.org/pipermail/llvm-dev/2018-June/123841.html
6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multi-core Parallel Program-

ming Environment. In: First Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU’07) (2007)

7. Donadio, S., Brodman, J., Roeder, T., Yotov, K., Barthou, D., Cohen, A.,
Garzarán, M.J., Padua, D., Pingali, K.: A Language for the Compact Represen-
tation of Multiple Program Versions. In: Proceedings of the 18th International
Workshop on Languages and Compilers for Parallel Computing (LCPC’05). pp.
136–151. Springer (2006)

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Par-
allel and Distributed Computing 74(12), 3202–3216 (2014)

http://clang.llvm.org/docs/AttributeReference.html
http://llvm.org/docs/Vectorizers.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://lists.llvm.org/pipermail/llvm-dev/2018-June/123841.html

A Proposal for Loop-Transformation Pragmas 15

9. Finkel, H., Doerfert, J., Tian, X., Stelle, G.: A Parallel IR in Real Life: Optimizing
OpenMP. EuroLLVM 2018 presentation (2018), http://llvm.org/devmtg/2018-04/
talks.html#Talk 1

10. Finkel, H., Tian, X.: [RFC] IR-level Region Annotations. llvm-dev mailing list post
(Jan 2017), http://lists.llvm.org/pipermail/llvm-dev/2017-January/108906.html

11. Free Software Foundation: Loop-Specific Pragmas, http://gcc..org/onlinedocs/
gcc/Loop-Specific-Pragmas.html

12. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-Automatic Composition of Loop Transformations for Deep Parallelism
and Memory Hierarchies. International Journal of Parallel Programming 34(3),
261–317 (Jun 2006)

13. Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A., Pouchet, L.N.:
Polly – Polyhedral Optimization in LLVM. In: First International Workshop on
Polyhedral Compilation Techniques (IMPACT’11) (2011)

14. Hartono, A., Norris, B., Sadayappan, P.: Annotation-Based Empirical Performance
Tuning Using Orio. In: Proceedings of the 23rd IEEE International Parallel And
Distributed Computing Symposium (IPDPS’09). IEEE (2009)

15. Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status.
Technical Report LLNL-TR-661403, Lawrence Livermore National Lab (2014)

16. IBM: Product documentation for XL C/C++ for AIX, V13.1.3
17. Intel: Threading Building Blocks, https://www.threadingbuildingblocks.org
18. Intel: Intel C++ Compiler 18.0 Developer Guide and Reference (May 2018)
19. International Organization for Standardization: ISO/IEC 14882:2017 (Dec 2017)
20. Kelly, W., Pugh, W.: A Framework for Unifying Reordering Transformations. Tech-

nical Report UMIACS-TR-93-134/CS-TR-3193, University of Maryland (1992)
21. Low, T.M., Igual, F.D., Smith, T.M., Quintana-Orti, E.S.: Analytical Modeling

Is Enough for High-Performance BLIS. Transactions on Mathematical Software
(TOMS) 43(2), 12:1–12:18 (Aug 2016)

22. Microsoft: C/C++ Preprocessor Reference, http://docs.microsoft.com/en-us/cpp/
preprocessor/loop

23. Müller-Pfefferkorn, R., Nagel, W.E., Trenkler, B.: Optimizing Cache Access: A
Tool for Source-to-Source Transformations and Real-Life Compiler Tests. In: Pro-
ceedings of the 10th International Euro-Par Conference (Euro-Par’04). Springer
(2004)

24. OpenACC-Standard.org: The OpenACC Application Programming Interface Ver-
sion 4.0 (Nov 2017)

25. OpenMP Architecture Review Board: OpenMP Application Program Interface
Version 4.0 (Jul 2017)

26. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’13). pp. 519–530. ACM (2013)

27. Saito, H.: Extending LoopVectorizer towards supporting OpenMP4.5 SIMD and
outer loop auto-vectorization. EuroLLVM 2018 presentation (2016), http://llvm.
org/devmtg/2016-11/#talk7

28. Schardl, T.B., Moses, W.S., Leiserson, C.E.: Tapir: Embedding Fork-Join Par-
allelism into LLVM’s Intermediate Representation. In: Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’17). pp. 249–265. ACM (2017)

http://llvm.org/devmtg/2018-04/talks.html#Talk_1
http://llvm.org/devmtg/2018-04/talks.html#Talk_1
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108906.html
http://gcc..org/onlinedocs/gcc/Loop-Specific-Pragmas.html
http://gcc..org/onlinedocs/gcc/Loop-Specific-Pragmas.html
https://www.threadingbuildingblocks.org
http://docs.microsoft.com/en-us/cpp/preprocessor/loop
http://docs.microsoft.com/en-us/cpp/preprocessor/loop
http://llvm.org/devmtg/2016-11/#talk7
http://llvm.org/devmtg/2016-11/#talk7

16 Michael Kruse, Hal Finkel

29. Tian, X., Saito, H., Su, E., Gaba, A., Masten, M., Garcia, E., Zaks, A.: LLVM
Framework and IR Extensions for Parallelization, SIMD Vectorization and Offload-
ing. In: Third Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC’16). IEEE (2016)

30. Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.K.: A Scalable Auto-
tuning Framework for Compiler Optimization. In: Proceedings of the 23rd IEEE
International Parallel And Distributed Computing Symposium (IPDPS’09). IEEE
(2009)

31. Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses,
W.S., Verdoolaege, S., Adams, A., Cohen, A.: Tensor Comprehensions:
Framework-Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018)

32. Verdoolaege, S., Guelton, S., Grosser, T., Cohen, A.: Schedule Trees. In: Fourth In-
ternational Workshop on Polyhedral Compilation Techniques (IMPACT’14) (2014)

33. Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.: POET: Parameterized
Optimizations for Empirical Tuning. In: Proceedings of the 21st IEEE International
Parallel And Distributed Computing Symposium (IPDPS’07). IEEE (2007)

34. Zinenko, O., Huot, S., Bastoul, C.: Clint: A Direct Manipulation Tool for Paral-
lelizing Compute-Intensive Program Parts. In: 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE (2014)

	A Proposal for Loop-Transformation Pragmas

