
Abstract and Compare: A Framework for Defining
Precision Measures for Automated Process Discovery

Adriano Augusto1,2, Abel Armas-Cervantes2, Raffaele Conforti2,
Marlon Dumas1, Marcello La Rosa2, and Daniel Reissner2

1 University of Tartu, Estonia
{adriano.augusto, marlon.dumas}@ut.ee

2 The University of Melbourne, Australia
{raffaele.conforti, marcello.larosa, abel.armas}@unimelb.edu.au

Abstract. Automated process discovery techniques allow us to extract business
process models from event logs. The quality of process models discovered by
these techniques can be assessed with respect to various quality criteria related
to simplicity and accuracy. One of these criteria, namely precision, captures the
extent to which the behavior allowed by a discovered process model is observed
in the log. While numerous measures of precision have been proposed in the liter-
ature, a recent study has shown that none of them fulfils a set of five axioms that
capture intuitive properties behind the concept of precision. In addition, several
existing precision measures suffer from scalability issues when applied to models
discovered from real-life event logs. This paper presents a versatile framework for
defining precision measures based on behavior abstractions. The key idea is that
a precision measure can be defined by three ingredients: a function that abstracts
a process model (e.g. as a transition system), a function that does the same for an
event log, and a function that compares the behavior abstraction of the model with
that of the log. We show empirically that different instances of this framework al-
low us to strike different tradeoffs between scalability and sensitivity. We also
show that two instances of the framework based on lossless abstraction functions
yield a precision measure that fulfils all the above-mentioned axioms.

1 Introduction

Modern enterprise information systems store detailed records of the execution of the
business processes they support, such as records of the creation of process instances
(a.k.a. cases), the start and completion of tasks, and other events associated with a case.
These records can generally be extracted as event logs consisting of a set of traces, each
trace itself consisting of a sequence of events associated with a case. Automated process
discovery techniques [3] allow us to extract process models from such event logs. The
quality of process models discovered in this way can be assessed with respect to several
quality criteria related to simplicity and accuracy.

Two commonly used criteria for assessing accuracy are fitness and precision. Fitness
captures the extent to which the behavior observed in an event log is allowed by the
discovered process model (i.e. Can the process model generate every trace observed
in the event log?). Reciprocally, precision captures the extent to which the behavior
allowed by a discovered process model is observed in the event log. A low precision
indicates that the model under-fits the log, i.e. it can generate traces that are unrelated

2

or only partially related to traces observed in the log, while a high precision indicates
that it over-fits (i.e. it can only generate traces in the log and nothing more).1

While several precision measures have been proposed, a recent study has shown
that none of them fulfils a set of five axioms that capture intuitive properties behind the
concept of precision [20]. In addition, most of the existing precision measures suffer
from scalability issues when applied to models discovered from real-life event logs.

This paper presents a framework for defining precision measures based on behavior
abstraction and comparison. In this framework, a precision measure is defined by three
ingredients: a function that constructs a behavior abstraction from a process model, a
function that does the same for an event log, and a function that computes the difference
between the behavior abstraction of the model and that of the log. The paper studies in-
stances of this framework where the behavior abstractions are Transitions Systems (TS).
In particular, the paper proposes a family of measures based on kth-order Markovian
abstractions and shows that this family of measures fulfils four of the abovementioned
axioms, and all five axioms for a sufficiently large k (dependent on the process model).
The paper also studies an automata-based measure that fulfils all five axioms.

In addition to analysing formal properties of the proposed measures, the paper em-
pirically compares them using: (i) a set of process models previously used to assess the
suitability of precision measures; and (ii) a set of process models discovered from 12
real-life event logs using three automated process discovery techniques. The evaluation
shows that the kth-order Markovian measures allow us to strike a tradeoff between scal-
ability and sensitivity (i.e. ability to distinguish between behaviorally similar models).

The rest of the paper is structured as follows. Section 2 introduces existing preci-
sion measures as well as the five axioms proposed previously. Section 3 introduces the
framework, while Sections 3 and 4 discuss instances thereof. Finally, Section 5 presents
the empirical evaluation and Section 6 draws conclusions and directions for future work.

2 Background and Related Work
One of the earliest precision measures was proposed by Greco et al. [7], based on the set
difference (SD) between the model behavior and the log behavior, each represented as a
set of traces. Despite it closely operationalizes the definition of precision, this measure
is not suitable for models with cycles since in these cases the precision is always zero.

Later, Rozinat and van der Aalst [17] proposed the advanced behavioral appro-
priateness (ABA) precision. The ABA precision is based on the comparison between
the sets of activity pairs that sometimes but not always follow each other, and the set
of activity pairs that sometimes but not always precede each other. The comparison is
performed on the sets extracted both from the model and the log behaviors. The ABA
precision is non-deterministic [20] and it does not scale to large models. Moreover,
this precision is undefined for models with no routing behavior (i.e. models without
concurrency or conflict relations).

De Weerdt et al. [6] proposed the negative events precision measure (NE). This
method works by inserting inexistent (so-called negative) events to enhance the traces
in the log. A negative event is inserted after a given prefix of a trace if this event is
never observed preceded by that prefix anywhere in the log. The traces extended with
negative events are then replayed on the model. If the model can parse some of the neg-
ative events, it means that the model has additional behavior. This approach is however
heuristic: it does not guarantee that all additional behavior is identified.

1 A third accuracy criterion in automated process discovery is generalization: the extent to which
the process model captures behavior that, while not observed in the log, is implied by it.

3

Muñoz-Gama and Carmona [15] proposed the escaping edges (ETC) precision. Us-
ing the log behavior as reference, it builds a prefix automaton and, while replaying the
process model behavior on top of it, counts the number of escaping edges, i.e. edges not
in the prefix automaton which represent extra behavior of the process. Subsequently, to
improve the robustness of the ETC precision for logs containing non-fitting traces, the
ETC precision evolved into the alignments-based ETC precision (ETCa) [1] where the
replay is guided by alignments.

Despite its robustness, ETCa does not scale well to real-life datasets. To address
this issue, Leemans et al. [12] proposed the projected conformance checking (PCC)
precision. This precision, starting from the log behavior and the model behavior builds a
projected automaton (an automaton where a reduced number of activities are encoded)
from each of them, i.e. Al and Am. These two automata are then used to generate a
third automaton capturing their common behavior, i.e. Al,m. The precision value is then
computed as the ratio between the number of outgoing edges of each state in Al,m and
the number of outgoing edges of the corresponding states occurring in Am.

Finally, van Dongen et al. [22] proposed the anti-alignment precision (AA). This
measure analyses the anti-alignments of the process model behavior to assess the
model’s precision. An anti-alignment of length n is a trace in the process model be-
havior of length at most equal to n, which maximizes the Levenshtein distance from all
traces in the log.

In a recent study, Tax et al. [20] proposed 5 axioms to capture intuitive properties
behind the concept of precision advising that any precision measure should fulfill these
axioms. Before presenting them, we introduce preliminary concepts and notations.

Definition 1. [Trace] Given a set of activity labels Σ , we define a trace on Σ as a sequence
τΣ = 〈t1, t2, . . . , tn−1, tn〉, such that ∀1≤ i≤ n, ti ∈ Σ . Furthermore, we denote with τ [i] the activity
label in position i, and we use the symbol ΓΣ to refer the universe of traces on Σ . With abuse of
notation, from here on, we refer to any t ∈ Σ as an activity instead of an activity label.

Definition 2. [Subtrace] Given a trace τΣ = 〈t1, t2, . . . , tn−1, tn〉, with the notation τ i→ j , we
refer to the subtrace

〈
ti, ti+1, . . . , t j−1, t j

〉
, where 0 < i < j≤ n. Additionally, we extend the subset

operator to traces. Given two traces τΣ , and τ̄Σ , τ̄Σ is contained in τΣ , i.e. τ̄Σ ⊂ τΣ , if and only if
∃i, j ∈ N | τ i→ j = τ̄Σ .

Definition 3. [model behavior] Given a process model P (regardless of its representation)
and being Σ the set of its activities. We refer to the model behavior as BP ⊆ ΓΣ , where
∀〈t1, t2, . . . , tn−1, tn〉 ∈ BP there exists an execution of P that allows to execute the sequence
of activities 〈t1, t2, . . . , tn−1, tn〉, with t1 being the first activity executed, and tn the last.

Definition 4. [Event Log Behavior] Given a set of activities Σ , an event log L is a finite multiset
of traces defined over Σ . The event log behavior of L is defined as BL = support(L).2

Definition 5. [Precision Axioms]
– Axiom-1. A precision measure is a deterministic function prec : L ×P → R. Where, L is

the universe of event logs, and P is the universe of processes.
– Axiom-2. Given two process models fully containing the behaviour of a log, if the behavior

or the former is equal to or contained in the behavior of the latter, the precision value of the
latter must be equal to or lower then the precision value of the former. Formally, let P1,P2
be two processes and L be an event log. If BL ⊆BP1 ⊆BP2 =⇒ prec(L,P1)≥ prec(L,P2).

– Axiom-3. Given two process models fully containing the behaviour of a log, if the behavior
or the former is contained in the behavior of the latter, the precision value of the latter must
be lower then the precision value of the former. Formally, let P1,P2 be two processes and L
an event log. If BL ⊆BP1 ⊂BP2 = ΓΣ =⇒ prec(L,P1)> prec(L,P2).

2 The support of a multiset is the set containing the distinct elements of the multiset.

4

– Axiom-4. Given two process models, if the behavior or the former is equal to the behavior
of the latter, their precision values must be equal. Formally, let P1,P2 be two processes and
L an event log. If BP1 = BP2 =⇒ prec(L,P1) = prec(L,P2).

– Axiom-5. Given two logs, having their behavior fully contained in the behavior of a process
model, if the behavior or the former is equal to or contained in the behavior of the latter, the
precision value of the model measured over the first log must be equal to or lower then the
precision value measured over the second log. Formally, let P be a process and let L1,L2 be
two event logs. If BL1 ⊆BL2 ⊆BP =⇒ prec(L2,P)≥ prec(L1,P).

Tax et al. [20] showed that none of the existing measures fulfils all the axioms.

3 Framework

We propose a framework to decompose a precision measure into three functions: 1) a
function to abstract the behavior of a process model, 2) a function to abstract the behav-
ior recorded in an event log, and 3) a function to compare the two behavioral abstrac-
tions. Thus, we set behavior abstraction and comparison type as the two dimensions
characterizing our framework.

The proposed framework is displayed in Fig. 1 and is pre-populated with different
variants of two novel precision measures introduced in this paper (Sections 4 and 5).
The framework is founded on two axes: behavior abstraction – exact or approximate –
and comparison type – structural or behavioral. This framework can be used to study the
trade-offs of existing precision measures, for instance, to see impact in the coarseness of
the precision measure and computation time by using approximate behavioral abstrac-
tions, in comparison to exact behavioral abstractions (and, similarly, for structure-based
versus behavioral-based comparison techniques). Below we describe each of the axes
of our framework in more detail.

Behavior Abstraction

Co
m

pa
ris

on
 T

yp
e

Approximated Exact

kth-order Markovian structural-based precision

1st-order Markovian structural-based precision

1-unfold Automata behavioral-based precision

k*-order Markovian structural-based precisionBe
ha

vi
or

al
St

ru
ct

ur
al

k-unfold Automata behavioral-based precision

k*-unfold Automata behavioral-based precision

Fig. 1: Proposed framework and precision measures.

Behavior Abstraction The behavior abstraction dimension covers the first two com-
ponents of a precision measure: the function to abstract the process model behavior and
the function to abstract the behavior captured in an event log. Note that even though
both, models and event logs, could describe essentially the same behavior, event logs
will always contain a finite amount of behavior, which is not always true for process
models. In the latter case, process models can capture an infinite amount of behavior,
for instance, when containing loops. Nevertheless, in order to compare the behavior of
a model and a log, it is necessary to use a unified behavioral abstraction to represent

5

both. Examples of some behavioral abstractions that can be used for encoding the mod-
els and event logs include: collections of traces (i.e. trace abstraction), Markov models,
finite state machines, and automatons. Note, however, that the encoding of the behavior
can be exact, when no alteration of the behavior occurs (neither addition nor deletion of
behavior occurs), or approximate, when some behavior either added or removed.

Despite the fact that many behavioral abstractions are available in the literature, in
our study we refer only to transition systems-based (TS) abstractions. We remark that
the use of TS abstractions in process mining has been widely used. For example, [21]
puts forward the possibility of using Markovian abstractions (namely maximal horizon
abstractions) to predict the completion time of running process instances, though it
neither considers their application in process discovery nor conformance checking.

Comparison Type The comparison type dimension corresponds to the third ingredient
of a precision measure: the function to compare the behavioral abstractions of both the
process model and the log. We distinguish two types of comparison that can be applied
over a behavioral abstraction: structural and behavioral. In the first case, a structural
comparison aims at identifying the differences between the two abstractions focusing
exclusively on the topology of the abstractions (e.g. considering the abstractions as
graphs). Examples of structural comparisons include set difference and graph-based
matchings. On the other hand, a behavioral comparison aims at finding differences
related to behavior, e.g., by focusing on wether an abstraction can be replayed over the
other (simulation), and detecting and characterising the cases where such a replay is not
possible; the simulation-based graph similarity of Sokolsky et al.[19] is a case in point.

The selection of a behavioral abstraction directly influences the selection of the type
of comparison to be performed. For instance, by considering trace abstractions, we can
choose a structural comparison based on set difference (as proposed by Greco et al. [7]),
but not one based on graph matching. Instead, when considering TSs, we can choose
comparisons either based on set difference operators (e.g. either on the sets of states or
edges), graph matching or simulation graph similarity.

4 Markovian Structural-based Precision (MPS)

We present a novel precision measure based on Markovian abstractions. Following the
structure of the proposed framework, we first discuss the behavior abstraction, then we
illustrate the comparison type and the computation of the precision measure.

4.1 Behavioral Abstraction

A Markovian abstraction (Mk-abstraction) is composed by a set of states and edges,
where every state represents a (sub)trace, and every edge connects two states, such that
the (sub)trace represented by the source state occurs before the (sub)trace represented
by the target state. Every state in this representation is unique, in the sense that there
are no two events representing the same (sub)trace. This abstraction is defined w.r.t.
a given order k, which defines the size of the (sub)traces encoded in the states. An
Mk-abstraction contains a fresh state − representing the sink and source of the Mk-
abstraction. Intuitively, a state is either a trace of length less-or-equal-to k or a subtrace
of length k. The edges connect states whose traces’ overlapping is still either a trace or
a subtrace of length k+2 in the input behavior. The Mk-abstraction captures how all the
traces of the input behavior evolves in chunks of length k. The definition below shows
the detailed construction of Mk−abstraction from a given BX .

6

Definition 6. [kth-order Markovian Abstraction] Given a set of traces BX , the k-order Marko-
vian Abstraction (Mk-abstraction) is the graph Mk

X = (S,E) where S is a set of the states and
E ⊆ S×S is a set edges between the states, such that (s.t.):

– S = {−}∪{τ ∈BX : |τ| ≤ k}∪{τ i→ j : ∃τ ∈BX s.t. |τ|> k ∧
∣∣τ i→ j

∣∣= k}
– E = {(−,τ),(τ,−) : |τ| ≤ k} ∪ {(−,τx→y) : ∃τ ′ ∈ BX s.t. τx→y = τ ′1→k} ∪ {(τx→y,−) :
∃τ ′ ∈BX s.t. τx→y = τ ′(|τ

′|−k+1)→|τ ′|}∪{(τg→h,τ i→ j) : τg→h⊕τ i→ j[j− i+1] = τg→h[1]⊕
τ i→ j ∧ ∃τ ′ ∈BX s.t. τg→h⊕ τ i→ j[j− i+1] = τ ′x→y for 1≤ x < y≤ |τ ′|} for all τ ∈BX .

Note that, M1-abstraction is equivalent to a directly-follows graph (a well-known
behavior abstraction used as starting point by many process discovery approaches [10,
4, 23, 24]). Instead, if k approaches to infinite then M∞-abstraction is equivalent to list-
ing all the traces. The Mk-abstraction of a process model can be built from its reacha-
bility graph by replaying it. The time complexity of such operation strictly depends on
k, and it ranges from polynomial time (k = 1) to exponential time for greater values of
k. Instead, the Mk-abstraction of an event log can be built always in polynomial time,
since the log behavior is a finite set of traces.

Varying the order k of the Mk-abstraction we can tune the level of behavior approxi-
mation. For example, let us consider the event log L∗ as in Tab. 1, and the Process-X (Px)
in Fig. 2b. Their respective M1-abstractions: M1

L∗ and M1
Px

are shown in Fig. 3d and 3b.
We can notice that M1

L∗ = M1
Px

, though BPx is infinite whilst BL∗ is not. This happens
because the M1-abstraction over-approximate both L∗ and Px behaviors. However, if we
increase k the approximation reduces and the behavioral differences between L∗ and Px
can be detected, as shown in Fig. 4d and 4b. We remark that for k equal to the longest
trace in the log, the behavior abstraction of this latter is exact. Unfortunately, a similar
reasoning cannot be done for a model behavior, since the longest trace may be infinite.

4.2 Comparison

Traces
〈a,a,b〉
〈a,b,b〉

〈a,b,a,b,a,b〉

Table 1: Log L∗.

We introduce the concept of graph matching algorithm, which is
the core of the comparison of the Mk-abstractions representing
process and log behaviors.

Definition 7. [Weighted Edge-based Graph Matching Algorithm
(GMA)] Let G1 = (N1,E1) and G2 = (N2,E2) be two graphs and IC :
E1 → (E2∪{ε}) be a mapping function given by a deterministic graph
matching algorithm. The cost associated to a single match is given by C : E1×(E2∪{ε})→ [0,1].
The element ε is mapped to every edge e ∈ E1 when the graph matching algorithm did not
find a matching for e in E2. Furthermore, the following relation hold: ∀e1,e2 ∈ E1IC(e1) =
IC(e2)⇐⇒IC(e1) = ε ∧ IC(e2) = ε;

Given a GMA IC, an event log L and a process P as inputs, the kth-order Markovion
abstraction-based precision (hereby MSPk) is estimated applying equation 1.

MSPk(L,P) = 1− Σe∈E1C(e,IC(e))
|EP|

(1)

The selected GMA for the implementation of our MSPk is an adaptation of the
Hungarian method [9], where: the cost of a match between two edges is defined as the
average of the Levenshtein distance between the source states and the target states; and
the final matching is the one minimising the total costs of the matches.

7

(a) Flower Proc. (b) Process X (c) Process Y

Fig. 2: Examples of processes in BPMN notation.

Figure 2 shows three models in BPMN notation. Their respective Markovian ab-
stractions are captured in Fig. 3 and 4, for k = 1 and k = 2. We can observe that by
increasing k, the behavior approximation decreases. Consequently, also the MSPk de-
creases achieving a finer result. Although we acknowledge that the value returned by
MSPk strictly depends on k, in Section 6, we empirically show that: given two processes
such that for k = k̄ a precision ranking is identified, for any k > k̄ the precision ranking
of the two process does not change.

We now turn our attention to show that our Markov models-based precision measure
fulfils the axioms presented in Section 2. For the remaining part of the section, let Lx be
a log, Px be a process model, and Mk

Lx
= (SLx ,ELx ,φLx) and Mk

Px
= (SPx ,EPx ,φPx) be the

Mk-abstractions of the log and the model, respectively.

−

a b

(a) 1− 2
8 = 0.75

−

a b

(b) 1− 0
6 = 1.00

−

a b

(c) 1− 2
8 = 0.75

−

a b

(d) -

Fig. 3: From left to right, the M1-abstraction of the Flower Process, Process-X, Process-
Y and the event log L∗. The respective labels report the value of their MSP1.

−

a b

aa bb

ab ba

(a) 1− 12
20 = 0.40

−

aa bb

ab ba

(b) 1− 4
12 = 0.66

−

a b

aa bb

ab ba

(c) 1− 8
16 = 0.50

−

aa bb

ab ba

(d) -

Fig. 4: From left to right, the M2-abstraction of the Flower Process, Process-X, Process-
Y and the event log L∗. The respective labels report the value of their MSP2.

– Axiom-1. MSPk(L,P) is a deterministic function. Given a log L and a process P, The con-
struction of Mk

L and Mk
P is fully deterministic (see Definition 6) for BP and BL. Furthermore,

the graph matching algorithm IC is deterministic, and thus the function MSPk(L,P) of EP,
EL and GMA, is also deterministic with codomain R.

– Axiom-2. Given two processes P1,P2 and an event log L, s.t. BL ⊆ BP1 ⊆ BP2 , then
MSPk(L,P1)≥MSPk(L,P2). By construction, the following relation holds, EL ⊆ EP1 ⊆ EP2 .
Then, we distinguish two possible cases:

1. if EP1 = EP2 , then it follows straightforward MSPk(L,P1) = MSPk(L,P2) from the proof
of Axiom-1.

8

2. if EP1 ⊂ EP2 , then EL ⊂ EP2 ∧ (|EP2 |− |EP1 |) > 0. In this case, we show that
MSPk(L)(P2)−MSPk(L)(P1)< 0 is always true.

1−
Σe2∈EP2

C(e2,IC(e2))∣∣EP2

∣∣ −

(
1−

Σe1∈EP1
C(e1,IC(e1))∣∣EP1

∣∣
)

=

Σe1∈EP1
C(e1,IC(e1))∣∣EP1

∣∣ −
Σe2∈EP2

C(e2,IC(e2))∣∣EP2

∣∣ < 0

Since ∀e1 ∈ EP1 ∩EL =⇒C(e1,IC(e1)) = 0 and ∀e1 ∈ EP1 \EL =⇒C(e1,IC(e1)) =
C(e1,ε) = 1, it follows Σe1∈EP1

C(e1,IC(e1)) = |EP1 | − |EL|. Similarly, since ∀e2 ∈
EP2 ∩EL =⇒C(e2,IC(e2)) = 0 and ∀e2 ∈ EP2 \EL =⇒C(e2,IC(e2)) =C(e2,ε) = 1,
it follows Σe2∈EP2

C(e2,IC(e2)) = |EP2 |− |EL|.

The above inequality becomes: |EP1 |−|EL|
|EP1 |

− |EP2 |−|EL|
|EP2 |

=
|EL|(|EP1 |−|EP2 |)
|EP1 ||EP2 |

< 0

This latter is always true, since
(∣∣EP2

∣∣− ∣∣EP1

∣∣)> 0.
– Axiom-3. Given two processes P1,P2 and an event log L, s.t. BL ⊆BP1 ⊂BP2 = ΓΣ then

MSPk(L,P1)> MSPk(L,P2). For any k ∈ N, the relation MSPk(L,P1)≥MSPk(L,P2) holds
for Axiom-2. A case MSPk(L,P1) = MSPk(L,P2) occurs when Mk

P1
over-approximates the

behavior of P1.
For any BP1 there exists always a k∗ s.t. EP1 ⊂EP2 . This is always true since ∃τΣ ∈BP2 \BP1 ,
s.t. for k∗ = |τΣ |+ 1 =⇒ ∃(−,τΣ) ∈ EP2 \ EP1 (see Definition 6). Consequently, for any
k ≥ k∗, having EP1 ⊂ EP2 , MSPk(L,P1) > MSPk(L,P2) holds (see proof Axiom-2, case 2).
It can be shown that k∗ ≤ min(|τ̄Σ | ,max(|τ̄Σ | , |Σ |)), where τ̄Σ is the shortest trace of the
set {τ i→ j | τΣ = 〈t1, t2, . . . , tn−1, tn〉 ∈BP1 ∧ tx = ty ∀x,y ∈ [i, j]}. In real cases, k∗ = 1 for
any process model3 having at least one activity not in self-loop. Furthermore, if a similar
restriction on k is applied for the Axiom-2, the MSPk guarantees MSPk(L,P1)>MSPk(L,P2)

instead of MSPk(L,P1)≥MSPk(L,P2) for any P1,P2 and L, such that BL ⊆BP1 ⊂BP2 .
– Axiom-4. Given two processes P1,P2 and an event log L, s.t. BP1 =BP2 then MSPk(L,P1) =

MSPk(L,P2). If BP1 =BP2 , then EP1 = EP2 (by construction). It follows straightforward that
MSPk(L,P1) = MSPk(L,P2) (see proof Axiom-1).

– Axiom-5. Given two event logs L1,L2 and a process P, s.t. BL1 ⊆ BL2 ⊆ BP, then
MSPk(L2,P)≥MSPk(L1,P). Consider the two following cases:

1. if BL1 = BL2 , then EL1 = EL2 (by construction). Likewise the proof of Axiom-4, it
follows MSPk(L2,P) = MSPk(L1,P).

2. if BL1 ⊂BL2 , then EL1 ⊂ EL2 (by construction). In this case, the graph matching al-
gorithm would find matchings for a larger number of edges between Mk

P and Mk
L2

,
than between Mk

P and Mk
L1

(this follows from BL1 ⊂ BL2). Thus, less edges will be
mapped to ε in the case of MSPk(L2,P) increasing the value for the precision, i.e.,
MSPk(L2,P)≥MSPk(L1,P).

5 Automata Behavioral-based Precision (ABP)

This section introduces a novel precision measure based on a behavioral comparison
of automata-based behavioral abstractions of process models and event logs. The com-
putation of the precision between a model and a log is divided into five steps. 1) A
deterministic and acyclic finite state automaton is constructed from the event log. 2) A
reachability graph is derived from the process model. 3) A representative set of traces is
extracted from the reachability graph. 4) For each selected trace in the model, the most

3 Without activities with duplicate labels.

9

similar trace in the log is determined (optimal alignment). 5) Finally, the precision met-
ric is computed from all the computed (optimal) trace alignments. First, we introduce
the behavioral abstraction used in this section and, second, we present the machinery
for the comparison and, by the same token, we define the precision measure.

5.1 Behavioral Abstraction

The behavioral abstraction used for this precision measure is finite state automata,
which can used to define lossless behavioral representations for process models and
event logs. Given a set of activity labels Σ , a finite state automata is a directed graph,
denoted as a tuple F = (N,A,n0,F), where N is a finite non-empty set of states,
A ⊆ N×Σ ×N is a set of arcs, n0 ∈ N is an initial state, and F ⊆ N is a set of final
states. The execution of an activity l ∈ Σ is represented as an arc in a FSA, denoted as
a triplet (ns, l,nt), where ns is the source state, nt is the target state and l is the label
associated to the arc. The set of incoming and outgoing arcs of a state n is defined as
•n = {(ns, l,nt) ∈ A | n = nt} and n• = {(ns, l,nt) ∈ A | n = ns}, respectively. Finally,
a sequence of (contiguous) arcs in a FSA is called a path. This formalism is used to
concretely define the behavioral representations for the event log (DAFSA) and for the
process model (reachability graph), which are presented next.

An event log can be represented as a directed acyclic FSA [16] by merging com-
mon prefixes and suffixes between traces. The resulting FSA is deterministic (i.e. every
outgoing arc of a state needs to have a unique label and no arc is associated with an in-
visible label) and acyclic (i.e. no path contained in the FSA contains a duplicate state).
A deterministic and acyclic FSA is formally defined as follows:

Definition 8. [Deterministic Acyclic Finite State Automata (DAFSA)] A Deterministic Acyclic
Finite State Automata is a FSA D = (ND ,AD ,n0,D ,FD), that additionally is deterministic, i.e.
@n ∈ ND ((n, lx,nx),(n, ly,ny) ∈ n• | lx = ly∨ lx = τ ∨ ly = τ) and acyclic, i.e. @path ∈D(nx,ny ∈
path | nx = ny).

Given a path from the initial state to a state n∈ND , we refer to the labels associated
to the arcs in the path as the prefix of n, and, analogously, given a path from n to a
final state, we refer to the labels associated to such path as the suffix of n. Of special
interest is the set of suffixes of a state n that is represented by the function suff (n) =⋃

(ns,l,nt)∈n•{l⊕ x | x ∈ suff (nt)}, where ⊕ denotes the concatenation operator. If n is a
final state then {〈〉} ∈ suff (n). The complexity of building the DAFSA is O(|Σ | · logn),
where L is the set of distinct event labels, and n is the number of states in the DAFSA.

The computation of the reachability graph from a process model requires the ability
to compute the execution state space of the process. Thus, we use Petri nets, which has
a well defined execution semantics, as the formalism to represent the process models.

The execution semantics of Petri nets can be defined in terms of markings and fir-
ings. A marking describes an execution state that can be reached as result of firing a se-
quence of transitions. All possible reachable markings are represented via a reachability
graph [14]. Intuitively, a reachability graph is a deterministic FSM where states denote
markings, and arcs denote the transitions fired to go from one marking to another. In
this paper we restrict ourselves to Petri nets having a finite number of execution states.

Definition 9. [Reachability graph] The reachability graph of a Petri net N is a deterministic
finite state machine R = (M,AR ,m0,Mf), where M is the set of reachable markings, AR is the
set of arcs AR = {(m1,λ (t),m2) ∈ M×Σ ×M | m2 = m1−•t + t•} and Mf = {m ∈ M | @t ∈
T , such that • t ⊆ m}.

10

The reachability graph can be reduced to remove τ labelled transitions while pre-
serving the original behavior of the Process model [16]. This reduction would also help
coping with possible complexity arising from the large number of silent transitions.
In the following, we assume that τ labelled transitions have been removed with the
technique in [16], and the resulting FSA is non-deterministic and can possibly con-
tain cycles, thus making impracticable the a comparison to the log behavior (due to the
infinite amount of traces represented by the cylces).

In the light of the above, we abstract from cyclic behavior in a reachability graph
by selecting a finite set of model traces. The selected traces are those which represent
either acyclic behavior or cyclic behavior unfolded up to k-number of times in each of
its possible traces. Roughly speaking, we first determine all possible simple paths from
the initial marking to all final markings [18], then we identify a list of elementary cycles
and their corresponding entry states [8], and then generate all possible combinations
of cycles with up to k repetitions. This last step is done by plugging-in all possible
permutations of cycles, whenever is necessary in the simple paths. The number of traces
identified from the model in this way is factorial, i.e. the number of duplications for a
single cycle unfolding is (2c∗k)!, where c is the number of cycles in a certain entry state
and k is the number of iterations. From a theoretical perspective, the accuracy of the
precision metric will increase with k and it should be chosen with regards to the log, i.e.
the number of iterations of each cycle + 1. To prevent a factorial explosion of the set of
traces, however, a compromise between accuracy and time performance has to be made
with regards to k.

5.2 Metric

The precision measure defined for the FSA is grounded on the concept of alignments,
note that this notion is orthogonal to trace fitness defined in [2]. Alignments computes
the distance between a pair of traces (sequences of of activity labels) via three opera-
tions: (1) synchronized move (match), the model trace and the event log can execute
the same task/event w.r.t. label; (2) model move (rhide), a task in the model can occur,
but the corresponding event is missing in the log; and (3) log move (lhide), an event
observed in the log cannot occur in the model. If the cost of an alignment is minimal
then such alignment is called optimal.

The idea of alignments is to synchronously traverse a trace in the log and a trace
in the model, and match those activities that are observed in both traces. If a label of
an activity is observed in one trace, but not the other, then it has to be hidden with an
rhide operation in case it is not observed in the model trace, and with an lhide operation
otherwise. An alignment is composed by synchronizations, representing the operation
performed and the activity label in the log and an activity label in the model affected by
such operation. In the case of rhide and lhide, which affect only one label, we use ⊥ to
denote the absence of the other. The synchronizations and alignments between

Definition 10. [Synchronization and Alignment] Let ΣD and ΣR be the alphabets of activity
labels of the DAFSA and the reachability graph, respectively. A synchronization β is a triplet
β ⊆ op×ΣD ×ΣR , where op ∈ {match, lhide,rhide}. The set of all synchronizations is denoted
as S. Given a set of synchronizations S, an alignment is defined as ε = 〈β1, ...,βn〉 with βi ∈ S,1≤
i≤ n. All possible alignments are denoted as C .

Any trace in the Model behavior can be aligned with any possible path of the
DAFSA, however we are interested only in the optimal ones, i.e., those containing the
minimum number of rhides and lhides, and the maximum number of matches. In order

11

to compute those matches, we adapted the technique presented in a previous work [16]
by focussing on aligning each model trace with the DAFSA. However, in order to ensure
determinism (property used later in this Section), we extended the current implemen-
tation to define a total order (lexicographic order over the activity labels and over the
operations: match > lhide > rhide) while computing the optimal alignments. Details
about the computation of the optimal alignments can be found in [16].

To formalize the precision measure, let us define two functions auxiliary func-
tions (1) to count the number of matches in a given alignment #M : C → N, where
#M(ε) = |{(op, lD , lR) ∈ ε | op = match}|, and (2) to count the number of rhides in
a given alignment #R : C → N, where #R(ε) = |{(op, lD , lR) ∈ ε | op = rhide}|. Note
that we are not interested in lhides, because those are related to operations present in
the log, which does not reflect the essence of the precision measure for quantifying the
behavior allowed by the model and found in the log. Using these defined notions, we
can now define our new notion of precision based on one optimal alignment per trace
of the model behavior BP as:

ABP(BP,DL) =
Σc∈BM #M(Ψ(c))

Σc∈BM #M(Ψ(c))+#R(Ψ(c))
(2)

𝑠" 𝑠# 𝑠$
a

𝑠%
a b

𝑠&

b

𝑠#
a

𝑠#
b

a

b

Fig. 5: Sample Log DAFSA of Table 1.

𝑠"
a

b

(a) Flower
Proc.(0.47)

𝑠"
a

𝑠#
b

𝑠$
a b

(b) Process X (0.55)

𝑠"
a

b𝑠#

a 𝑠$
b

(c) Process Y (0.62)

Fig. 6: Examples of tauless reachability graphs and their precision for k=3.

Figure 5 shows the DAFSA created from our sample event log of Table 1. The
reachability graphs of the BPMN models are then shown in Figure 6 together with their
corresponding precision values for k = 3 cycle unfolding. We can see, that with an
increasing amount of possible behavior a decreasing value for our precision metrics,
i.e. c) >b) >a).

We now investigate to what extent the Automata-based precision measure fulfils the
axioms of a precision metric from Section 2. For the remaining section, let Lx be a log,
Px. Furthermore, let Dx and BPx be the behavior abstractions of the log and the model
respectively.

– Axiom-1. ABP(BP,D) is a deterministic function. Given a log Lx and a process Px, the
construction of DLx and Mk

P is fully deterministic for BP and BL. The selection of the traces

12

from the reachability graph is also deterministic, and by the determinism of the computation
of the optimal matchings, the same alignments are always computed for the same set of
traces extracted from the model and the log. Thus, the precision measure ABP(BP,D) is
always the same for the same pair of model-log.

– Axiom-2. Given two processes P1,P2 and an event log L, s.t. BL ⊆ BP1 ⊆ BP2 , then
ABP(BP1 ,DL)≥ ABP(BP2 ,DL). In this case, it would need to hold that:

Σc∈BP1
#M(Ψ(c))

Σc∈BP1
#M(Ψ(c))+#R(Ψ(c))

≥
Σc∈BP2

#M(Ψ(c))

Σc∈BP2
#M(Ψ(c))+#R(Ψ(c))

(3)

This equation holds if:
Σc∈BP1

#M(Ψ(c))

Σc∈BP1
#R(Ψ(c))

≥
Σc∈BP2

#M(Ψ(c))

Σc∈BP2
#R(Ψ(c))

(4)

The proposed precision metric ABP(BP,DL) fulfils Axiom 2 only if the proportion of
matches to model hides of P1 is higher or equal to that of P2. That is, for example, when
the additional traces of BP2 , which are not in BP1 , are not in the alphabet of L. In the rest of
t he cases, our precision measure cannot fulfil this axiom.

– Axiom-3. Given two processes P1,P2 and an event log L, s.t. BL ⊆BP1 ⊂BP2 = ΓΣ then
ABP(BP1 ,DL) > ABP(BP2 ,DL). If k is chosen high enough, i.e. k = the number of repe-
titions in the log + 1, then BP2 will contain longer traces than any other model BP1 as the
flower model contains the highest number of cycles starting in one state. Additionally, the
traces will be longer than all log traces by construction. Thus equation 4 will always hold,
when comparing the flower model P2 with any other model P1, as with longer traces than the
log, the flower model will automatically include more rhide operations than any process P1
with shorter traces.

– Axiom-4. Given two processes P1,P2 and an event log L, s.t. BP1 = BP2 then
ABP(BP1 ,DL) = ABP(BP2 ,DL). If BP1 = BP2 , then they contain the same set of traces to
be aligned with DL. It follows straightforward that ABP(BP1 ,DL) = ABP(BP2 ,DL), since
the Alignments are deterministic (see proof Axiom-1).

– Axiom-5. Given two event logs L1,L2 and a process P, s.t. BL1 ⊆ BL2 ⊆ BP, then
ABP(BP,DL2)≥ ABP(BP,DL1). Consider the two following cases:

1. if BL1 =BL2 , then the A∗-search will find the same optimal alignment for each c∈BP,
such that ABP(BP,DL2) = ABP(BP,DL1) holds (see proof Axiom 1).

2. if BL1 ⊂BL2 , then DL2 contains all paths from DL1 and will additionally contain a set
of paths that is not in DL1 . The optimal alignment for each c∈BP can always be chosen
from the former set of paths in DL1 , such that at least ABP(BP,DL2) = ABP(BP,DL1)
holds. If at least one optimal alignment is from a path /∈DL1 , then for this trace c either
#M(Ψ(c)) is higher or #R(Ψ(c)) is lower than for L1 and thus DL1 , such that at least
ABP(BP,DL2)> ABP(BP,DL1) holds.

Our metric does not fulfil Axiom 2 if Equation (4) does not hold. In this case, the
ratio of match and rhide operations in P2 is higher than that of P1. We argue that it
makes sense that the precision of P2 is higher in this case, as P2 contains overall more
traces with a higher concordance with the log traces, than P1 does. Indeed, Axiom 2
was formulated to test strict inclusion of a trace in the language of the log, i.e. if a trace
of a process model is not also in the log, it should decrease the value of precision. In
contrast, our precision measure does not necessarily decrease with the increase of the
number of traces that are not in the log, as it is based on partial language containment.

6 Evaluation

We implemented the two precision measures presented in Sections 4 and 5 as open-
source standalone tools4 and used these tools to carry out a two-pronged comparative
evaluation with state-of-the-art precision measures.

4 Available from http://apromore.org/platform/tools

13

6.1 Qualitative evaluation

First, we used synthetic data to assess the quality of the results produced by our mea-
sures. To this purpose, we repeated the experiment carried out by van Dongen et al. [22],
which relies on an artificial event log (see Table 2) and a collection of eight variants of
a given process model (shown in Fig. 7). These include a single trace model capturing
the most frequent trace, a model incorporating all separate traces, the flower model of
all activities in the log, a model with activities G and H in parallel (Opt. G || Opt. H),
one with G and H in self-loop (G, 	H), a model with D in self-loop (D), a model
with all activities in parallel (All parallel), and a final model where all activities are in
round robin (Round robin).

Traces #
〈A,B,D,E, I〉 1207

〈A,C,D,G,H,F, I〉 145
〈A,C,G,D,H,F, I〉 56
〈A,C,H,D,F, I〉 23
〈A,C,D,H,F, I〉 28

Table 2: Test log [22]. Fig. 7: Original model [22].

Using each model-log pair, we compared our precision measures (MSPk with k
up to 7, and ABP) with those reported in [22], namely: alignment-based ETC preci-
sion (ETCa), negative events precision (NE) and anti-alignment precision (AA).5 To
these, we added the traces set difference precision (SD) and the projected conformance
checking (PCC). We left out the advanced behavioral appropriateness (ABA) as it is not
defined for some of the models in this dataset.

Table 3 reports the results of this first experiment. Notwithstanding the inability of
the existing measures to satisfy the axioms in [20], in commenting these results, we
take as a reference the values of ABP. This is the only measure based on an exact repre-
sentation of the behavior of log and model, and a full characterization of the additional
model behavior not contained in the log, based on behavioral comparison (as opposed
to structural comparison). As a result, ABP has a higher sensitivity (i.e. ability to dis-
criminate between behaviorally similar models) than the other measures. For example,
we can observe that ABP discriminates well the behavior of the all-parallel model from
that of the flower model and of the round robin model. These three models yield a very
large number of traces due to the combinatorial explosion of the states produced by the
unfolding of cycles and by the interleavings of parallel activities. As such, other mea-
sures, such as NE, PCC and AA, produce results very close to each other (e.g. AA has
values ranging from 0.000 to 0.033). This means that a minimum behavioral variation
in these models may not be picked up by these measures.

On the one hand, the Markovian abstraction-based measure becomes more sensitive
at picking up differences between acyclic models as we increase k. For example, MSP7

can distinguish well the original model from the single trace and the separate traces
models, which is not possible with k = 1 (all values equal to 1.000). On the other hand,
this measure loses sensitivity with models yielding large state spaces as we increase of
k. This is the case of the flower model, which for k = 7 is no longer distinguishable

5 Some values differ from those in [22] as we used each measure’s latest implementation.

14

Process Variant SD ETCa NE PCC AA MSP1 MSP3 MSP7 ABP

Original model 0.833 0.900 0.995 1.000 0.871 1.000 0.880 0.852 0.974

Single trace 1.000 1.000 0.893 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 1.000 1.000 0.985 0.978 1.000 1.000 1.000 1.000 1.000

Flower model 0.000 0.153 0.117 0.509 0.000 0.189 0.003 0.000 0.000

Opt. G || Opt. H 0.417 0.682 0.950 0.974 0.800 0.895 0.564 0.535 0.948

	G, 	H 0.000 0.719 0.874 0.896 0.588 0.810 0.185 0.006 0.394

	D 0.000 0.738 0.720 0.915 0.523 0.895 0.349 0.069 0.426

All parallel 0.000 0.289 0.158 0.591 0.033 0.210 0.006 0.000 0.406

Round robin 0.000 0.579 0.194 0.594 0.000 0.814 0.496 0.274 0.333

Table 3: Comparison of the precision metrics on artificial data.

from the all-parallel model and is hardly distinguishable from the model with G and
H in self-loop. This is a direct result of satisfying Axioms 2 and 3 for this measure,
which postulate a decreasing precision as the state space of the model increases, un-
less we allow partial language matching as ABP does. For this reason, ABP obtains the
highest precision value for the all-parallel model across all measures, since on aver-
age it matches the highest number of labels for each trace, due to the various possible
interleavings.

Finally, in terms of models ranking (i.e. the order in which the models are ranked
based on their precision), the Markovian abstraction measures concord the most with
the ranking made by ABP (6 models out of 9), closely followed by SD and AA (5
models), while all other measures only concord in ranking for less than half of the
models (ETCa and PCC 4, NE only 1).

6.2 Quantitative evaluation

In the second evaluation, we used twelve publicly-available real-life logs to measure
the time performance of our Markovian measures (up to k = 11) compared to that of
ETCa. We chose ETCa as a representative of the state of the art because this measure is
widely accepted (and most-frequently used) by the community. We excluded our ABP
measure since, while theoretically appealing, it does not scale to real-life datasets. For
scalability reasons, we also excluded AA, despite being more recent than ETCa.

The logs, extracted from the 4TU Data Center,6 are the same as those used in a
recent benchmark of automated discovery methods [3], and cover business processes in
different domains, ranging from finance through to healthcare and government. For each
log we measured the precision on the process models discovered using three state-of-
the-art automated discovery methods: Inductive Miner Infrequent [11], Split Miner [4]
and Structured Heuristics Miner [5].

For each model, we started with k = 1 and increased it to 11 unless a 30 minutes
timeout was reached, or a stack overflow exception was raised by the tool. For half of
the process models discovered by Inductive Miner, it was not possible to evaluate the
Markovian-based precision for k > 5, due to the huge amount of states (over a million)
typical of flower-like models as those discovered by Inductive Miner. Nevertheless, we
noticed that for every log our measure could quickly identify a precision ranking of
the process models discovered by the three discovery methods. Across all logs, if one

6 https://data.4tu.nl/repository/collection:event_logs_real

15

of the three process models scored a higher precision than the other two, increasing
k, the ranking would not change. Specifically, we observed a perfect rank correlation
between second-level and higher-level Markovian abstractions. This can be explained
by the fact that the automated process discovery methods employed in this experiment
use the Directly-Follows Graph of the log as an intermediate representation, which is
a first-order Markovian abstraction. The reason why we need to go to the second-order
Markovian abstraction to see a perfect rank correlation with higher-order abstractions is
due to the fact that the first-order Markovian abstraction confuses self-loops and short-
loops with parallelism.

For the majority of the logs (9 out of 12) it was possible to determine the most pre-
cise process model already with k = 1, whilst in the worst case (for the simplest model)
a ranking was determined at k = 7. Altogether, these results show that our Markovian-
based precision is a tunable measure that becomes more sensitive for acyclic models,
yet less discriminative for cyclic models, by increasing the value of k.

Fianlly, Table 4 reports statistics on the time performance of MSPk (k ∈ [1,3])
against ETCa, for each discovery method, across all twelve logs. Our measure scales
well to real-life datasets, being quite fast for models with small state spaces like those
produced by Split Miner and Structured Heuristics Miner, while ETCa remains slow.
As we increase k, the performance of MSPk reduces sharply for flower-like models as
those produced by Inductive Miner. Yet, it scores similar values as ETCa.

Split Miner Inductive Miner Struct. Heuristics Miner

Precision avg max min total avg max min total avg max min total

ETCa 60.0 351.9 0.3 720.3 84.2 642.7 0.1 1009.8 34.0 101.4 0.2 305.9

MSP1 2.0 8.9 0.1 24.3 1.9 7.5 0.1 22.4 5.9 18.5 0.9 70.5

MSP2 1.9 7.3 0.1 23.2 5.4 15.2 0.1 65.3 6.2 24.4 0.4 74.3

MSP3 2.0 7.7 0.1 22.5 109.6 426.7 0.1 1205.7 18.5 59.9 0.2 203.7

Table 4: Time performance statistics (in seconds) using the twelve real-life logs.

All experiments were performed on an HP Elitebook with an Intel Core i5-6200U
CPU @ 2.30 GHz and 16GB RAM running Windows 10 Pro (64-bit) and JVM 8 with
12GB RAM (8GB Stack and 4GB Heap).

7 Conclusion

The contributions of this paper are: (i) a framework for defining precision measures
based on behavior abstraction and comparison; (ii) a family of instances of this frame-
work based on kth-order Markovian abstractions that fulfil four of five axioms of preci-
sion measures and all five for a sufficiently large k; and (iii) a measure based on simu-
lation of lossless automata abstractions fulfiling all axioms. The evaluation shows that
the Markovian abstractions offer a suitable tradeoff between scalability and sensitivity.
The execution times of the 3rd-order Markovian abstraction are comparable or lower
than ETCa precision, while the resulting measurements have a perfect rank correlation
with those provided by higher-order abstractions. The automata-based measure, while
theoretically appealing, does not scale up in its current form to real-life logs.

A possible avenue for future work is to develop scalable variants of the automata-
based abstraction that still fulfil all axioms. Another direction is to extend the proposed

16

abstract-and-compare approach to define measures of fitness and generalization with
provable formal properties. Yet another direction is to investigate other abstractions
that can explicitly handle concurrency, such as abstractions based on event structures.

Acknowledgements. This research is partly funded by the Australian Research Council
(DP180102839) and the Estonian Research Council.

References
1. A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and W. van der Aalst. Mea-

suring precision of modeled behavior. ISeB, 13(1), 2015.
2. A. Adriansyah, B. van Dongen, and W. van der Aalst. Conformance checking using cost-

based fitness analysis. In Proc. of EDOC. IEEE, 2011.
3. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella, M. Mecella, and

A. Soo. Automated discovery of process models from event logs: Review and benchmark.
Technical report, arXiv:1705.02288, 2017.

4. A. Augusto, R. Conforti, M. Dumas, and M. La Rosa. Split miner: Discovering accurate and
simple business process models from event logs. In Proc. of IEEE ICDM. IEEE, 2017.

5. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno. Automated discovery of
structured process models: Discover structured vs. discover and structure. In Proc. of ER,
LNCS 9974. Springer, 2016.

6. J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A robust f-measure for evaluat-
ing discovered process models. In Proc. of IEEE Symposium on CIDM. IEEE, 2011.

7. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering expressive process models by
clustering log traces. IEEE TKDE, 18(8), 2006.

8. D. Johnson. Finding all the elementary circuits of a directed graph. SICOMP, 4(1), 1975.
9. H.W. Kuhn. The hungarian method for the assignment problem. NRL, 2(1-2), 1955.

10. S. Leemans, D. Fahland, and W. van der Aalst. Discovering block-structured process models
from event logs - a constructive approach. In Proc. of Petri Nets. Springer, 2013.

11. S. Leemans, D. Fahland, and W. van der Aalst. Discovering block-structured process models
from event logs containing infrequent behaviour. In Proc. of BPM Workshops. Springer,
2014.

12. S. Leemans, D. Fahland, and W. van der Aalst. Scalable process discovery and conformance
checking. Software & Systems Modeling, 2016.

13. N. Lohmann, E. Verbeek, and R. Dijkman. Petri net transformations for business processes–a
survey. In Transactions on Petri Nets and other models of concurrency II. Springer, 2009.

14. E. Mayr. An algorithm for the general petri net reachability problem. SICOMP, 13(3), 1984.
15. J. Munoz-Gama and J. Carmona. A fresh look at precision in process conformance. In Proc.

of BPM. Springer, 2010.
16. D. Reißner, R. Conforti, M. Dumas, M. La Rosa, and A. Armas-Cervantes. Scalable confor-

mance checking of business processes. In Proc. of CoopIS. Springer, 2017.
17. A. Rozinat and W. van der Aalst. Conformance checking of processes based on monitoring

real behavior. ISJ, 33(1), 2008.
18. F. Rubin. Enumerating all simple paths in a graph. IEEE TCS, 25(8), 1978.
19. O. Sokolsky, S. Kannan, and I. Lee. Simulation-based graph similarity. In Proc. of TACAS.

Springer, 2006.
20. N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. van der Aalst. The imprecisions of precision

measures in process mining. Information Processing Letters, 135, 2018.
21. W. van der Aalst, M. Schonenberg, and M. Song. Time prediction based on process mining.

ISJ, 36(2), 2011.
22. B. van Dongen, J. Carmona, and T. Chatain. A unified approach for measuring precision and

generalization based on anti-alignments. In Proc. of BPM. Springer, 2016.
23. S. vanden Broucke and J. De Weerdt. Fodina: a robust and flexible heuristic process discov-

ery technique. DSS, 2017.
24. A. Weijters and J. Ribeiro. Flexible heuristics miner (FHM). In Proc. of CIDM. IEEE, 2011.

