
An Evolutionary Technique to Approximate
Multiple Optimal Alignments

Farbod Taymouri and Josep Carmona

Universitat Politècnica de Catalunya, Barcelona (Spain)
{taymouri,jcarmona}@cs.upc.edu

Abstract. The alignment of observed and modeled behavior is an essential aid
for organizations, since it opens the door for root-cause analysis and enhancement
of processes. The state-of-the-art technique for computing alignments has expo-
nential time and space complexity, hindering its applicability for medium and
large instances. Moreover, the fact that there may be multiple optimal alignments
is perceived as a negative situation, while in reality it may provide a more com-
prehensive picture of the model’s explanation of observed behavior, from which
other techniques may benefit. This paper presents a novel evolutionary technique
for approximating multiple optimal alignments. Remarkably, the memory foot-
print of the proposed technique is bounded, representing an unprecedented guar-
antee with respect to the state-of-the-art methods for the same task. The technique
is implemented into a tool, and experiments on several benchmarks are provided.

1 Introduction

Current conformance checking techniques strongly rely on alignments: given an ob-
served trace representing a process instance, to find the best model trace that resembles
it [1]. This way, the best model explanation of the reality is reported, so that one sees
the reality through the model’ perspective. This opens the door for further techniques,
including root-cause analysis, model enhancement and predictive monitoring.

Since the reality can be explained in many ways, costs need to be defined on the
deviations so that certain explanations are rendered less interesting, coining the notion
of optimal alignment. In spite of this, many different optimal explanations may exist
for a given trace, a concept denoted all-optimal alignments in [1]. The derivation of
more than one explanation may provide a better, more global, analysis: for instance, to
estimate the precision of a process model in describing an event log, different metrics
are defined in [2] when considering all or just one optimal alignment.

Due to the existence of concurrency and iteration, the behaviour of underlying pro-
cess models can be exponential, a fact that hampers the application of the state-of-the-
art technique for computing alignments, which is based on exploring the model state
space using A∗ search [1]. The situation becomes significantly worse in case multiple
optimal alignments need to be computed, since none of the heuristics to speed-up the
search is applicable, and therefore the full exploration of the model’ search space is then
unavoidable. It is well-known (e.g., [3]) that the memory requirements of the A∗-based
alignment technique are the most limiting factor to apply it on the large.

Taymouri, F., Carmona, J. An evolutionary technique to approximate multiple optimal alignments. A:
International Conference on Business Process Management. "Business Process Management,16th
International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018: proceedings". Berlín:
Springer, 2018, p. 215-232.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-98648-7_13

In this paper we propose an evolutionary technique to approximate multiple optimal
alignments. We trade-off computation time for memory, i.e., assume that in some con-
texts, it is acceptable to spend more time in the computation, provided that the memory
footprint is guaranteed to not exceed a given bound. To accomplish this, we encode the
computation of alignments as a genetic algorithm (GA), where tailored crossover and
mutation operators are applied to an initial population of candidate model explanations.
This way, the derivation of a set of alignments is the result of genetic evolution.

The technique proposed has some weakness that should be reported: first, it can
only provide optimal alignments when certain conditions are satisfied (variability in
the population and genetic convergence). In practice, however, the number of iterations
may be decided a priori, which may be insufficient for genetic convergence, and the
initial population may not contribute to reach optimal solutions. Second, the number
of optimal alignments obtained is in practice inferior to the real number of all optimal
alignments, due to the dependence to the initial population and genetic convergence.
Hence, the proposed technique only approximates several optimal alignments.

In spite of the approximation nature of the technique proposed, we still see a clear
value for several reasons: first, to obtain more than one model explanation of an ob-
served trace may open the door to apply a posteriori root-cause analysis to identify the
most likely explanation, as has been described in [4]. Second, the technique proposed
represents the first algorithmic alternative to search for multiple optimal alignments,
which can be applied on large instances under bounded memory. In the same way as
GA provided an interesting perspective for process discovery [5,6,7], this work con-
tributes to open a research direction for computing alignments on the large. Third, in
contrast to the A∗-based alignment technique, our technique is non-deterministic in
providing alignments, so that two runs of the method may obtain different result. This
may be very useful in multi-perspective alignments [8]: since control-flow is aligned
before other perspectives, randomness in the generation of the control-flow alignment
will enable the exploration of a broader solution space in the rest of perspectives.

The paper is organized as follows: in Sec. 2 we provide related work. In Sec. 3, the
necessary ingredients to understand the contents of this paper are presented. Then in
Sec. 4 we describe the encoding as a GA of the problem of searching several best model
explanations. The general framework for approximating multiple optimal alignments is
described in 5. Tool support and experiments with various benchmarks are reported in
Sec. 6. Finally, conclusions and pointers to future work are reported in Sec. 7.

2 Related Work

The work in [1] proposed the notion of alignment, and developed a technique to com-
pute optimal alignments for a particular class of process models. For each trace σ, the
approach consists on exploring the synchronous product of model’s state space and σ.
In the exploration, the shortest path is computed using the A∗ algorithm, once costs for
model and log moves are defined. The approach represents the state-of-the-art technique
for computing alignments, and can be adapted (at the expense of increasing significantly
the memory footprint) to provide all optimal alignments.

2

Alternatives to theA∗ have appeared very recently: in the approach presented in [9],
the alignment problem is mapped as an automated planning instance. Unlike theA∗, the
aforementioned work is only able to produce one optimal alignment (not all optimal),
but it is expected to consume considerably less memory. Automata-based techniques
have also appeared [10,11]. In particular, the technique in [10] can compute all optimal
alignments. The technique in [10] relies on state space exploration and determiniza-
tion of automata, whilst the technique in [11] is based on computing several subsets of
activities and projecting the alignment instances accordingly.

The work in [12], presented the notion of approximate alignment to alleviate the
computational demands of the current challenge by proposing a recursive paradigm on
the basis of structural theory of Petri nets. In spite of resource efficiency, the solution is
not guaranteed to be executable. A follow-up work of [12] is presented in [13], which
proposes a trade-off between complexity and optimality of solutions, and guarantees
executable properties of results. The technique in [3], presents a framework to reduce a
process model and the event log accordingly, with the goal to alleviate the computation
of alignments. The obtained alignment, which is called macro-alignment since some of
the positions are high-level elements, is expanded based on the gathered information
during the initial reduction. Decompositional techniques have been presented [14], [15]
that instead of computing optimal alignments, they focus on the decisional problem of
whereas a given trace fits or not a process model.

3 Preliminaries

3.1 Petri Nets, Event Logs and Parikh vector representations of Traces

A Petri Net [16] is a 3-tuple N = 〈P, T,F〉, where P is the set of places, T is the
set of transitions, P ∩ T = ∅, F : (P × T) ∪ (T × P)→ {0, 1} is the flow relation. A
labeled Petri net (LPN) is a 3-tuple 〈N,Σ, `〉, whereN is a Petri net,Σ is an alphabet (a
set of labels) and ` : T → Σ ∪ {τ} is a labeling function that assigns to each transition
t ∈ T either a symbol from Σ or the empty symbol τ .

Given an alphabet of events Σ = {a1, . . . , an}, a trace is a word σ ∈ Σ∗ that
represents a finite sequence of events. An event log L ∈ B(Σ∗) is a multiset of traces1.
|σ|a represents the number of occurrences of a in σ. The Parikh vector of a sequence
of events σ is a function ̂: Σ∗ → Nn defined as σ̂ = (|σ|a1

, . . . , |σ|an
).

Workflow processes can be represented in a simple way by using Workflow Nets
(WF-nets). A WF-net is a Petri net where there is a place start (denoting the initial
state of the system) with no incoming arcs and a place end (denoting the final state of
the system) with no outgoing arcs, and every other node is within a path between start
and end. For the sake of simplicity, in this paper we assume WF-nets.

3.2 Alignment of Observed Behavior

1 B(Σ) denotes the set of all multisets of the set Σ.

3

Fig. 1: Process model M1.

The notion of aligning event
log and process model was in-
troduced by [1]. To achieve an
alignment between a process
model and a observed trace, we
need to relate moves in the trace
to moves in the model. When some of the moves in the observed trace can not be mim-
icked by the model or vice versa, there is an asynchronous move. When both model and
trace agree in the performed label a synchronous move arises. For instance, consider the
model M1 in Fig. 1, with the following labels, `(t1) = a1, `(t2) = a2, `(t3) = a3 and
`(t4) = a4, and trace σ = a1a1a4a2; two possible alignments between M1 and σ are:

α1=
a1 a1 ⊥ a4 a2
t1 ⊥ t3 t4 ⊥

α2=
a1 a1 ⊥ a4 a2
⊥ t1 t2 t4 ⊥

The moves are represented in tabular form, where moves in the observed trace are
at the top and moves by model are at the bottom. For example the first move in α2

is asynchronous: (a1,⊥), and it means that the observed trace performs a1 while the
model does not make any move, i.e., a1 is an inserted transition. In contrast, the fourth
move in α2, (a4, t4), is a synchronous move. Cost can be associated to alignments, with
asynchronous moves having greater cost than synchronous ones [1]. Given assigned
cost values, an alignment with optimal cost is preferred. Alignments open the door to
compute metrics, report diagnosis, enhance the model, among others.

4 GA for Computing Several Explanations of Observed Behavior

GA starts by creating an initial population, and then combining the best solutions
through operators, to create a new generation of solutions which should be better than
the previous generation. As it will be noticed bellow, in some cases the evaluation of
solutions will be adapted depending on the operator applied, so that the search for so-
lutions can be better guided. A GA approach to a problem usually starts by encoding
a solution which is called a chromosome, and define functions to evaluate how good it
is. Next, generating the initial population of chromosomes and defining corresponding
operators, i.e., crossover and mutation. In our setting, chromosomes will be potential
model traces, which are combined through tailored crossover and mutation operators.

Given an observed trace σ and WF-net N , a random population of chromosomes
is first generated (Sect. 4.1). Then, it evaluates each chromosome based on a specific
fitness function2, which considers both the initial model (for measuring replayability),
and the observed trace (for measuring similarity) (see Sect. 4.2). It then applies tradi-
tional crossover and mutation operators, as well as novel ones defined for this problem,
to speed up the process of evolving chromosomes and convergence (see Sect. 4.3). This
process continues until reaching satisfactory results, or will be stopped by a predefined
number of iterations. The detailed descriptions will be presented in the next sections.

2 As the reader will soon realize, we refer to the term fitness in the genetic algorithms context.

4

Fig. 2: Process model M2.

4.1 Generation of the Initial Population

Given an observed trace σ, and WF-net N , the objective of this part is to generate an
initial population. The population size is an important decision, which often affects the
final solution in terms of accuracy and convergence [17]. Also, diversity in the popula-
tion will help reaching different parts of the solution space. We rely on previous work
for obtaining different model explanations [3,12]: these methods are based on finding
maximal sets of transitions (called Parikh vectors [12]) that the model can reproduce
to mimic the observed trace. The model traces arising from these sets, together with
random traces, are used as seeds for generating new chromosomes.

For example consider the model in Fig. 2, and the observed trace σ = a1a3a8a4a2
a9a5a6. Some chromosomes with respect to σ could be χ1 = t1t7t11, χ2 = t1t2t3t9
t4t8t10t6t11, χ3 = t2t1t3t8t4t9t10t6t11 and χ4 = t1t7t5t11. It is worth mentioning that
some chromosomes may not be replayable at this stage (e.g., χ4 above).

4.2 Evaluation Criteria

In GA’s jargon a fitness function is a particular type of objective function that prescribes
the optimality of a solution (that is, a chromosome) in the corresponding population.
Elevated chromosomes, which are the best ones at the corresponding time are allowed
to breed and mix their datasets by any of several techniques, producing a new generation
that will (hopefully) be even better. An ideal fitness function correlates closely with
the algorithm’s goal, and yet may be computed quickly. Speed of execution is very
important, as a typical GA must be iterated many times in order to produce a usable
result for a non-trivial problem.

In this paper a chromosome χ is evaluated based on two metrics. The fitness value
of a chromosome χ is summed over the following terms:

f t(χ) = λ1 · fm(χ) + λ2 · fed(χ) (1)

5

where fm(χ) denotes the ratio of missed tokens3 to the total tokens while χ is being
replayed in the model, and fed(χ) shows the normalized Edit Distance between χ, and
observed trace σ. Both λ1 and λ2 denote the penalization terms which will be adjusted
individually for each genetic operator, as will be discussed in the next sections. It is
clear that the lower value of f t(χ) represents a better chromosome, i.e., modeled trace,
by which the observed trace is mimicked. It should be pointed out that always having
a chromosome χ with small f t(χ) does not represent a desired or good solution if it is
not replayable (i.e., fm(χ) 6= 0).

To get the idea of evaluation criteria consider chromosome χ = t1t2t9t3t8
t4t10t11t6, the model in Fig. 2 and observed trace σ = a2a1a3a9a8a4a26a6; the num-
ber of missed and total tokens while χ is replayed equals to 3 and 23 respectively, thus
fm(χ) = 3

23 . Additionally, unreplayable transitions t9, t8 and t11, are likely to be con-
sidered through genetic operators, in the next step of the proposed approach. Also, the
corresponding edit distance, i.e., fed(χ), between χ ans σ4 is 5. Thereby by selecting
λ1, λ2 = 1, the corresponding fitness value is f t(χ) = 1 ∗ 3

23 + 1 ∗ 5 ≈ 5.130.

4.3 Genetic Operators

Genetic operators used in GA are analogous to those which occur in the natural world:
survival of the fittest, or selection; reproduction (crossover); and mutation. When GA
proceeds, both the search direction to optimal solution and the search speed should
be considered as important factors, in order to keep a balance between exploration and
exploitation in search space. In general, the exploitation of the accumulated information
resulting from GA search is done by the selection mechanism, while the exploration to
new regions of the search space is accounted for by genetic operators.

In the remainder of this section, several genetic operators will be proposed. Some of
them are inspired from ones found in analogous problems, whilst new ones are proposed
that tend to improve the evaluation criteria described in the previous section.

Crossover operators Crossover is the main genetic operator. It operates on two chro-
mosomes at a time and generates two new chromosomes by combining both chromo-
somes’ features. A standard way to achieve crossover is to choose a random segment at
both chromosomes, and generate two new chromosomes as the result of interchanging
the two segments among the original two chromosomes. We apply an adaptation of this
standard crossover operator, denoted Modified Partially-Mapped Crossover (MPMX),
for chromosomes having the same Parikh vector representation (see 3.1)5. The intuitive
idea for operating over chromosomes with identical Parikh vector is due to the fact that
the search space is reduced, and in particular the generation of the initial population
is oriented towards satisfying this property. In order to keep Parikh vector representa-
tion of the original chromosomes, some modifications are done after the segments are
interchanged. Let us look at the example in Fig. 3 to illustrate the MPMX operator;

3 In Petri net terms, missed tokens represent tokens that hamper the firing of a transition.
4 Note that indeed the edit distance is computed between σ and `(χ).
5 The restriction on having the same Parikh vector is for the sake of simplicity of application.

6

the initial chromosomes χ1 and χ2 are mixed with this operator, generating the new
chromosomes χ3 and χ4, choosing a segment between positions 4 and 6.

Fig. 3: The MPMX operator.

To keep the Parikh vector representation of the original chromosomes, some mod-
ifications are performed circularly starting from the first position after the segment (in
the example, position 7). For instance, in χ3 (that arised from χ2 inserting the segment
from χ1), in the third position t5 is removed since |χ1|t5 = 2 and when we reach this
position we already have 2 occurrences of t5.

The next crossover operator, denoted Cross-Insert Crossover (CIX), tries to guide
the search towards chromosomes that are replayable in the model. Still, the CIX op-
erator works under the assumption of both initial chromosomes have the same Parikh
vector representation. To induce replayability, it focuses on the parts of a chromosome
that are not replayable, and uses the other chromosome in order to find candidate po-
sitions where it may be possible to reply the set of unreplayable transitions. This is
done for each unreplayable transition in each one of the chromosomes that are merged.
For each candidate position, the transition is moved to that position and the chromo-
some is shifted accordingly to fill the space left. For instance, let us look at the two
chromosomes χ1 and χ2 in Fig.4, and model M2.

Fig. 4: The CIX operator: in the figure, red background means unreplayable positions of
the trace, while green denotes positions in the new chromosomes where unreplayable
transitions have been fixed. Yellow denotes transitions that, in spite of being initially
replayable, due to other moves, they became unreplayable.

In χ1 the transitions in the third, fifth and the eighth position cannot be replayed, namely
t9, t8 and t11. Transition t9 cannot be moved, since in both chromosomes it is unre-
playable (so there is no candidate position in this case). However, for transition t8 in χ1

(which is at position 5) there is a candidate position (position 6, extracted from χ2) to
move. Moving t8 to position 6 and shifting once from position 6 will leave the space in
position 6 to put t8 in χ4. A similar situation happens with t11 position from χ1 to the
new position in χ4. Notice that, as denoted in χ3 in yellow, shifting may introduce new
unreplayable transitions: see t11.

We stress that, since this operator tries to generate more executable offspring re-
gardless of the corresponding edit distance, in our experiments we assign small values
to λ2 of Eq. 1, to retain the new generated chromosomes in next generations even if the
edit distance has been degraded at the expense of improving replayability.

7

Mutation operators Mutation applies to a single chromosome, generating a new chro-
mosome as a modification of the initial one. It is viewed as a background operator to
maintain genetic diversity in the population. Mutation helps escaping from local min-
ima’s trap and maintains diversity in the population. This part presents both generic and
specific mutation operators related to the problem considered in this paper.

As with the crossover operators, we start by adapting a generic one. The Scramble
Mutation (SM) operator simply chooses a segment in the chromosome, and randomly
shuffles it. For instance, in Fig. 5 we show how the operator works.

Fig. 5: Scramble mutation operator (SM).

In contrast, the Mimic Mutation (MM) operator is a specific operator proposed ex-
clusively for the problem at hand. It tries to mimic the observed trace, by repositioning
a transition t as close as possible into the position that `(t) was observed in σ. Hence,
this operator tends to reduce the edit distance to σ for the mutated chromosome. To
implement this idea, we need to reflect on the observation that, due to the Central Limit
Theorem, in the limit the position of labels in observed traces follows a Normal dis-
tribution (with the corresponding parameters)6. Since we are assuming a considerable
amount of observed traces in the event log, we can compute these distributions for each
one of the distinct labels, using statistical methods like Regression Splines [18]7. This
is done only once, before of applying the genetic algorithm.

Fig. 6: (a) A probability distribution of locations of a9 in σ, (b) Mimic mutation.

Fig. 6 shows an example for the observed trace (Fig. 6(a)). In there, the probability
of the position of a9 follows a Normal distribution N(4, 4). It implies that in practice
a9 should be in positions near by position 4.

Once the density function of a certain label is known, a random number following
the function will be generated (in the previous example, it should be around position 4).

6 In case we have a limited number of observations, the real distribution can be estimated by
traditional methods, like Kernel Smoothing [18].

7 In case of duplicate labels in the traces, the normality assumption may be violated and therefore
the estimation may be less accurate. In spite of this, the distribution used is only an oracle for
generating new locations and does not limit the applicability or our approach.

8

Once this is obtained, the current position of the event in the chromosome and the new
position are swapped. This explains the mutation from χ1 to χ′1 in Fig. 6(b).

For a chromosome χ, and its offspring χ′, since the goal is to mimic the observed
trace, if fm(χ) < fm(χ′) and fed(χ) > fed(χ′) then λ1 and λ2 in Eq. 1 are adjusted
so that sometimes χ′ survives in the next iteration. In other words replayability is over-
shadowed for this operator. Playing with these parameters would decrease the risk of
getting stuck in a local optimum.

Fig. 7: (a) χ, (b) χ′ after LM on χ to position 7, (c) χ′′

after LM on χ to position 9.

Launch Mutation (LM). Up to this
point, none of the mutation op-
erators above try to improve the
replayable property of chromo-
somes. The intuitive idea is, for a
given chromosome with an unre-
playable position i, the transition
in i will be relocated forward (i.e.,
in a position j > i) by this opera-
tor. The rationale behind this pol-
icy comes from the idea that in
some situations, by delaying the
firing of a transition to a future Petri net marking, enough tokens will be placed by
the transitions occupying positions between i and j − 1. Since the overall goal of this
operator is to improve replayability, we set λ1 < λ2 so that replayability has more
importance to decide survival for the next iteration.

To give a concrete example consider the chromosome in Fig. 7 (a), and the model
M2. Unreplayable transitions are highlighted (positions 3, 5 and 8). Assume that t9 is
selected to be mutated with is operator. Fig. 7 (b) shows one possible launch mutation
from position 3 to position 7. One can see that transition t9 can now be replayable, as
highlighted in green. Unfortunately, this operator can sometimes introduce new unre-
playable transitions, as demonstrated in Fig. 7 (c) for t10.

5 General Framework for Obtaining Multiple Alignments

Given a process model represented as a WF-net, N , and a trace σ, the schema of the
proposed framework is depicted in Fig. 8. Explanations of each part are provided below:

Fig. 8: Overall description of the general approach to compute alignments.

9

– Genetic Algorithm Framework: In the initial stage, the genetic approach described
in the previous section is performed. Once finished it generates a final population of
model traces. Among them, we choose those chromosomes χ having both fm(χ) =
0 (so, replayable), and minimal fed(χ).

– Computing Alignment Using Dynamic Programming: This part concerns the com-
putation of alignments between the chromosomes of final population and σ. The
adopted method in this section is a dynamic programming approach inspired from
aligning two sequence of genes [19], [20]. The alignments computed are called
best alignments, which are not necessarily optimal: this is due to the lack of guar-
antees that the model explanations provided in the previous stage correspond to the
optimal model explanation for σ.

5.1 Computing an Alignment using Dynamic Programming
To compute an alignment between a chromosome like χ and observed trace σ, the tech-
nique presented in this paper is inspired from [20]. This technique was already applied
in [3] for the same task, so we informally describe it here. Consider an oversimplified
example, χ = t3t11t17 with `(χ) = a3a11a17 and σ = a3a11. To obtain an alignment
α between these two sequences, a two-dimensional table is created, where the first row
and first column are filled with the observed trace and chromosome, respectively, as
depicted in Fig. 9 (a). The second row and second column are initialized with numbers
starting from 0,-1,-2,..., they are depicted in yellow color. The task then is to fill the
remaining cells with the recurrence Eq. (2), in which δ represents the gap penalty8 and
s(ti, aj) represents both the match and mismatch cost between two elements ti and aj
which are modeled and observed trace elements, respectively.

SIM(ti, aj) =MAX


SIM(ti−1, aj−1) + s(ti, aj)

SIM(ti−1, aj)− δ
SIM(ti, aj−1)− δ

s(ti, aj) =

{
β If `(ti) = aj

−β If `(ti) 6= aj

(2)
SIM(ti, aj) represents the similarity score between ti and aj .

Fig. 9: (a) Computing alignment using dynamic programming (b) Obtained alignment.

After filling the matrix, to compute the alignment we start from the bottom right
entry, and compare the value with three possible sources, i.e., top, left and diagonal
to identify from which one of them it came from. If it was fed by a diagonal entry, it
represents a synchronous move between corresponding elements and if it was fed by a
top or left entries then it represents an asynchronous move or a gap. For the mentioned
chromosome and observed trace the computed alignment is shown in Fig. 9 (b).

8 The gap penalty represents asynchronous move in our setting.

10

6 Experiments

The approach of this paper has been incorporated into the tool ALI [21]. This section
evaluates the method proposed over the following perspectives:

– What is the sensitivity of the approach on the number of evolutionary iterations ?
– How does the approach compares to [1,10] for the memory and execution time ?
– How does the approach compares to [1,10] for the quality and quantity of align-

ments obtained ?
– What is the impact on the fitness calculation ?

The tool has been evaluated over different family of examples from artificial to
realistic, containing transitions with duplicate labels and from well-structured to com-
pletely Spaghetti9. The number of transitions varies between models, i.e., minimum 15
and maximum 429. The specification of benchmark datasets can be found in [3], [14],
[12]. We also included a real-life benchmark from [9], where a model was discovered
using the Inductive Miner by sampling 10000 observed traces of a Road Traffic process
dataset10, and using the rest of the log for alignment computation. Also, to examine the
proposed approach in dealing with models that contain duplicate labels, a set of models
consisting of duplicate transitions, with the corresponding logs obtained by injecting
different degree of noise (25%, 35%, 50% and 75%), were generated by PLG2 [22]11.
The details of the models with duplicate labels are presented in Table 1. The results on
these benchmarks are compared with the state-of-the-art technique for computing one
optimal alignments [1], since the version for computing all optimal alignments ran out
of memory for all models considered in this paper. We also compare ALI with a recent
technique to compute all-optimal alignments [10].

Table 1: Models with duplicate labels.
Model |P | |T | |Arc| Cases Fitting |σ|avg Duplicate

Transitions

ML1 27 35 74 500 No 28 2
ML2 165 177 404 500 No 87 12
ML3 45 45 106 500 No 26 2
ML4 36 33 80 500 No 28 6
ML5 159 172 390 500 No 42 14

Configuration of the Genetic Algorithm. For each observed trace a population of 700
chromosomes were generated and the quality and quantity of them were compared with
state of the art approach at iterations 10,20,30 and 100. In the implementation, the
application crossover had a high probability, whilst mutation operators were applied
with a low probability. As we commented in the previous section, best alignments in

9 The experiments have been done on Intel Core i7-2.20GHz computer with 8GB of RAM.
10 https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
11 At the time of generating models for the experiments, PLG2 in fact was unable to produce

models containing duplicate labels from scratch, therefore the generated models and logs were
modified in order to have transitions with duplicate labels.

11

https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

our setting correspond to replayable chromosomes with minimal edit distance to the
observed trace among the final population.

Execution Times. Fig. 10 shows violin plots of execution time (in seconds) for each
model per iteration given an observed trace. Obviously the required execution time
varies from different observed traces and this is why the corresponding distributions via
violin plots are presented. One can see that for big models with large traces (prDm6,
prEm6, prFm6), models with many deviations in observed traces (prCm6) and mod-
els with many duplicate transitions (ML5), the corresponding distributions are wider
due to more operations made by the proposed operators at any iteration. An important
point should be done: although the computation time per trace (corresponding to mul-
tiplying the execution time per iteration shown in the plot by the number of iterations
performed) is significantly higher with respect to [1], our evaluation is done with a
simple, unoptimized implementation of the technique of this paper.

Fig. 10: Distribution of execution time for an observed trace per iteration.

Fitness Comparison. Table 2 represents the mean square error (MSE) of fitness values
based on metric presented in [1], [12], between the best alignments provided by our
technique and the approach in [1] as optimal solutions, respectively. One can see that
the quality of alignments is improved from 10 iterations to 100 iterations for all models.
For models prAm6, prBm6 and prEm6 optimal alignments were found (for some
of them, at iterations 2 and 3 respectively). Comparisons were done only for those
benchmark datasets whenever the approach in [1] could provide solutions. Overall, one
can see that the approach of this paper is very close to the optimal solutions computed
by [1], in spite of several factors like the size of the model and observed traces, presence
of loops, silent transitions and duplicate labels in the model.

12

Quantity of Best Alignments. Table 3 shows the average number of best alignment ob-
tained per each observed trace and each model at different number of iterations. In the
last column, we report this number for [10]: NA denotes that the tool was unable to pro-
vide the result due to memory problems. When it can, we also provide in parenthesis
the percentage of the log traces where [10] can find solutions; for instance, forM4, only
39% of the traces have a solution. One sees that these average numbers are improved
from 10 to 100 iterations and this improvements are usually more tangible in models
containing loops, i.e., M1,M2,M3,M7. The approach from [10] usually obtains more
alignments than our method, but that only holds for small or medium instances.

Also, Fig. 11 and 12 show for each model, the violin plots or distribution of number
of best alignment for 30 and 100 iterations, respectively (the corresponding average
values are shown in the fourth and fifth column of Table 3, respectively). When focusing
in the experiment for 100 iterations (Fig. 12), It can be seen from the plot that, for some
models like M1, M2 M5, M7 and ML2, the number of distinct best solutions are close
to 30 for some cases and for Documentflow2 the best solutions are unique.

13

Fig. 11: Distribution of number of best solutions for 30 iterations.

Fig. 12: Distribution of number of best solutions for 100 iterations.

Memory Consumption. The memory footprint of the proposed technique and the ap-
proaches in [1] and [10], for all the benchmarks of this paper are represented in Fig.13,
using black, gray and brown colors, respectively. It must be stressed that the compar-
ison reported in Fig.13 provides just an indication of the huge difference in terms of
memory footprint between the technique of this paper and the other techniques: for [1],
experiments were only done for computing one optimal alignment inevitably, since the
implementation for all optimal alignments ran out of memory. In contrast, in Fig. 13
we provide the results of our technique and the technique in [10] to compute multiple
alignments.

14

Fig. 13: Mem. footprint of our approach (black), [1] (gray), and [10] (brown, thin line).

One can see that the proposed technique requires considerable less memory than the
other two techniques. Obviously for small and medium models, the memory footprints
are similar. For large models the tendency is inversed: as an example, for prDm6 the
proposed method required around 1.5GB whereas [1] and [10] need more than 5.5GB
Notice that the memory footprint of the proposed approach for computing best align-
ments is bounded through iterations, and is not sensitive to size of the model and length
of the observed trace. Also, the required memory for the proposed approach is not sen-
sitive to the labels of transitions i.e., silent or duplicate labels, seeML1, . . . ,ML5. The
other two approaches are more sensitive to the aforementioned factors.

7 Conclusion and Future Work

Conformance checking is a crucial aid for diagnosing deviations between modeled and
observed behavior. The best way to detect such deviations is the use of aligments, as
they open the door for further analyses. This paper presents a novel approach to compute
several approximation of an optimal alignment. It is based on an evolutionary algorithm,
where the memory footprint is guaranteed to be bounded. Tailored genetic operators
have been proposed, which help guiding the algorithm through the search space of
solutions, and speed up convergence accordingly. The experiments performed on the
tool developed witness the quality of obtained alignments, deriving solutions that are
close to optimal ones, and which can be improved iteratively. Moreover, the quantity
of alignments improves considerably as more genetic iterations are performed. In spite
of not having theoretical guarantees on optimality or replayability, the results show that
in practice it is always the case that replayable, quasi-optimal or optimal solutions are
produced. For the future work there are many possibilities to explore, like introducing
more efficient operators, or devising mechanism to alleviate the mentioned drawbacks.

Acknowledgments We would like to thank B. van Dongen for interesting discussions. This work
has been supported by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

15

References
1. A. Adriansyah, Aligning observed and modeled behavior, Ph.D. thesis, Technische Univer-

siteit Eindhoven (2014).
2. A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, W. M. P. van der Aalst,

Measuring precision of modeled behavior, Inf. Syst. E-Business Man. 13 (1) (2015) 37–67.
3. F. Taymouri, J. Carmona, Model and event log reductions to boost the computation of align-

ments, in: Data-Driven Process Discovery and Analysis - 6th IFIP WG 2.6 International
Symposium, SIMPDA, Graz, Austria, 2016, pp. 1–21.

4. M. Koorneef, A. Solti, H. Leopold, H. A. Reijers, Automatic root cause identification using
most probable alignments, in: BPM 2017 Workshops, Barcelona, Spain, 2017, pp. 204–215.

5. W. M. P. van der Aalst, A. K. A. de Medeiros, A. J. M. M. Weijters, Genetic process mining,
in: Applications and Theory of Petri Nets (ICATPN), Miami, USA, 2005, pp. 48–69.

6. J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst, A genetic algorithm for dis-
covering process trees, in: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2012, Brisbane, Australia, June 10-15, 2012, 2012, pp. 1–8.

7. B. Vázquez-Barreiros, M. Mucientes, M. Lama, Prodigen: Mining complete, precise and
minimal structure process models with a genetic algorithm, Inf. Sci. 294 (2015) 315–333.

8. F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, Balanced multi-perspective
checking of process conformance, Computing 98 (4) (2016) 407–437.

9. M. de Leoni, A. Marrella, Aligning real process executions and prescriptive process models
through automated planning, Expert Syst. Appl. 82 (2017) 162–183.

10. D. Reißner, R. Conforti, M. Dumas, M. L. Rosa, A. Armas-Cervantes, Scalable conformance
checking of business processes, in: OTM CoopIS, , Rhodes, Greece, 2017, pp. 607–627.

11. S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Scalable process discovery and confor-
mance checking, Software and System Modeling 17 (2) (2018) 599–631.

12. F. Taymouri, J. Carmona, A recursive paradigm for aligning observed behavior of large struc-
tured process models, in: 14th International Conference of Business Process Management
(BPM), Rio de Janeiro, Brazil, 2016.

13. B. F. van Dongen, J. Carmona, T. Chatain, F. Taymouri, Aligning modeled and observed
behavior: A compromise between computation complexity and quality, in: Advanced Infor-
mation Systems Engineering - 29th International Conference, CAiSE 2017, Essen, Germany,
June 12-16, 2017, Proceedings, 2017, pp. 94–109.

14. J. Munoz-Gama, J. Carmona, W. M. P. Van Der Aalst, Single-entry single-exit decomposed
conformance checking, Inf. Syst. 46 (2014) 102–122.

15. W. M. P. van der Aalst, Decomposing Petri nets for process mining: A generic approach,
Distributed and Parallel Databases 31 (4) (2013) 471–507.

16. T. Murata, Petri nets: Properties, analysis and applications, Proc. of the IEEE 77 (4) (1989)
541–574.

17. A. Piszcz, T. Soule, Genetic programming: Optimal population sizes for varying complexity
problems, in: Conference on Genetic and Evolutionary Computation, 2006, pp. 953–954.

18. D. Ruppert, M. P. Wand, R. J. Carroll, Scatterplot Smoothing, Cambridge Series in Statistical
and Probabilistic Mathematics, Cambridge University Press, 2003, p. 57–90.

19. R. Neapolitan, Foundations Of Algorithms, 5th Edition, Jones and Bartlett Publishers, Inc.,
USA, 2014, pp. 138–146.

20. S. B. Needleman, C. D. Wunsch, A general method applicable to the search for similarities
in the amino acid sequence of two proteins, J. of Molecular Biology 48 (3) (1970) 443 – 453.

21. F. Taymouri, ALI: Alignment for Large Instances (2017).
URL https://www.cs.upc.edu/˜taymouri/tool.html

22. A. Burattin, PLG2: multiperspective process randomization with online and offline simula-
tions, in: BPM Demo Track 2016, 2016, pp. 1–6.

16

https://www.cs.upc.edu/~taymouri/tool.html
https://www.cs.upc.edu/~taymouri/tool.html

	An Evolutionary Technique to ApproximateMultiple Optimal Alignments

