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Abstract. Conformance checking is a branch of process mining that
aims to assess to what degree event data originating from the execution
of a (business) process and a corresponding reference model conform to
each other. Alignments have been recently introduced as a solution for
conformance checking and have since rapidly developed into becoming
the de facto standard.

The state-of-the-art method to compute alignments is based on solv-
ing a shortest path problem derived from the reference model and the
event data. Within such a shortest path problem, a cost function is used
to guide the search to an optimal solution. The standard cost-function
treats mismatches in the model and log as equal. In this paper, we con-
sider a variant of this standard cost function which maximizes the num-
ber of correct matches instead. We study the effects of using this cost-
function compared to the standard cost function on both small and large
models using over a thousand generated and industrial case studies.

We further show that the alignment computation process can be sped
up significantly in specific instances. Finally, we present a new algorithm
for the computation of alignments on models with many log traces that
is an order of magnitude faster (in maximizing synchronous moves) com-
pared to the state-of-the-art A* based solution method, as a result of a
preprocessing step on the model.

1 Introduction

Process mining [1] is a field of study involved with the discovery, conformance
checking, and enhancement of processes, using event data recorded during pro-
cess execution. In process discovery, we aim to discover process models based
on traces of executed event data. In conformance checking, we assess to what
degree a process model (potentially discovered) is in line with recorded event
data. Finally, in process enhancement, we aim at improving or extending the
process based on facts derived from event data.
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Modern information systems allow us to track, often in great detail, the
behaviour of the process it supports. Moreover, instrumentation and/or pro-
gram tracing tools allow us to track the behavioural profile of the execution of
enterprise-level software systems [2,3]. Such behavioural data is often referred
to as an event log, which can be seen as a multiset of log traces, i.e. sequences
of observed events in the system. However, it is often the case, due to noise
or under/over-specification, that the observed behaviour does not conform to a
valid process instance, i.e., it deviates from its intended behaviour as specified
by its reference model.

Conformance checking assesses to what degree the event log and model con-
form to each other. Early conformance checking techniques [4] are based on
simple heuristics and therefore, may yield ambiguous/unpredictable results.

Alignments [5,6] were introduced to overcome the limitations of early confor-
mance checking techniques. Alignments map observed behaviour onto behaviour
described by the process model. As such, we identify four types of relations
between the model and event log in an alignment:

1. A log move, in which we are unable to map an observed event, recorded in
the event log, onto the reference model.

2. A model move, in which an action is described by the reference model, yet
this is not reflected in the event log.

3. A synchronous move, in which we are able to map an event, observed in the
event log, to a corresponding action described by the reference model.

4. A silent move, in which the model performs a silent or invisible action
(denoted with τ).

Consider the example model of a simple file reading system given in Fig. 1
and the trace σ = 〈A,D,B,D〉. An alignment for the model and σ is given by
γ0 (top right in Fig. 1). Here, the upper-part depicts the trace and the bottom-
part depicts an execution path described by the model, starting at state p0 and
ending at state p5. The first pair, |A

A |, represents a synchronous move, in which
both the log and the path in the model describe the execution of an A activity.
The next pair, | D

� |, is a log move where the log trace describes the execution of a
D activity that is not mapped to a model move. The skip (�) symbol is used to
represent such a mismatch. Observe that the model remains in the same state.
This is continued by a model move in which the model executes a C activity,
which is not recorded in the trace, i.e., |�

C |. Finally, the alignment ends with
two synchronous moves.

An optimal alignment is an alignment that minimizes a given cost function.
Typically, each type of move gets a value assigned R≥0. The cost of an alignment
is simply the sum of the costs of its individual moves. The most common way to
do this is to assign a cost of 1 to both model and log moves and 0 to synchronous
and silent moves. In practice, the A* shortest path algorithm [7] is often used
for computing optimal alignments.

We argue that the standard cost function is not always the best-suited func-
tion for optimal alignments. Consider the model from Fig. 1 again, with the trace
σ′ = 〈B〉. An optimal alignment using the standard cost function would result
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Fig. 1. Example process model (in Petri net formalism) for a simple file reading system
and an alignment for the trace σ = 〈A, D, B, D〉 (γ0). For the trace σ = 〈B〉, two
optimal alignments are given using the standard- (γ1) and variant (γ2) cost functions.

in γ1. Considering that event B is observed behaviour, i.e., the system logged
“parse file”, it seems illogical to map this behaviour with a path in the model
indicating that the file was not found. In case we set up the cost function such
that the number of synchronous moves are maximized, an optimal alignment
would result in γ2. Arguably, a more likely scenario is that not all parts of the
program produced log output and γ2 would be preferred.

Motivated by the example shown in Fig. 1, we consider the applicability of
a cost function that maximizes the number of synchronous moves in a more
general setting and study its effects. Our contributions are as follows.

– We formalise the relation between the event log and the reference model
to distinguish different cases of alignment problems. We show how the cost
functions affect the resulting alignments for these cases. We further show that
when the reference model is an abstraction of the event log, the alignment
computation process can be significantly improved.

– We study the differences in alignments and their computation times on over a
thousand large instances that exhibit various characteristics. We also compare
the results from the A* algorithm with a recent symbolic algorithm [8].

– We present a new algorithm for computing alignments that exploits our new
cost function in a preprocessing step. Using a set of industrial models, we
show that it performs an order of magnitude faster than the A* algorithm.

The remainder of this paper is structured as follows. Section 2 introduces
preliminaries. Then, in Sects. 3 and 4 we introduce the synchronous cost function
and formalise the relation between the event log and the reference model. We
discuss existing algorithms for computing alignments in Sect. 5. In Sect. 6 we
present the new algorithm that preprocesses the model to improve the alignment
computation process. Experiments are presented in Sect. 7. Section 8 discusses
related work. Section 9 concludes the paper.

2 Preliminaries

We assume that the reader is familiar with the basics of automata theory and
Petri nets. We denote a trace or sequence by σ = 〈σ0, σ1, . . . , σ|σ|−1〉, two
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sequences are concatenated using the · operation. Given a sequence σ and a
set of elements S, we refer to σ \ S as the sequence without any elements from
S, e.g., 〈a, b, b, c, a, f〉 \ {b, f} = 〈a, c, a〉. For two sequences σ1 and σ2, we call
σ1 a subsequence of σ2 (denoted with σ1 � σ2) if σ1 is formed from σ2 by delet-
ing elements from σ2 without changing its order, e.g., 〈c, a, t〉 � 〈a, c, r, a, t, e〉.
Similarly, σ1 � σ2 implies that σ1 is a strict subsequence of σ2, thus σ1 �= σ2.

Traces are sequences σ ∈ Σ∗, for which each element is called an event and is
contained in the alphabet Σ, also called the set of events. We globally define the
alphabet Σ, which does not contain the skip event (�) nor the invisible action
or silent event (τ). Given a set S, we denote the set of all possible multisets
as B(S), and its power-set by 2S . An event log E is a multiset of traces, i.e.,
E ⊆ B(Σ∗).

2.1 Preliminaries on Petri Nets

Petri nets are a mathematical formalism that allow us to describe processes, typ-
ically containing parallel behaviour, in a compact manner. Consider Fig. 1 which
is a simple example of a Petri net. The Petri net consists of places, visualized as
circles, that allow us to express the state (or marking) of the Petri net. Further-
more, it consists of transitions, visualized as boxes, that allow us to manipulate
the state of the Petri net. We are never able to connect a place with another
place nor a transition with another transition. Thus, from a graph-theoretical
perspective, a Petri net is a bipartite graph.

Definition 1 (Petri net, marking). A Petri net is defined as a tuple N =
(P,T,F, Στ , λ,m0,mF) such that:

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation,
– Στ is a set of activity events, with Στ = Σ ∪ {τ},
– λ : T → Στ is a labelling function for each transition,
– m0 ∈ B(P) is the initial marking of the Petri net,
– mF ∈ B(P) is the final marking of the Petri net.

A marking is defined as a multiset of places, denoting where tokens reside in
the Petri net. A transition t ∈ T can be fired if, according to the flow relation,
all places directing to t contain a token. After firing a transition, the tokens are
removed from these places and all places having an incoming arc from t receive
a token. It may be possible for a place to contain more than one token.

Definition 2 (Marking graph). For a Petri net N = (P,T,F, Στ , λ,m0,mF),
the corresponding marking graph or state-space MG = (Q, Στ , δ, q0, qF) is a
non-deterministic automaton such that:

– Q ⊆ B(P ) is the (possibly infinite) set of vertices in MG, which corresponds
to the set of reachable markings from m0 (obtained from firing transitions),
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– δ ⊆ (Q × T × Q) is the set of edges in MG, i.e., (m, t,m′) ∈ δ iff there is a
t ∈ T such that m′ is obtained from firing transition t from marking m.

– q0 = m0 is the initial state of the graph,
– qF = mF is the final state of the graph.

For an edge e = (m, t,m′) ∈ δ, we write λ(e) to denote λ(t) and use the notation
m

a−→ m′ to represent the edge e for which λ(e) = a (we assume that for two edges
(m, t1,m

′) ∈ δ and (m, t2,m
′) ∈ δ, if λ(t1) = λ(t2) then t1 = t2). The source

and target markings of edge e are respectively denoted by src(e) and tar(e).

Definition 3 (Path, language). Given a Petri net N and corresponding mark-
ing graph MG = (Q, Στ , δ, q0, qF), a sequence of edges P = 〈P0, P1, . . . , Pn〉 ∈ δ∗

is called a path in N if it forms a path on the marking graph of N: src(P0) =
m0 ∧ tar(Pn) = mF ∧ ∀0≤i<n : tar(Pi) = src(Pi+1). The set of all paths in N
is denoted by Paths(N). With λ(P ) we refer to the sequence of labels visited in
P , i.e., λ(P ) = 〈λ(P0), λ(P1), . . . , λ(Pn)〉 (there may be different paths P and
P ′ such that λ(P ) = λ(P ′)). We define the language L of a Petri net N by
L(N) = {λ(P ) | P ∈ Paths(N)}.
Definition 4 (Trace to Petri net). Given a trace σ = 〈σ1, σ2, . . . , σn〉 ∈ Σ∗,
its corresponding Petri net is defined as Nσ = (P,T,F, Στ , λ,m0,mF) with P =
{p0, p1, . . . , pn, pn+1}, T = {t0, t1, . . . , tn}, F = {(p0, t0), (p1, t1), . . . , (pn, tn)} ∪
{(t0, p1), (t1, p2), . . . , (tn, pn+1)}, Στ =

⋃
0≤i<n{σi}, ∀0≤i<n : λ(ti) = σi, m0 =

p0, and mF = pn+1.

2.2 Preliminaries on Alignments

Definition 5 (Alignment). Let σ ∈ Σ∗ be a log trace and let N be a Petri
net model, for which we obtain the marking graph MG = (Q, Στ , δ, q0, qF). We
refer to Σ� as the alphabet containing skips: Σ� = Σ ∪ {�} and Στ� as
the alphabet that also contains the silent event: Στ� = Σ ∪ {�, τ}. Let γ ∈
(Σ�×Στ�)∗ be a sequence of log-model pairs (note that τ steps are only possible
in the model). For γ = 〈(γ0

0 , γ1
0), (γ0

1 , γ1
1), . . . , (γ0

|γ|−1, γ
1
|γ|−1)〉, we define γ� as

γ� = 〈γ0
0 , γ0

1 , . . . , γ0
|γ|−1〉 \ {�} and γm by γm = 〈γ1

0 , γ1
1 , . . . , γ1

|γ|−1〉 \ {�}. We
call γ an alignment if the following conditions hold:

1. γ� = σ (the activities of the log-part, equals to σ),
2. γm ∈ L(N) (γm forms a path in N),
3. ∀a, b ∈ Σ : a �= b ⇒ (a, b) /∈ γ (illegal moves),
4. (�,�) /∈ γ, (the ‘empty’ move may not exist in γ).

Definition 6 (Alignment cost). Let γ ∈ (Σ� × Στ�)∗ be an alignment for
σ ∈ Σ∗ and the Petri net N. The cost function c for pairs of γ is given as follows;
c : (Σ� × Στ�) → R≥0, and we overload c for alignments; c : (Σ� × Στ�)∗ →
R≥0, for which we have c(γ) =

∑|γ|−1
i=0 c(γi).

We call an alignment γ under cost function c optimal iff �γ′ : c(γ′) < c(γ),
i.e., there does not exist an alignment γ′ with a smaller cost.
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Definition 7 (Standard cost function). The standard cost function cst is
defined for an alignment pair (�,m) ∈ (Σ� × Στ�) as follows:

cst(�,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 � = � and m = τ (silent move, e.g., (�, τ))
0 � ∈ Σ and m ∈ Σ and � = m (e.g., synchronous move (a, a))
1 � ∈ Σ and m = � (e.g., log move (a,�))
1 � = � and m ∈ Σ (e.g., model move (�, a))

3 Maximizing Synchronous Moves

We gather that the standard cost function from Definition 7 is the most com-
monly used cost function in literature [1,7,9,10], though note that any cost
function could be used. The standard cost function may, however, lead to unde-
sired results, as illustrated by the example from Fig. 1. We consider a new cost
function that maximizes the number of synchronous moves, since it explains as
many log moves as possible. We propose the alternative cost function as follows.

Definition 8 (max-sync cost function). We define the max-sync cost func-
tion csync for an alignment pair as follows (for small ε > 0):

csync(�,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 � = � and m = τ (silent move, e.g., (�, τ))
0 � ∈ Σ and m ∈ Σ and � = m (e.g., synchronous move (a, a))
1 � ∈ Σ and m = � (e.g., log move (a,�))
ε � = � and m ∈ Σ (e.g., model move (�, a))

This cost function only penalizes log moves, which as a consequence causes an
optimal alignment to minimize the number of log moves and thus maximize the
number of synchronous moves. The ε cost for model moves further filters optimal
alignments to only include shortest paths through the model that maximize
synchronous moves.

An advantage of the max-sync cost function over the standard one is that
synchronized behaviour is not sacrificed for shorter paths through the model (as
Fig. 1 illustrates). A disadvantage is that in order to maximize the number of
synchronous moves, it may be possible that many model moves are required.

4 Relating the Model and Event Log

Given a Petri net model N and an event log E ⊆ B(Σ∗), we can distinguish four
cases based on the languages that they describe. By distinguishing the relative
granularities of N and E we define cases of alignment problems as follows.

C1: ∀σ1 ∈ E : (∃σ2 ∈ L(N) : σ1 = σ2); all log traces correspond to paths in the
model. Then, every log trace can be mapped onto the model by only using
synchronous and silent moves, which is optimal for cst and csync.
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C2: ∀σ1 ∈ E : (∃σ2 ∈ L(N) : σ1 � σ2); all log traces correspond to subsequences
of paths in the model. Then, every log trace can be mapped onto the model
without using any log moves. The example from Fig. 1 for σ = 〈B〉 is
such an instance. We hypothesize that csync provides better alignments in
such instances as cst may avoid synchronization in favour of shorter paths
through the model.

C3: ∀σ1 ∈ E : (∃σ2 ∈ L(N) : σ2 � σ1); for every log trace there is a path that
forms a subsequence of the log trace. Then, every log trace can be mapped
onto the model without using any model moves. Here, csync and to some
extent cst can arguably lead to bad results as model moves may be taken
to synchronize with ‘undesired’ behaviour.

C4: None of the properties hold. All move types may be necessary for align-
ments. We regard this as a standard scenario. Depending on the use case,
either cst or csync could be preferred.

Aside from C4, we consider cases C2 and C3 as common instances in practice,
as logging software often causes either too many or too little events to be logged
or in case the model is over/underspecified. Discrepancies then show whether
the model is of the right granularity. We note that it is also possible to hide
certain activities in the model or log before alignment. This is however not
trivial, especially if there are (slight) deviations in the log such that the alignment
problem does not fit C2 or C3 exactly anymore.

When considering instances that exactly fit case C2 or C3, we can construct
alignments by respectively removing all log or model moves from the product of
the model and log. We define the cost functions cadd and crem to be variants of cst
such that model and log moves respectively have a cost of ∞. We argue that this
results in a better ‘alignment quality’ and reduces the time for its construction.

5 Algorithms for Computing Alignments

We consider two algorithms for computing alignments, which we discuss as fol-
lows. Both algorithms take the product Petri net as input.

A*. The A* algorithm [7] computes the shortest path from the initial marking to
the final marking on the marking graph for a given cost function. The heuristic
function for A* exploits the Petri net marking equation, which can be achieved
using Integer Linear Programming (ILP), to prune the search space.

Symbolic Algorithm. The symbolic algorithm [8] was recently developed as
an improvement over A* for large state spaces. It exploits symbolic reachability
to search for an alignment, i.e., considering sets of markings instead of single
ones. By restricting the cost function to only allow 0 or 1-cost moves, optimal
alignments can be computed by only taking a 1-cost move after exploring all
markings reachable via 0-cost steps. We refer to this algorithm by Sym.
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6 Preprocessing Reference Models for Large Event Logs

When constructing an alignment under the csync cost function, we can disregard
the cost for model moves to a certain extent. The goal is to find a path through
the model that maximizes the number of synchronous moves. We can achieve
this by searching for a subsequence in the log trace that is also included in
the language of the reference model. By computing the transitive closure of the
model’s marking graph, we find all paths and subsequences of paths through
the model. For every log trace we can use dynamic programming to search for
the maximum-length subsequence in the log trace that can be replayed in the
transitive closure graph (TCG), from which we can construct a path through
the marking graph and obtain an optimal alignment.

We construct a TCG as described in Definition 9. Here, τ -edges are added to
the marking graph such that every marking is reachable via τ -steps. After deter-
minization, for every path P in the original marking graph the TCG contains
all paths P ′ such that λ(P ′) � λ(P ).

p0
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p4 p5 p6
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At0 Bt1

Ct2 Dt3 Et4

Ft5 Gt6
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Fig. 2. Example Petri net model (left), its corresponding marking graph (middle) and
transitive closure graph (right) with the sequence 〈D, E〉 highlighted.

We can use this property to search for a subsequence of the log trace that
can fully synchronize with the model. For instance in the example of Fig. 2,
consider a log trace σ = 〈F,D,E,B〉. The F event can be fired from Q0, after
which the TCG is in state Q10. From this state, it is not possible to perform any
other event from log trace. A better choice would be to skip the F event (which
would then be a log move) and form the subsequence 〈D,E〉, as highlighted1. We
call the maximum-length subsequence σ̂ from the log trace a maximum fitting
subsequence if σ̂ also forms a path through the TCG, as defined in Definition 10.
1 It might be interesting to note that after performing the D action in the TCG, in

the Petri net we have not yet made the choice to fire either an A or a B transition;
we implicitly make the decision to fire the B transition after choosing the E event.
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Definition 9 (Transitive closure graph). Given a marking graph MG =
(Q, Στ , δ, q0, qF), we first construct an extended marking graph MG ′ =
(Q, Στ , δ′, q0, qF) with δ′ = δ ∪ {(src(e), τ, tar(e)) | e ∈ δ}. A transitive clo-
sure graph (TCG), TCG = (Q, Σ,Δ, Q0, QF) is defined as the result of deter-
minizing MG ′ (by using a standard determinization algorithm [11]) and by then
removing all non-final states from the TCG such that Q ⊆ 2Q, Σ = Στ \ {τ},
Δ ⊆ (Q × Σ × Q), Q0 = Q, and QF = Q.

For an edge e ∈ Δ we also use the notation src(e) and tar(e) to respectively
refer to the source and target marking sets in the TCG. Paths over the TCG
are defined analogously to paths over marking graphs (Definition 3) and we use
Paths(TCG) and L(TCG) to respectively denote the set of all paths in the TCG
and the language of the TCG.

Definition 10 (Maximum fitting subsequence). Given a sequence (log
trace) σ ∈ Σ∗ and TCG = (Q, Σ,Δ, Q0, QF), then σ̂ � σ is a maximum fitting
subsequence if and only if σ̂ ∈ L(TCG) ∧ ∀σ̂′ � σ : σ̂′ ∈ L(TCG) ⇒ |σ̂| ≥ |σ̂′|.
We construct σ̂ by using dynamic programming to search for a subsequence of σ
that is a maximum-length path in the TCG.

Algorithm 1. Path construction from a maximum fitting subsequence σ̂

1 func PC(TCG = (Q, Σ, Δ, Q0, QF),MG = (Q, Στ , δ, q0, qF), σ̂ = 〈σ̂0, σ̂1, . . . , σ̂n〉)
2 // Construct path MFP on TCG such that λ(MFP) = σ̂
3 MFP := 〈(Q0, σ̂0, S), (S, σ̂1, S

′), . . . , (S′′, σ̂n, S′′′)〉 s.t. ∀0≤i≤n : MFPi ∈ Δ
4 P := BWD(MG , qF, σ̂n, tar(MFPn)) // Path σ̂n to qF on MG
5 for i := n − 1; i ≥ 0; i := i − 1 do // Add paths from σ̂i to σ̂i+1

6 P := BWD(MG , src(P0), σ̂i, tar(MFPi))·P
7 return BWD(MG , src(P0), ⊥, Q0)·P // Add path from q0 to σ̂0

8 func BWD(MG = (Q, Στ , δ, q0, qF), m ∈ Q, a ∈ (Σ ∪ ⊥), S ⊆ Q)
9 W := 〈m〉 // Sequence of unvisited markings in the backward search

10 ∀m ∈ S : F [m] := Null // Mapping from markings to edges (F : Q → δ)
11 for i := 0; i < |W |; i := i + 1 do // Continue for all markings in W
12 if ∃m′ ∈ Q, a′ ∈ Σ : (m′, a′, Wi) ∈ δ ∧ (a′ = a ∨ (a = ⊥ ∧ m′ = q0)) then
13 P := 〈(m′, a′, Wi)〉 // Found path from a (or initial marking)

14 while tar(P|P |−1) �= m do P := P ·F [tar(P|P |−1)]
15 return P // Shortest path from a (or q0) to m

16 forall the e ∈ δ : src(e) ∈ (S \ W ) ∧ tar(e) = Wi do
17 W := W ·〈src(e)〉 // Add predecessor markings of m to W
18 F [src(e)] := e // Direct the source markings towards m

19 return 〈〉 // No path from a (or q0) is found (should never occur)

Once we have found the maximum fitting subsequence σ̂ for a given model
and log trace, we still have to determine which model moves should be applied
to form a path through the original model. This can be achieved by using the
TCG and traversing σ̂ in a backwards fashion as we show in Algorithm1.

We first construct a path MFP from the subsequence σ̂ (line 3), in the exam-
ple from Fig. 2 with σ̂ = 〈D,E〉 (see also Fig. 3 for an illustration of the path
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Fig. 3. Path construction using Algorithm 1 on the example from Fig. 2 for a maximum
fitting subsequence σ̂ = 〈D, E〉 � 〈F, D, E, B〉. Markings in the grey region are not
part of the path. The resulting alignment γ is shown on the right.

construction process) this would be MFP = 〈(Q0,D, Q8), (Q8, E, Q9)〉. Then in
line 4, a backward search procedure (BWD) is called to search for a path P in the
marking graph from an E-edge to the final marking (p7).

The BWD procedure takes a target marking m, label a and search space S as
arguments. A sequence W is maintained to process unvisited markings from S
and a mapping F : Q → δ is used for reconstructing the path. Starting from the
target marking m (which is W0), the procedure searches for edges e directing
towards m in line 16–18 such that src(e) is in S and not already visited. For
every such edge e, its source is appended to W (to be considered in a future
iteration) and src(e) is mapped to e for later path reconstruction.

Following iterations of the for loop in line 11–18 consider a predecessor Wi of
m and search for edges directing to Wi. This way, the search space is traversed
backwards in a breadth-first manner, resulting in shortest paths to m.

In line 12–15 the BWD procedure checks whether there is an edge m′ a−→ Wi

for some m′ (or an edge q0
a′
−→ Wi for arbitrary a′ in case a = ⊥) and if so,

constructs a path towards m in line 14 which is then returned. In the example,
the path 〈(p3p5, E,p5p6), (p5p6, G,p7)〉 will be returned for the first BWD call.

After the first BWD call, the main function iterates backwards over all remain-
ing edges from MFP (line 5–6) to create paths between σ̂i and σ̂i+1, which are
inserted in the path before P . Finally, in line 7 a path from the initial marking
q0 towards the first label σ̂0 is inserted before P to complete the path (here the
label is set to ⊥ to search for q0 in the BWD procedure).

In the example we first compute the path 〈(p3p5, E,p5p6), (p5p6, G,p7)〉 in
line 4, then after line 5–6 we insert the path 〈(p2p3,D,p3p5)〉, and in line 7
we insert the path from the initial state q0 = p0, 〈(p0, B,p2p3)〉 to create the
complete minimal-length path P in the marking graph such that σ̂ � λ(P ).

The alignment can be reconstructed by marking all events in the maximum
fitting subsequence as synchronous moves, by marking the remaining labels in
the log trace as log moves, and inserting the model and silent moves (as computed
by Algorithm 1) at the appropriate places.
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Note that the TCG algorithm does not exactly compute an alignment for
the cost function csync. The backwards BFS does ensure a shortest path through
the model from the initial to the final marking while synchronizing with the
maximum fitting subsequence. However, there might exist a different maximum
fitting subsequence that leads to a different path through the model with a
lower total cost (fewer model moves). This can be repaired by computing the
alignments for all maximum fitting subsequences. If the marking graph contains
cycles, the corresponding markings get contracted to a single state in the TCG
with a self-loop for each activity in the cycle. Also, the TCG may in theory con-
tain exponentially more states than there are markings in the marking graph.
However, in industrial models (Sect. 7.3), we found that in many cases the num-
ber of states in the TCG is at most two times more than the number of markings
in the marking graph.

7 Experiments

For the experiments, we considered two types of alignment problems. On the one
hand, a large reference model accompanied by an event log consisting of a single
log trace, and on the other hand a smaller reference model accompanied by an
event log of many traces. All experiments were performed on an IntelR© Coretm

i7-4710MQ processor with 2.50 GHz and 7.4 GiB memory. For all experiments,
we have set a timeout of 60 s. When computing averages, a timeout also counts
as 60 s.

We investigate differences between the alignments resulting from using the
standard- and max-sync cost functions, and compare alignment computation
times for A* (with ILP, using the implementation from RapidProM [12]) and
the symbolic algorithm (implemented in the LTSmin model checker [13]). We
further investigate specific alignment problems, cases C2 and C3 as discussed
in Sect. 4. Finally, we also look at models accompanied by many log traces to
compare the performance of the TCG algorithm (implemented in ProM [14])
with the other algorithms. For all large models with singleton log traces we
used 8 threads for computing alignments, and for smaller models with many log
traces we only used a single thread per alignment computation2. All results are
available online at https://github.com/utwente-fmt/MaxSync-BPM2018.

7.1 Experiments Using Large Models and Singleton Event Logs

Model Generation. Using the PTandLogGenerator [15] we generated Petri
net models with process operators and additional features set to their defaults;
where the respective probabilities for sequence, XOR, parallel, loop, OR are set
to 45%, 20%, 20%, 10%, and 5%. The additional features for the occurrence of
silent and duplicate activities, and long-term dependencies were all set to 20%.
2 We consider multi-threaded experiments not as useful in this scenario, as the problem

can be parallelized by dividing the log traces over the different threads and computing
the alignments independently.

https://github.com/utwente-fmt/MaxSync-BPM2018


244 V. Bloemen et al.

To examine scalability we ranged the average number of activities from 25,
50, and 75, resulting in respectively 110, 271, and 370 transitions on average. For
these settings, we generated 30 models (thus 90 in total) and generated a single
log trace per model. For this log trace we added 10%, 30%, 50%, and 70% noise
in three different ways (thus 12 noisy singleton logs are created); by (1) adding,
removing and swapping events (resembling case C4), (2), by only adding events
(resembling case C3), and (3) by only removing events (resembling case C2). In
total there are 1,080 noisy singleton logs. We first consider noise of type 1.

Alignment Differences. In Table 1 we compare the resulting alignments, pro-
duced by Sym, for the different cost functions. When comparing the overall
results of cst and csync (rightmost column), we observe that csync uses about
43% fewer log moves, which are added as synchronous moves. However in doing
so, more than six times as many model moves are required.

When looking at an increase in the amount of noise, the relative difference
between the number of log moves remains the same, while this difference in
model moves slightly drops. When increasing the number of activities from 25
to 75, We observe an increase in the number of model moves for csync from 3.2
times to 9.3 times as many compared to cst. As a corresponding result from this
effect, the difference between log moves from csync and cst stays relatively the
same for increasing activities.

We conclude that for csync the relative reduction in log moves stays mostly
the same, when fluctuating the amount of noise or size of the model. The size of
the model seems to greatly affect the number of model moves for csync, making
alignments from cst and csync more diverse for larger models.

Table 1. Comparison between alignments generated using the cst and csync cost func-
tions. The numbers show averages, e.g., the value of 2.3 in the top-left corner denotes
the average number of log moves for all computed alignments for which 10% noise is
added, using the cst cost function.

Noise added (add, remove, swap) Number of activities Average
10% 30% 50% 70% 25 50 75

cst csync cst csync cst csync cst csync cst csync cst csync cst csync cst csync
Log 2.3 1.3 6.5 3.6 9.4 5.4 10.9 6.3 4.7 3.2 8.9 4.6 8.4 4.5 7.0 4.0
Model 2.0 15.7 4.6 30.9 5.8 35.3 6.2 38.1 3.3 10.7 5.6 39.1 5.4 50.2 4.5 29.4
Sync 28.5 29.6 20.9 23.7 16.8 20.8 14.5 19.1 13.8 15.4 23.2 27.5 29.4 33.3 20.6 23.6
Silent 17.3 24.4 14.7 30.4 13.6 35.3 12.8 35.1 10.0 13.3 16.2 39.6 21.6 51.6 14.7 31.0

Performance Results. We observed that while Sym is faster in computing
alignments than the A* algorithm on cst (it takes on average 15.8 s for computing
an alignment using A* and 10.5 s for Sym), for the csync cost function A* is
outperforming the symbolic algorithm (13.7 s for A* and 16.5 s for Sym). This
has to do with the effect that the symbolic algorithm will explore the entire
model before attempting a single log move whereas A* does not.
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7.2 Alignment Problems that only Add or Remove Events

Alignment Differences. In Table 2 we compare the resulting alignments for
adding or removing events. When inspecting the Add case, we find that the cst
already avoids model moves for the most part as we would expect. Moreover,
there are only small differences between alignments from cst and cadd. For csync,
many model moves may be chosen to increase the number of synchronous moves.
These additional synchronous moves are arguably not part of the ‘desired’ align-
ment since they require a large detour through the model.

When removing events from the log trace, the cst cost function is only partly
able to describe the removal of events as it still chooses log moves. The csync
cost function does not take any log moves as this maximizes the number of
synchronous moves, making it equal to crem. When comparing cst and csync,
we could argue that for the Add case, the cst cost function better represents a
‘correct’ alignment and for the Rem case csync is better suited.

Performance Results. We observed that for cst, A* performs relatively bad for
the Rem case (14.1 s on average), but significantly better for csync (2.3 s on aver-
age). We argue that A* for cst tries to perform many log moves, that results in a
lot of backtracking, while for csync the algorithm avoids log moves entirely. The
symbolic algorithm uses 6.6s and 7.3s on average for cst and csync respectively.
For the Rem case, we do not observe a significant difference in the performance
times when considering crem, i.e., removing the log moves. This is because both
algorithms already avoid log moves for the csync cost function.

For the Add case, both A* and Sym require more time for computing align-
ments for csync than for cst. When removing model moves (cadd), A* and Sym
perform in respectively 36% and 77% of the time required for cst (thus 3.4 s and
9.3 s). By removing the model moves, both algorithms no longer have to explore
a large part of the state-space and only have to decide on which log moves,
synchronous and silent actions to chose, which is especially beneficial for A*.

Table 2. Comparison between alignments generated using the cst and csync cost func-
tions for alignment problems, where noise only consist of adding (Add) or removing
(Rem) events. The cost functions cadd and crem are variations on cst such that model
and log moves respectively have a cost of ∞

Log events added (Add) Log events removed (Rem)
10% 30% 50% 10% 30% 50%

cst csync cadd cst csync cadd cst csync cadd cst csync crem cst csync crem cst csync crem
Log 3.1 2.0 3.1 7.5 5.1 7.6 10.6 7.4 10.8 0.3 0.0 0.0 1.0 0.0 0.0 2.5 0.0 0.0
Model 0.0 13.1 0.0 0.1 21.6 0.0 0.2 23.1 0.0 3.0 3.3 3.3 6.3 7.7 7.7 8.0 11.9 11.9
Sync 29.4 30.5 29.4 26.5 28.9 26.4 24.1 27.4 23.9 30.3 30.7 30.7 21.0 22.0 22.0 13.9 16.4 16.4
Silent 16.3 23.6 16.2 15.5 31.0 15.4 14.0 30.0 13.8 18.4 18.5 18.5 16.0 16.7 16.7 13.2 16.0 16.0
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7.3 Experiments Using Event Logs with More Traces

We now consider smaller models that have to align many log traces. For our
experiments, we selected 9 instances from the 735 industrial business process
Petri net models from financial services, telecommunications and other domains,
obtained from the data sets presented in Fahland et al. [16].

For our selection, we computed the transitive closure graph (TCG) and con-
sidered the instances for which we were able to compute TCG within 60 s. From
this set, we selected the 9 most interesting cases, e.g., the models with the largest
Petri net models, largest marking graphs, largest TCG graph, and largest TCG
construction time. On average the marking graph contains 108 markings and the
TCG 134 states. In the worst case, the number of states in the TCG was 200,
which doubled the number of markings in the marking graph. We did not find a
large difference between the performance results of the individual experiments.

For each model, we generated a set of 10, 100, 1,000, and 10,000 log traces for
10%, 30%, 50%, and 70% noise added by adding, removing, and swapping events.
Thus in total, we have 16 event logs per model. We compared the performance of
the TCG algorithm with that of A* using a single thread. We also experimented
with the symbolic algorithm, but its setup time per alignment computation is
too large to provide meaningful results. Note that in our experiments, we only
consider the csync cost function. The TCG algorithm is not applicable to the cst
cost function.

Table 3. Alignment computation time (in milliseconds) for models with many log
traces. TCG-comp, TCG-align, and TCG respectively denote the time for computing
the TCG, the time for aligning all log traces, and the sum of the two.

Log size TCG-comp TCG-align TCG A*
10 272 9 281 426

100 269 20 289 3,539
1,000 265 161 426 13,247

10,000 274 1,542 1,936 33,906

Noise TCG A*
10% 727 9,320
30% 729 13,919
50% 750 14,199
70% 727 13,679

Results. The results are summarized in Table 3. On average, the TCG algorithm
used 270 ms for computing the transitive closure graph. When increasing the
number of log traces (left table), we see that the preprocessing step of the TCG
algorithm remains a significant part of its total time for up to 1,000 log traces.
The A* algorithm has to create a synchronous product of the model and log
trace for each instance, and expectedly takes more time in total. For 10,000 log
traces, A* is 17 times slower than the TCG algorithm. But even for 10 log traces,
the TCG algorithm outperforms A* by almost a factor of two.

When comparing the results for different amounts of noise (right table), we
see practically no difference in the computation times for the TCG algorithm.
The A* algorithm does require significantly more time for 30%, 50%, and 70%
noise compared to the 10% case. We argue that from 30% noise onwards, A* has



Maximizing Synchronization for Aligning Observed and Modelled Behaviour 247

to visit most of the state-space to construct an optimal alignment. In the TCG
algorithm, noise does not seem to affect its performance.

8 Related Work

One of the earliest works in conformance checking was from Cook and Wolf [17].
They compared log traces with paths generated from the model.

One technique to check for conformance is token-based replay [4]. The idea
is to ‘replay’ the event logs by trying to fire the corresponding transitions, while
keeping track of possible missing and remaining tokens in the model. However,
this technique does not provide a path through the model. When traces in the
event log deviate a lot, the Petri net may get flooded with tokens and the tokens
do not provide good insights anymore.

Alignments were introduced [5,7] to overcome the limitations of the token-
based replay technique. Alignments formulate conformance checking as an opti-
mization problem, i.e., minimizing the alignment cost-function. Since its intro-
duction, alignments have quickly become the standard technique for conformance
checking along with the A* algorithm for computing alignments [9]. In previous
work [8] we presented the symbolic algorithm for alignments and we analysed
how different model characteristics influence the computation times for cst.

For larger models, techniques have been developed to decompose the Petri
net in smaller subprocesses [18]. For instance, fragments that have a single-entry
and single-exit node (SESE) represent an isolated part of the model. This way,
localizing conformance problems becomes easier in large models. It would be
interesting to combine the TCG algorithm with such decomposed models.

A sub-field of alignments is to compute a prefix-alignment for an incom-
plete log trace. This is useful for analysing processes in real-time instead of
a-posteriori. Several techniques exist for computing prefix-alignments [7,19].
The TCG approach that we introduced in this paper could also be suitable
for computing prefix-alignments. Recently, Burattin and Carmona [20] intro-
duced a technique similar to the TCG approach, in which the marking graph
is extended with additional edges to allow for deviations. However, it cannot
guarantee optimality as a single successor marking is chosen per event, while
instead we consider all possible successors and can, therefore, better adapt for
future events.

In a more general setting, conformance checking is related to finding a longest
common subsequence, computing a diff, or computing minimal edit distances.
Here, the problem is translated to searching for a string B from a regular lan-
guage L such that the edit distance of B and an input word α is minimal [21].

9 Conclusion

In this paper, we considered a max-sync cost function that instead of minimizing
discrepancies between the log trace and the model, maximizes the number of
synchronous moves. We empirically evaluated the differences with the standard
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cost function, compared the alignment computation times. The max-sync cost
function also lead to a new algorithm for computing alignments.

We observed that in general, a considerable amount of model moves may
be required to add a few additional synchronous moves, when comparing max-
sync with the standard cost function. However, when alignment problems are
structured such that log moves are on a lower granularity than the model, a
max-sync cost function may be better suited. We also observed a significant
performance improvement in alignment construction if alignments can be formed
without taking any model moves or without any log moves.

On industrial models with many log traces, we showed that our new algo-
rithm, which uses a preprocessing step on the model, is an order of magni-
tude faster in computing alignments on many log traces for the max-sync cost
function.

We conclude that the max-sync cost function is complementary to the stan-
dard one as it provides an alternative view that may be preferable in some
contexts, and it may also significantly reduce the alignment construction time.
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