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Abstract. New and compelling regulations (e.g., the GDPR in Europe) impose
tremendous pressure on organizations, in order to adhere to standard procedures,
processes, and practices. The field of conformance checking aims to quantify the
extent to which the execution of a process, captured within recorded correspond-
ing event data, conforms to a given reference process model. Existing techniques
assume a post-mortem scenario, i.e. they detect deviations based on complete ex-
ecutions of the process. This limits their applicability in an online setting. In such
context, we aim to to detect deviations online (i.e., in-vivo), in order to provide
recovery possibilities before the execution of a process instance is completed.
Also, current techniques assume cases to start from the initial stage of the process,
whereas this assumption is not feasible in online settings. In this paper, we present
a generic framework for online conformance checking, in which the underlying
process is represented in terms of behavioural patterns and no assumption on the
starting point of cases is needed. We instantiate the framework on the basis of
Petri nets, with an accompanying new unfolding technique. The approach is im-
plemented in the process mining tool ProM, and evaluated by means of several
experiments including a stress-test and a comparison with a similar technique.

Keywords: Conformance checking; online processing; behavioural patterns; stream
processing; Petri nets; unfoldings.

1 Introduction

Organizations are facing challenges that arisie by digital transformation. Important con-
cerns to face are the way processes are managed, their strategic alignment w.r.t. the
organization’s goals and their compliance with respect to applicable regulations. An
example of these challenges is the compliance with the new regulations on the protec-
tion of data in Europe, i.e. GDPR1, where unprecedented requirements on the use of
data of EU citizens by organizations will be applicable from May 2018. Are current
business processes in organizations aligned with these new regulations?

Conformance checking is acknowledged as one of the key enabling technologies for
verifying compliance monitoring of regulations [11]. It compares (prescriptive) process
models to the actual execution of a process, and allows us to pinpoint deviations. The

1See http://eur-lex.europa.eu/eli/reg/2016/679/oj.
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detection of compliance problems can be narrowed to the set of detected deviations [1].
In spite of being a powerful aid, a rigid exploration of conformance checking techniques
has only been performed relatively recently [2, 4, 8, 14, 17, 18, 20–22].

A widespread application mode of conformance in literature is post-mortem: the
relation between the model and the observed behaviour is computed, assuming that
traces of observed process behaviour are complete. Such analysis, though meaningful
and accurate, only allows us to detect deviations after they occurred, which, in some
contexts, is too late. For example, consider the case where a trace of process behaviour
represents the treatment of a patient during her life, and the model encompasses the
clinical guidelines to follow for a given disease.

In contrast, online conformance checking techniques consider a live, real-time stream
of events as input, where every event belongs to a particular case, i.e. process instance.
As such, several different unfinished (running) cases at any position in the stream need
to be considered [4, 22]. Moreover, in real scenarios cases may start at different points
in the process, not necessarily in its initial stage, e.g. a patient process being monitored
in the middle of her clinical life. Such warm start mode of online conformance check-
ing allows us to not only analyze cases from which the full history is available, but also
those cases that lack historical process information.

In this paper, we present a novel framework, accompanied with a corresponding
instantiation that builds on top of the notion of Petri net unfoldings [13], that enables
the application of online conformance checking in warm start settings. To the best of
our knowledge, this is the first solution for this important problem. We present a frame-
work that relies on the notion of behavioural patterns, i.e., relations between process
activities. In particular, for each possible behavioural pattern, the number of different
behavioural patterns preceding/following it for a case is assumed to be known. Sub-
sequently, the approach assesses compliance by checking whether the expected be-
havioural patterns are either observed or violated. Additionally, completeness (is the
running case expected to be complete?) and confidence (is the compliance metric reli-
able?) values provide a more holistic view on the compliance of running cases.

We provide an instance of the framework based on weak order relations, accompa-
nied by an implementation in the process mining framework ProM [19]. We validate
the approach by means of a synthetic data set containing models and traces of varying
sizes and a data set containing cases that start in different stages of the process (warm
start). Furthermore we assess the applicability of the approach on a real data set. We
also asses the correlation of the technique w.r.t. the technique presented in [22], which
confirms that our framework provides a good estimation of conformance.

The remainder of the paper is structured as follows. In Sec. 2, we motivate the
need for an online conformance checking technique capable of handling the warm start
scenario. In Sec. 3, we present related work. In Sec. 4, we briefly present background
terminology. In Sec. 5, the general framework is described, which is instantiated in
Sec. 6 for weak order relations. We evaluate the instantiation in Sec. 7. In Sec. 8 we
discuss limitations of the work, whereas Sec. 9 concludes this paper.
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Fig. 1: Running example considered throughout this paper.

Table 1: Comparison of offline ([2]) and online conformance values (as proposed in this
paper) based on the process model in Fig. 1.

Trace Offline Online
Conformance Conformance Completeness Confidence

t1 = 〈A,A1, B,E, F 〉 1.00 1.00 1.00 1.00
t2 = 〈B,C,D, F 〉 0.78 1.00 0.60 1.00
t3 = 〈A,A1, A2, A1, B〉 0.80 1.00 1.00 0.50
t4 = 〈B,C,D〉 0.62 1.00 0.50 0.75

2 Motivation

Consider the process model reported in Fig. 1. Furthermore, consider some possible
executions of such process and their corresponding conformance values as reported in
Tab. 1. Trace t1 conforms w.r.t. the model: it represents a possible complete execution
of the process. This information is properly captured by both the offline technique [2]
and our online approach. Execution t2, on the other hand, is compliant with the process
but just from activity B onward, i.e. assuming that the initial activity A was executed
yet not observed. Such case is known as a warm start scenario: we start monitoring on-
going process instances rather than processes started after monitoring. Our approach is
explicitly designed to deal with this problem by additionally quantifying the complete-
ness of the execution. Note that, as Tab. 1 reports, offline approaches do not capture the
notion of completeness, and thus, in case of warm start, the final conformance value is
simply decreased. Trace t3 suffers from the opposite problem: it conforms to the pro-
cess model only up-until activity B, i.e., we expect to observe future behaviour. If we
do not assume to be in a post-mortem scenario, this trace has no conformance problem,
but is simply partial. Our approach is designed to explicitly handle this problem by
quantifying the confidence of the execution, i.e. the degree of reliability of the reported
conformance metric. Again, Tab. 1 shows that offline techniques cannot handle this sit-
uation. The combination of the last two problems is present in trace t4, i.e. the trace
captures an intermediate execution of the process which conforms the model but lacks
initial and final parts of the execution. The offline approach reports a conformance of
0.62, whereas the online approach indicates that, subject to incompleteness and a little
lack of confidence, the behaviour as seen conforms to the model.

3 Related Work

Until recently, conformance checking has only focused on relating modeled and ob-
served behaviour in a post-mortem fashion. Techniques for this task have been pro-
posed, with different assumptions and guarantees. Among existing techniques, we ob-
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serve: rule-based- [14, 20], token replay-based- [14], and alignment-based techniques. [2,
3, 8, 17, 18, 21]. The work presented in this paper can be seen as an evolution of the
rule-based approaches, where important new features, i.e. from offline to online and the
warm start capability, have been properly incorporated.

For online conformance checking, we identify two research lines. In [22] the au-
thors propose to compute prefix-alignments, i.e. providing explanations for prefixes of
complete behaviour. Unfortunately the complexity requirements are high and the tech-
nique is unable to handle the warm start scenario. An alternative approach is presented
in [4], where all the possible deviations are pre-computed on top of the model behaviour,
which is used to walk through the input stream.

4 Background

4.1 Process Models and behavioural Patterns

We do not assume a specific process modelling formalism, yet we do assume process
models to be defined in context of collections of activities. As such, we assume a pro-
cess model to constrain the relative ordering of its activities, e.g. reconsider the BPMN
diagram in Fig. 1, which specifies that we are able to execute activity A prior to activity
A1, yet the reverse is not the case. We furthermore assume the execution process activ-
ities to be atomic. A model M is potentially an imperative model, e.g. BPMN, Petri net
or EPC. The only requirement we impose on the considered model(s) is the fact that we
are able to deduce a language in terms of the activities it is defined upon.

Given a process model, with a corresponding language and relative ordering on its
activities, we assume that we are able to derive more advanced behavioural relations,
i.e. behavioural patterns, such as weak ordering, parallelism, causality and conflict.
Given two activities part of a process model, formally, we define a behavioural pattern
as a relation that the process imposes on them. As an example, consider the model in
Fig. 1, which dictates that activity A is always followed by activity A1.

Definition 1 (Behavioural Pattern). Given a set of activities A and a set of possible
control-flow relationsR, a behavioural pattern is defined as b(a1, a2) where a1, a2 ∈ A
are activities and b ∈ R represents a control-flow relation. An alternative writing of
b(a1, a2) is a1 b a2.

Using the notion of behavioural patterns, we formalize process models as follows.

Definition 2 (Process Model). A process modelB is the set of all behavioural patterns
prescribed by the process, such that B ⊆ R × A × A, where A is the set of activities
andR is the set of possible control-flow relations.

In context of this paper, we are primarily interested in behavioural patterns induced
by the possible sequential ordering of activities, i.e. we take a control-flow perspective.
As such we assume the existence of a universe of control-flow relationsR that allow us
to induce behavioural patterns. Examples of control-flow relations present inR are de-
fined in [15]. Consider for example the weak order relation. Let’s assume the existence
of two activities a1 and a2. They are in weak order relation, expressed as a1 ≺ a2,
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if there exists an execution of the process where a1 occurs before a2. Such relations
are used not only for the formal definition of the process, but also for the definition
of our observations: instances of these relations represent the observable units against
which we want to compute the conformance. For example, consider the BPMN model
in Fig. 1. Based on the semantics of BPMN, we deduce, for the control-flow relation ≺
(weak order relation), to have {(≺, A,A1), (≺, A1, B), . . . , (≺, D, F ), (≺, E, F )}.

4.2 Data Streams

A data stream is typically defined as an infinite sequence of data items. As such, we
define a sequence over set X of length n as a function σ : {1, ..., n} → X , and an infi-
nite sequence as σ : N+ → X . We also refer to a sequence using string representation:
σ = 〈x1, x2, . . . , xn〉 where xi = σ(i) ∈ X . In context of this paper, the streams we
observe refer to executions of a certain behavioural pattern. Therefore, we define an
observable unit as a behavioural pattern which is observed in a process instance.

Definition 3 (Observable Unit). Let C denote the set of case ids, let R denote the set
of control-flow relations and let A denote the set of activities. Let b ∈ R × A × A
denote a behavioural pattern. An observable unit o = (c, b) ∈ C × R × A × A is a
tuple describing a behavioural pattern b ∈ B that is observed in context of case id c.
The universe of all possible observable units is defined as O = C ×R×A×A.

For each observable unit we assume to have projection operators to extract the case
id and the pattern i.e. given o = (c, b), πc(o) = c and πb(o) = b.

Definition 4 (Stream of Behavioural Patterns). Given the universe of observable
units O = C × R × A × A, a stream of behavioural patterns is defined as an infi-
nite sequence of observable units: S : N+ → O.

A stream of behavioural patterns can be seen as an unbounded sequence of observ-
able units where their ordering complies with the time order of the observable units,
as defined by the underlying execution time of the corresponding activities. Note that,
a stream of behavioural patterns refers to information at a high level of abstraction,
i.e. when compared to the commonly used stream of executed process events [5]. How-
ever, under specific circumstances, e.g. the behavioural pattern considered in Sec. 6 (we
consider a stream of direct follows relations), a stream of behavioural patterns is easily
extracted from a stream of simple events. We refer to [5, 6], where techniques to convert
a stream of events to a stream of behavioural patterns are described.

5 Online Conformance Checking using behavioural Patterns

In this section we present conformance checking in terms of behavioural patterns. We
first present the envisioned requirements for an online conformance checking approach
after which we propose a generic framework that fulfills these requirements.
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Latest behavioral
pa�ern observed
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(not yet observed)

Previous behavioral pa�erns

Fig. 2: General idea of the 3 conformance measures computed based on a partially ob-
served process instance: conformance, completeness, and confidence.

5.1 Problem Statement

Existing conformance checking techniques quantify conformance using one specific
metric, typically in terms of compliance or deviation costs. In online settings however,
we suffer both from the fact that we perform in-vivo analysis, i.e. new event data is
likely to be observed in the future, as well as the warm start scenario. Using only one
metric to express conformance, therefore, leads to misleading results, i.e. cases that
already started and/or that are not finished yet get falsely penalized for this. To solve
these issues, we propose a breakdown of conformance in:

1. Conformance: Indicating the amount of correct behaviour observed thus-far;
2. Completeness: Indicating whether the entire trace is observed since the beginning.
3. Confidence: Indicating the possibility that the conformance score remains stable.

Consider Fig. 2 in which we graphically illustrate the proposed conformance met-
rics. Conformance is based on the current knowledge of a case, witnessed by the ob-
served behaviour. Completeness indicates the degree to what behaviour is potentially
missed for a case. Confidence signifies to what degree we are able to trust the confor-
mance metric, i.e. if more behaviour is expected in the future, deviations may occur
later as well.

5.2 Process Representation

The foundation of our online conformance checking technique is the notion of be-
havioural pattern. Hence, we need a model capturing the following information:
1. The set of behavioural patterns prescribed by the model;
2. For each behavioural pattern, the minimum and maximum number of distinct pre-

scribed patterns that must be observed before, since the beginning of the case;
3. For each behavioural pattern, the minimum number of distinct patterns still to ob-

serve in order to reach the end of the process (as prescribed by the reference model).

We formalize such (process) model as follows.

Definition 5 (Process Model for Online Conformance (PMOC)). A process model
for online conformance (PMOC) M = (B,P, F ) is defined as a triplet containing the
set of prescribed behavioural patterns B. Each pattern is defined according to Def. 1.
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Algorithm 1: Online conformance computation
Input: S: stream of behavioural patterns

M = (B,P, F ): process model for online conformance

1 Initialize map obs // Maps case ids to (finite) set of observed prescribed patterns
2 Initialize map inc // Maps case ids to integers
3 forever do
4 (c, b, t)← observe(S) // New observable unit from the stream

// Step 1: update internal data structures
5 if b ∈ B then
6 obs(c)← obs(c) ∪ {b} // If b already in obs(c), then no effect
7 else
8 inc(c)← inc(c) + 1

// Step 2: compute online conformance values

9 conformance(c)←
|obs(c)|

|obs(c)|+ inc(c)
10 Notify new value of conformance(c)
11 if b ∈ B then
12 if Pmin(b) ≤ |obs(c)| ≤ Pmax(b) then
13 completeness(c)← 1
14 else

15 completeness(c)← min

{
1,

|obs(c)|
Pmin(b) + 1

}
16 confidence(c)← 1−

F (b)

maxb′∈B F (b′)

17 Notify new values of completeness(c) and confidence(c)

// Step 3: cleanup
18 if size of obs and inc is close to max capacity then
19 Remove oldest entries from obs and inc

P contains, for each behavioural pattern b ∈ B, the pair of minimum and maximum
number distinct prescribed patterns (i.e.,B) to be seen before b. We refer to these values
as Pmin(b) and Pmax(b). Finally, for each pattern b ∈ B, F (b) refers to the minimum
number of distinct patterns (i.e., B) required to reach the end of the process from b.

5.3 Computing Online Conformance Metrics

The procedure for the online computation of the conformance checking is reported in
Alg. 1. The algorithm requires a stream of behavioural patterns (cf. Def. 4) and a PMOC
(cf. Def. 5) as input. The algorithm initializes two maps/functions: obs and inc (lines 1-
2). Given a case id as key, these maps store the set of observed prescribed behavioural
patterns and the number of observed patterns not prescribed. Note that, for each case,
the amount of data to store is bounded by the model, and thus, constant w.r.t. the stream.

The online conformance procedure has an infinite loop to process the unbounded
stream of behavioural relations (lines 3 and 4). The procedure is then split into 3 steps:
(i) updating the maps; (ii) computing the conformance; and (iii) housekeeping. In the
first step (lines 5-8) the obs and inc data structures are updated with the new observation:
if the pattern refers to prescribed relation, then it is added to the obs(c) set2. Otherwise,
the value of incorrect observations is incremented.

2If obs has no key c, obs(c) returns the empty set. If inc has no key c then inc(c) returns 0.
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The second step of the algorithm (lines 9-17) computes the actual conformance.
The conformance for a (partial) process instance c is calculated in line 9: the number of
distinct observed prescribed patterns in c (i.e., |obs(c)|) divided by the sum of the num-
ber of prescribed observed patterns and the incorrect patterns (i.e., |obs(c)| + inc(c)).
We quantify, in the interval [0, 1], the correct behaviour observed, where 1 indicates full
conformance (i.e., no incorrect behaviour) and 0 indicates no conformance at all (i.e.,
only incorrect behaviour). Completeness and confidence are updated only when a pre-
scribed behavioural pattern is observed (line 11) since they require to locate the pattern
itself in the process. Specifically, the completeness of process instance c is calculated in
lines 12-15. It depends on whether the number of distinct behavioural patterns observed
so far is within the expected interval for current pattern b (i.e., Pmin(b) ≤ |obs(c)| ≤
Pmax(b)

3) or not. In the former case, we assume completeness is perfect (therefore value
1). In the latter case, the problem could be due to two reasons: we observe less patterns
than expected (|obs(c)| < Pmin(b)) and in this case we have the ratio of observed pat-
tern over the minimum expected. Alternatively we observe more behavioural patterns
than expected (|obs(c)| > Pmax(b)) and in this case we assume a completeness value
of 1. Note that this last case could represent a “false positive”: we count the number
of observed correct patterns without checking which exact patters we are dealing with.
This approximation is imposed by online processing constraints. Finally, the confidence
of case c is calculated in line 16 as 1 minus the ratio of patterns still to observe (i.e.,
F (b)) and the overall maximum number of future patterns (i.e., maxb′∈B F (b

′)). Con-
fidence also ranges in [0, 1]: 1 indicates strong confidence (i.e., the execution reached
the end of the process), 0 means low confidence (i.e., the execution is still far from
completion, therefore there is room for changes). Observe that, the metrics computed
by the algorithm implement the metrics described in the problem statement section (cf.
subsection 5.1).

The third step of the algorithm (lines 18, 19) consists of cleanup operations. Specif-
ically, only a finite amount of memory is available: we can store only some process
instances. This step of the algorithm takes care of that: once the size of obs and inc
reaches the memory limit, oldest entries are removed. For the sake of readability, we do
not focus on the actual procedures to achieve that (cf. [5, 6] for possible solutions).

Suitability of the Algorithm for Online Settings. The computational complexity of the
main loop of the algorithm is constant for each event (given the reference model as
input). Specifically, step 1 (lines 5-8) updates hash maps in constant time. All computa-
tions in step 2 (lines 9-17) require constant time complexity (note that maxb′∈B F (b

′)
depends just on the model and can be pre-computed in advance). Finally, step 3 (lines 18,
19), can be realized to require constant time complexity (e.g., using LinkedHashMaps).
The space required by the procedure is bounded by an imposed maximum number
of keys in obs and inc. Then, since obs stores sets of prescribed behavioural patterns
(which are finite) and inc stores just one integer, the whole memory can not grow above
the imposed threshold. Since processing a single event takes a constant amount of time
and fixed amount of space, the procedure is suitable for online processing.

3Pmin(b) and Pmax(b) refer to the min./max. number of distinct patterns to be seen before b.
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Fig. 3: General idea of the approach presented in this paper. Steps 1-3 are performed
once, offline. Step 4 is the only online activity.

6 Online Conformance Checking using Weak Ordering Relations

In this section, we present an instantiation of the framework proposed in this paper. We
do so by computing three matrices out of the original model before the actual online
analysis. These matrices contain the information about the possible relations between
pairs of activities in the process model (behavioral patterns) that is needed by PMOC
(cf. Def. 5). In particular, for each possible behavioural pattern, we compute the (min.
and max.) number of different behavioural patterns preceding/following it for each case
in the model. The computation of these matrices allows us to retrieve information online
in constant time. The roadmap for the computation of the three matrices out of a process
model is shown in Fig. 3, while each of the steps is described in more detail in the
remaining of the section.

Step 1 : Input Process Models

As mentioned in Sec. 4, we do not assume a specific process modelling formalism.
However, in the context of this particular instantiation, we assume that the model can
be represented as a Petri net, possibly through a transformation from other process
modelling languages (e.g., transforming BPMN into Petri nets [7]). For instance, Fig. 4
shows the Petri net system representation of the BPMN process in Fig. 1, where transi-
tions, places, arcs and tokens are represented as squares, circles, directed black arrows
and black dots, respectively.

Given a (transformed) Petri net, an additional reverse net is computed. The reverse
net is a net with the same set of places and transitions as the original one, but where
the direction of the edges is inverted. The use of this additional net is made clear in
Step 3 . Some notions used later in this section relate to the execution semantics of
Petri nets, which we briefly/informally introduce here. A transition t is enabled iff there
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Fig. 4: Labeled net system of the model in Fig. 1.

is at least one token in each place in the preset of t. An enabled transition t can be fired
and, as a consequence, modifies the distribution of tokens over the net, thus producing
a new marking. The firing of a transition t removes one token from each place in its
preset and puts one token in each place in its poset. Finally, a marking is reachable if it
is produced by the firing of a sequence of transitions. We restrict to Petri nets systems
whose reachable markings contain up to 1 token in every place, i.e. safe Petri nets.

Step 2 : Finite representation of Process Model Behavior Through Unfoldings

The information about the behavioral patterns required by our framework can be ex-
tracted by analyzing the state space (markings) of the Petri net. Specifically, at each
marking, the number of behavioral patterns are computed and counted, and the number
of different behavioural patterns preceding/following the last observed pattern is stored.
Nevertheless, if a net is cyclic then the number of behavioural patterns it can produce
is infinite. Several authors have proposed techniques for computing finite Petri net rep-
resentations of the behavior of a net known as complete prefix of an unfolding. For
instance, [13] introduces a way to truncate the unfolding of a net at a finite level, while
keeping a representation of any reachable marking. Then, a framework for constructing
a canonical unfolding prefix, complete with respect to a suitable property, not limited
to reachability, was proposed in [10]. Our own work relies on such a framework, i.e.
we compute a finite fragment of the unfolding capturing enough information about the
distinct behavioral patterns in a net.

The new unfolding, specially developed for this instantiation, analyses each reach-
able marking at every possible case and computes the set of behavioral patterns between
the transitions (activities) that were fired to reach such marking. The idea of this new
unfolding is to keep firing transitions in the original net and create new instances of
places and transitions whenever they are fired, in the case of transitions, or visited by
a token, in the case of places. Then, the unfolding stops once it finds information that
has been observed before. As a concrete example, consider the weak order relation be-
tween activities. Fig. 5 shows the complete prefix unfolding for the running example
(unfolding of the net shown in Fig. 4). Observe that p′2, p′′2 and p′′′2 are instances of the
place p2. However, the unfolding stopped at p′′′2 because the weak order relations are
the same as those captured at the marking in p′′2 . In [10], the necessary conditions that a
notion of equivalence between execution states shall satisfy to guarantee that the com-
plete prefix unfolding is canonical and finite are defined. In our case, a pair of markings
are equivalent if they have (i) the same places, (ii) the same relations (i.e., weak order)
between activities executed to reach such marking, and (iii) the same set of activities
that were lastly executed for reaching such markings. These conditions allow to prove
canonicity and finiteness of the new complete prefix unfolding.

10



A A1 EB F

A2

DC F

A1 EB F

A2

DC F

A1 {A≺A1, A1≺A2, 
A2 ≺A1}

p''2

p'''2

p'2

{A≺A1, A1≺A2, 
A2 ≺A1}

{A≺A1}

Fig. 5: Weak order relation preserving unfolding computed by our new unfolding tech-
nique. The unfolding stops when reaching p′′′2 since the induced weak order relations
are the same as those observed in p′′2 .

Step 3 : Computation of PMOC’s Data Structures via Reachability Graphs

Given the complete prefix unfolding described above, different ways to compute the
weak order relations can be envisioned. For simplicity, in our implementation we con-
struct the corresponding reachability graph TS = (S, TR, s0). Such graph, which is
always finite, is used to derive the set of allowed weak order relations: for each state
s ∈ S it is possible to compute the set tsin ⊂ TR with all non-silent transitions imme-
diately leading to s, and the set tsout ⊂ TR with all non-silent transitions immediately
leaving s. In case there is a silent transition connected to s it is necessary to recursively
follow it and retrieve all incoming/outgoing transitions which will be part of tin/tout.
The set

⋃
s∈S{x ≺ y | x ∈ tsin, y ∈ tsout} represents all weak order relations that can

be extracted from TS. A weak order relation x ≺ y, defined as x entering s ∈ S and
y leaving s, might appear several time in TS. By finding the longest and shortest paths
from s0 to all occurrences of s, and converting these paths into distinct weak order
relations, it is possible to identify the minimum and maximum number of weak order
relations preceding x ≺ y.

For the purpose of this paper we do not only require the minimum and maximum
number of relations preceding a given one, but also the minimum number of relations
required to reach the end of the model. Thus, we use the reverse net for computing such
information by computing the complete prefix of the reverse net (reusing the methodol-
ogy in Step 2 ), and then counting the distinct relations over the corresponding reach-
ability graph.4 Observe that by inverting the direction of the weak order relations in the
reverse net, we obtain information referring to the end of the model: the distances now
refer to the minimum/maximum number of relations to reach the end. The techniques
described in this section allow the computation of the information needed to have a
proper process model abstraction for online conformance checking (cf. Def. 5).

4In general, not all Petri nets can be reversed for computing the minimal number of relations
to reach the end. Hence, for computing confidence, we assume in the realization of the framework
presented in Sec. 6 a proper subclass, i.e., sound workflow nets.
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Fig. 6: Performance of the system during a stress test involving 2 million events.

7 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed techniques in
terms of performance, as well as its indicative power of conformance. We addition-
ally compare our technique against an alternative, state-of-the-art online conformance
checking technique. The proposed technique is available as ProM plugin.5

7.1 Stress Test

We performed a stress test of our prototype. We randomly generated a BPMN model
containing 64 activities and 26 gateways. The model was then used to simulate an event
stream of 2 million events6. The test was performed on a standard machine, equipped
with Java 1.8(TM) SE Runtime Environment on Windows 10 64bit, an Intel Core i7-
7500U 2.70GHz CPU and 16GB of RAM. Results of the test are reported in Fig. 6.
After an initial phase, when the constructed data structures were still in memory, the
Java Virtual Machine was able to remove these unreferenced objects. This explains the
drop in the memory and the stabilization of the processing time, after about 100k event.
From that moment on, the memory used remained permanently around 100MB and the
average processing time persisted below 0.009 ms/event.

This test shows that the implemented prototype is capable of sustaining a high load
of events on a standard laptop machine. Moreover, we observe that both the processing
time and memory usage show a relatively stable, non-increasing trend. This aligns well
with our expectations and the general requirements of data stream analysis.

7.2 Correlation with Alternative Conformance Metrics

In this section, we examine the correlation of the proposed metrics with the alternative
described in [22], which reports a potential deviation in terms of costs, rather than a
conformance metric. Hence, the higher the cost of deviation, the less conformance. As
the metric in [22] is a more informed technique (at the expense of using more memory)
than the one proposed in this paper, a correlation between both metrics shows that our
technique reflects online conformance well.

We generated 12 random process models [9] with number of activities according
to a triangular distribution with lower bound 10, mode 20, and upper bound 30. We

5See https://svn.win.tue.nl/repos/prom/Packages/StreamConformance/.
6Models and streams available at https://doi.org/10.5281/zenodo.1194057.
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Fig. 7: Scatter plots of conformance metric versus incremental alignment costs [22].

Table 2: Correlation matrix (ρ-values, Spearman) for non-conforming results (cf.
Fig. 7b), showing the conformance metrics of this paper and costs as defined in [22].

Metrics from this paper Cost [22]
Conformance Completeness Confidence

Metrics from
this paper

Conformance 0.52282662 0.3862707 −0.29513342
Completeness 0.1851850 −0.02546182

Confidence 0.25104526

did not include duplicate labels, a probability of 0.2 for addition of silent activities,
moreover, the probability of control-flow operator insertion was: 0.45 for sequence, 0.2
for parallel and xor-split operators, 0.05 for an inclusive-or operator and 0.1 for loop
constructs. From these models a collection of event logs has been created (each log
contains 1000 traces), subsequently treated as streams by both techniques. Incremental
noise levels (both on a trace- and event-level) were introduced in the logs. Probability
of trace- and event-level noises ranged from 0.1 to 0.5 with steps of 0.1. In order to
compute the conformance, the technique presented in this paper needs, at least, two
events. Hence for a fair comparison, we only consider conformance values from the
second event onward, yielding a total of 2, 977, 744 analyzed events6.

In Fig. 7 we present a scatter-plot of the conformance metric (this paper) versus the
incremental alignment-based costs (alternative approach). Fig. 7a plots all results, i.e.
all events, where the size of the dot indicates the number of instances for the specific
value combination. Spearman’s rank correlation coefficient for the whole data set (ρ-
value) is −0.9538502. As the chart reports, coordinate (0, 1.0) dominates the data (in
73.4% of cases both techniques agree on no deviation). Hence, the data is extremely
skewed (vast majority of results at coordinate (0, 1.0)) which explains the strong nega-
tive correlation. Nonetheless, the result shows that the two metrics generally agree when
no deviations occur. In Fig. 7b, we present the same results but only for combinations
in which at least one of the techniques identifies a deviation. In general, when align-
ment costs increases, the conformance metric decreases. However, we observe that the
conformance values are spread around, i.e. we do not observe a clear linear trend. This
is supported by the corresponding ρ-value of −0.2951334, presented in Tab. 2, which
shows a correlation matrix for non-conforming results (cf. Fig. 7b) of the conformance
metrics presented in the paper and the costs as defined in [22]. Correlations among the
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Fig. 8: Online conformance on the road traffic fines log.

metrics presented in this paper are the strongest. The fact that completeness and con-
formance depict the strongest correlation is explained by the fact that the data set in
general contains complete cases. For confidence, weaker correlation is found. Based on
the data used, it is expected that once a case matures, relatively more correct behaviour
is observed than incorrect behaviour. The correlation between costs and completeness
is negligible. For costs and confidence we observe a weak positive correlation: towards
the end of a trace, the likelihood of having observed noise, and thus costs, goes up.

We conclude that the two metrics largely agree when no noise is present (with a mi-
nor number of outliers). When both methods observe deviations, corresponding quan-
tifications do not clearly correlate. This is partly due to the fact that the alignment based
approach always explains observations in terms of the model, whereas the approach in
this paper does not. Secondly, the use of weak order relation as a behavioural pattern
leads to the use of a strong abstraction of the model: this representational bias seems
not in-line with the deviation approximation of the alternative approach.

7.3 Real-World Event Data Test

Finally, we investigated the real event log of an information system managing road traf-
fic fines for the Italian police [12]. This log has a reference model, designed with the
help of domain experts and regulators [12]. To avoid the state explosion problem during
the computation of the matrices, we removed self-loops from the model7. Additionally,
to focus on most relevant traces, we discarded all process instances with just one or two
activities. The resulting log contains 316 868 events, over 83 614 cases. The process-
ing of the log, (excluded the offline computations, and with support for up to 10 000
process instance in parallel) took 44 967ms (0.14 ms/event). Fig. 8 contains the binned
results of the analysis. The x axis reports the different events (by time, grouped in bins
of 3 000 events). The y axes of the charts report conformance, completeness and confi-
dence levels (grouped in bins of 0.25). Each point represents several events (bubble size
proportional to number of events) but different process instances can be intertwined.
Therefore, two consecutive events could refer to cases with very different conformance
levels (this explains fluctuations). We can see that the conformance values are mostly at

7This limitation only affects Sec. 6: it is possible to manually define the behavioural patterns.
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1: only few events deviated from the reference model (93.5% of the events have confor-
mance 1 and 99.6% of events have conformance ≥ 0.5). Average conformance value
is 0.97, suggesting very high conformance in general. 99.8% of the events have com-
pleteness of 1: most executions actually started from the beginning with just sporadic
warm starts. Finally, confidence has mostly value 1 (99.4% of events). This is due to the
specific behaviour of the process which allows immediate termination of the execution
right after the execution of the first activity.

8 Discussion

The approach presented in this paper can be used to monitor any set of behavioural
patterns, i.e. we represent processes models as sets of prescribed behavioural patterns
and streams as infinite sequences of behavioural patterns. Because of this, the frame-
work is rather abstract and allows us to monitor any possible set of relations. Note that
we could also use the organizational perspective, rather than the control-flow perspec-
tive. An example relation which might be relevant for monitoring purposes is whenever
pairs of activities have to be performed collaboratively and simultaneously (i.e., coop-
eration [16]). The provided instantiation automatically extract instances of weak order
behavioural patterns out of a Petri net and an event stream. We focus on weak order
relations since they are widely used and relatively easy to deduce. Clearly, using more
advanced behavioural patterns such as causality, parallism and/or different perspectives,
i.e. organizational, requires a corresponding algorithmic design to deduce such patterns
from the process model and/or stream under study.

9 Conclusions and Future Work

In this paper we present a generic approach to compute the conformance of data streams
against a reference process model. In order to cope with all possible scenarios, the ap-
proach decomposes the actual conformance into 3 metrics: the actual conformance, the
completeness and the confidence. Thus, the technique can be used on partial executions
and on traces already running (i.e., warm start). Moreover, we provide an instantiation
of the generic approach for the case of weak order relations, which is based on a new
unfolding technique. This instantiation is implemented and available in ProM and it
has been verified on large dataset for stress test, on a real dataset, and it has also been
compared against a prefix-alignment based approach. As future work we plan to inves-
tigate further realizations of the framework, including declarative models, to understand
which behavioural patterns are useful in order to converge towards optimal approaches
bearing in mind that, being online, approximations must be in place.
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