
March 6, 2019 3:38 WSPC/INSTRUCTION FILE
The˙Synchronizing˙Probability˙function˙for˙primitive˙sets

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

The Synchronizing Probability Function

for Primitive Sets of Matrices

Costanza Catalano

Gran Sasso Science Institute, Viale Francesco Crispi 7

L’Aquila, 67100, Italy.
costanza.catalano@gssi.it
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Motivated by recent results relating synchronizing DFAs and primitive sets, we tackle

the synchronization process and the related longstanding Černý conjecture by studying
the primitivity phenomenon for sets of nonnegative matrices having neither zero-rows

nor zero-columns. We formulate the primitivity process in the setting of a two-player

probabilistic game and we make use of convex optimization techniques to describe its
behavior. We develop a tool for approximating and upper bounding the exponent of

any primitive set and supported by numerical results we state a conjecture that, if true,

would imply a quadratic upper bound on the reset threshold of a new class of automata.
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1. Introduction

A set of nonnegative matricesM = {M1, . . . ,Mm} is called primitive if there exists

i1, . . . , il ∈ {1, . . . ,m} such that the product Mi1 · · ·Mil is entrywise positive; a

product of this kind is called a positive product. The notion of a primitive set arose

in different fields as in stochastic switching systems [17,26] or in time-inhomogeneous

Markov chains [16,31], but it was just recently formalized by Protasov and Voynov

[27] as an extension of the concept of primitive matrix a, developed by Perron and

Frobenius at the beginning of the 20th century in the famous theory that carries

their names. Mimicking their terminology, we call the exponent of a primitive set

M the length of its shortest positive product, and we indicate it by exp(M).

The primitivity property of nonnegative matrix sets has lately found applica-

tions in various fields as in consensus of discrete-time multi-agent systems [7], in
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aA nonnegative matrix M is primitive if there exists s ∈ N such that Ms > 0 entrywise.
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cryptography [11] and in automata theory [4, 5, 13]. Primitivity can also be seen

as one of the simplest reachability problems for nonnegative discrete-time switched

systems, as it provides a necessary and sufficient condition for the system to reach

the interior of the nonnegative orthant independently on the initial state [4].

In the last years, several papers have contributed in shedding light on primitivity.

We mention that Protasov and Voynov [27] proved that deciding whether a set

of nonnegative NZ-matricesb is primitive can be done in polynomial time, while

Blondel et. al. [4] later proved that in the general case determining whether a set of

a least three nonnegative matrices is primitive is an NP-hard problem. Moreover,

they showed that the exponent of a primitive set can increase exponentially with

respect to the matrix size, but in case of NZ-matrices there exists a cubic upper

bound (see Eq.(2) in the next section). Better upper bounds have also been found

for some classes of primitive sets [13,16].

The primitivity property does not depend on the magnitude of the positive

entries of the matrices of the set. We can thus consider matrices with entries in {0, 1}
(binary matrices) and use the boolean matrix product between them, that is setting

for any A and B binary matrices, AB[i, j] = 1 any time that
∑

sA[i, s]B[s, j] >

0. This fact will be further formalized in Sect. 2 and it will play a central role

throughout the paper. In this framework, primitivity can be also rephrased as a

membership problem (see e.g. [23, 25]), where we ask whether the all-ones matrix

belongs to the semigroup generated by the matrix set.

In this paper we focus on the connection between primitive sets and synchro-

nizing DFAs.

1.1. Synchronizing DFAs

A complete deterministic finite state automaton (DFA) is a 3-tuple A = 〈Q,Σ, δ〉
where Q is a finite set of states, Σ is a finite set of input symbols (the letters of the

DFA) and δ : Q × Σ → Q is the transition function. A DFA is synchronizing if it

admits a word w, called a synchronizing or a reset word, and a state q such that

δ(q′, w) = q for any state q′. In other words, the reset word w brings the automaton

from every state to the same fixed state.

The idea of synchronization is quite simple: we want to restore control over a device

whose current state is unknown. For this reason, synchronizing DFAs are often used

as models of error-resistant systems [6, 10], but they also find application in other

fields as in symbolic dynamics [21], in robotics [22] or in resilience of data compres-

sion [30]. For a recent survey on synchronizing DFAs we refer the reader to [38].

We are usually interested in the length of the shortest reset word of a synchroniz-

ing DFA A, called its reset threshold and denoted by rt(A). Despite determining

whether a DFA is synchronizing can be done polynomial time (see e.g. [38]), com-

bA matrix is NZ is it has a positive entry in every row and every column. Sometimes these matrices
are also called allowable.
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puting its reset threshold is an NP-hard problem [10]. One of the most longstanding

open questions in automata theory concerns the maximal reset threshold among the

synchronizing DFAs having the same number of states, presented by Černý in 1964

in his pioneering paper:

Conjecture 1 (The Černý conjecture [36]) Any synchronizing DFA on n

states has a synchronizing word of length at most (n− 1)2.

Černý also presented in [36] a family of DFAs having reset threshold of exactly

(n − 1)2, thus demonstrating that the bound in his conjecture (if true) cannot be

improved. A great effort in the last decades has been made to prove or disprove

the Černý conjecture. Exhaustive search confirmed it for small values of n [8, 35]

and within certain classes of DFAs (see e.g. [19,33,37]) but its validity still remains

unclear. On the one hand, the best upper bound known on the reset threshold

of any synchronizing n-state DFA is (15617n3 + 7500n2 + 9375n − 31250)/93750,

recently found by Szyku la [34] after improving the 30-years standing upper bound

of (n3 − n)/6 [12, 24]; on the other hand, DFAs having quadratic reset threshold,

called extremal automata, are very difficult to find and few of them are known (see

e.g. [9,14,20,29]). Interestingly, some of these families have been found by Ananichev

et. al. [2] by coloring the digraph of primitive matrices having large exponent; we

can probably identify here the first attempt to use primitivity for synchronizing

DFAs. Quadratic upper bounds (but larger than (n − 1)2) on the reset threshold

have been obtained for some classes of DFAs (see e.g. [14, 28]). In view of this, we

can say that the synchronization process is still far to be fully understood; in the

next section we show how it is linked with primitivity.

1.2. Connecting primitive sets and synchronizing DFAs

DFAs can be represented by sets of binary matrices. A DFA A = 〈Q,Σ, δ〉 with

Q = {q1, . . . , qn} and Σ = {a1, . . . , am} is uniquely represented by the matrix

set {A1, . . . , Am} where, for all i = 1, . . . ,m and l, k = 1, . . . , n, Ai[l, k] = 1 if

δ(ql, ai) = qk, Ai[l, k] = 0 otherwise. The action of a letter ai on a state qj is

represented by the product eTj Ai, where ej is the j-th element of the canonical

basis. The matrices {A1, . . . , Am} are binary and row-stochastic, i.e. each of them

has exactly one 1 in every row. The synchronization property of a DFA can be

rephrased in terms of properties of the semigroup generated by the matrix set. A

DFA A = {A1, . . . , Am} in its matrix representation is synchronizing if and only if

in the semigroup generated by A there is a matrix with a column whose entries are

all equal to 1 (also called an all-ones column).

Synchronizing DFAs are linked with primitive sets of binary NZ-matricesc. Be-

fore establishing this connection in Theorem 2, we need the following definition:

cWe remind that matrix is NZ if it has at least a positive entry in every row and every column.
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Figure 1. The DFAs Aut(M) (left) and
Aut(MT ) (right) of Ex. 3.
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Definition 1. Let M be a set of binary NZ-matrices. The DFA associated to the

setM is the automaton Aut(M) such that A ∈ Aut(M) if and only if A is a binary

and row-stochastic matrix and there exists M ∈M such that A ≤M (entrywise).

Theorem 2 ( [4], Theorems 16-17)

Let M = {M1, . . . ,Mm} be a set of binary NZ-matrices and let MT be the set

{MT
1 , . . . ,M

T
m}. Then it holds that M is primitive if and only if Aut(M) (equiva-

lently Aut(MT )) is synchronizing. If M is primitive, it also holds that:

rt
(
Aut(M)

)
≤ exp(M) ≤ rt

(
Aut(M)

)
+ rt

(
Aut(MT )

)
+ n− 1. (1)

The following example reports a primitive set M of NZ-matrices and the syn-

chronizing DFAs Aut(M) and Aut(MT ).

Example 3. Consider the primitive set M=
{(

0 1 0
1 0 0
0 0 1

)
,
(

1 0 1
0 0 1
0 1 0

)}
.

The synchronizing DFAs Aut(M) and Aut(MT ) are the following (see also Fig. 1);

one can verify that exp(M) = 8, rt
(
Aut(M)

)
= 4 and rt

(
Aut(MT )

)
= 2.

Aut(M)=
{(

0 1 0
1 0 0
0 0 1

)
︸ ︷︷ ︸

a

,
(

1 0 0
0 0 1
0 1 0

)
︸ ︷︷ ︸

b1

,
(

0 0 1
0 0 1
0 1 0

)
︸ ︷︷ ︸

b2

}
, Aut(MT )=

{(
0 1 0
1 0 0
0 0 1

)
︸ ︷︷ ︸

a

,
(

1 0 0
0 0 1
0 1 0

)
︸ ︷︷ ︸

b1

,
(

1 0 0
0 0 1
1 0 0

)
︸ ︷︷ ︸

b′2

}
.

Eq.(1) shows that the behavior of the exponent of a primitive set of NZ-matrices

is tightly connected to the behavior of the reset threshold of its associated DFA. A

primitive setM with quadratic exponent implies that one of the DFAs Aut(M) or

Aut(MT ) has quadratic reset threshold; in particular, a primitive set with exponent

greater than 2(n− 1)2 + n− 1 would disprove the Černý conjecture. On the other

hand, if we define expNZ(n) to be the maximal exponent among the primitive sets

of n × n NZ-matrices, then a (quadratic) upper bound on expNZ(n) would lead

to a (quadratic) upper bound on the reset threshold of any n-states synchronizing

DFA associated to some primitive set. This properties, together with the charac-

terization theorem for primitive sets of NZ-matrices ( [27], Theorem 1), has been

used by the authors in [5] to construct a randomized procedure for finding extremal

synchronizing DFAs.

We underline that the synchronizing DFAs associated to some primitive set form a

special class, as not every synchronizing DFA has this property. Notice that every

synchronizing DFA can be turned into a primitive set of NZ-matrices by adding a

one in each zero-column of its matrices.

The best upper bound for expNZ(n) comes by Eq.(1) and [34]:

expNZ(n) ≤ (15617n3 + 7500n2 + 56250n− 78125)/46875 . (2)
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It follows from all the above considerations that a better understanding of the

primitivity phenomenon would give a further insight on the synchronization of

DFAs, other than being of interest by itself. In particular, improvements on the

upper bound of Eq.(2) and methods for approximating the exponent of a primitive

set of NZ-matrices are particularly of interest.

1.3. Our contribution

In 2012 the second author built up in [18] a new tool for studying the synchronization

phenomenon. By looking at synchronization as a two-player game, he developed the

concept of sychronizing probability function for automata (SPFA), a function that

describes the speed at which an automaton synchronizes. In [15] Gonze and Jungers

use this tool to prove a quadratic upper bound on the length of the shortest word

of a synchronizing DFA mapping three states into one. Inspired by this and by the

smoothed analysis in combinatorial optimization, where probabilities are used in

order to analyze the convergence of iterative algorithms on combinatorial structures

(see e.g. [32]), we wanted to express the speed at which a primitive set reaches

its first positive product by embedding the primitivity problem in a probabilistic

framework. The goal is to design a function that increases smoothly, representing

the convergence of the primitivity process, in order to have a tool for:

• approximating the exponent of any given primitive set of NZ-matrices;

• improving the upper bound on expNZ(n).

To do so, we describe the primitivity problem in terms of a two-player zero-sum

game. The game is presented in Section 3, where we define the Synchronizing Prob-

ability Function for primitive sets (SPF) as the function that describes the prob-

ability of winning of one of the two players if they both play optimally. We then

reformulate the game as a linear programming problem in Subsection 3.1 and we

provide an analysis of some theoretical properties of the SPF by making use of

convex optimization techniques: we show that this function is closely related with

properties of the primitive set and that it must increase regularly in some sense.

Some numerical experiments are reported in Subsection 3.2, where we show that

the SPF can be used to approximate the exponent of any given primitive set of

NZ-matrices and how to potentially obtain a better upper bound on expNZ(n). In

Section 4 we introduce the function K̄(t), which is an upper bound on the SPF: we

show that stronger theoretical properties hold for this function and that an estimate

on the first time at which K̄(t) reaches the value 1 implies an estimate on expNZ(n).

We then state a conjecture on K̄(t) that, if true, would lead to a quadratic upper

bound on expNZ(n) and to a quadratic upper bound on the reset threshold of the

class of synchronizing DFAs associated to some primitive set.

2. Notation and preliminaries

The set {1, . . . , n} is represented by [n]. Given two sequences {an}, {bn}, n ∈ N,

we say that an = O(bn) if there exist C > 0 and N ∈N such that for every n>N ,
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an ≤ Cbn. The canonical basis of Rn is denoted by En = {e1, . . . , en}. We indicate

with e the vector having all its entries equal to 1; the length of e, when not explicitly

stated, will be clear from the context. We denote with Rn
≥0 the set of the vectors of

length n with nonnegative real entries, also called nonnegative vectors. The support

of a nonnegative vector v is the set {i : vi > 0}; a stochastic vector v is a nonnegative

vector such that vT e =
∑

i vi = 1.

Given a matrix M , MT represents its transpose, M [:, j] indicates its j-th column

and M [i, :] indicates its i-th row. Given a set of matrices M = {M1, . . . ,Mm},
MT denotes the transpose set {MT

1 , . . . ,M
T
m}. We say that a matrix is binary if

it has entries in {0, 1}. We call a matrix a permutation matrix if it is binary and

it has exactly one 1 in every row and every column. A row-stochastic matrix is a

nonnegative matrix where each row is a stochastic vector. A matrix is NZ if it has

at least one positive entry in every row and every column. We say that a matrix A

dominates a matrix B (A ≥ B) if A[i, j] ≥ B[i, j], ∀ i, j.
As already anticipated, we make use of the boolean product between matrices:

Definition 4. Let B1 and B2 be two n× n binary matrices. The boolean product

B1�B2 is defined as B1�B2[i, j]=1 if
∑n

k=1B1[i, k]B2[k, j] > 0, B1�B2[i, j]=0

otherwise.

Since this product is the only matrix-product used in this paper, we will simply

write B1B2 for B1�B2. Given a vector v, the product B1B2v is to be understood

as (B1 �B2) · v with · the standard matrix-vector product.

Given a directed graph D = (V,E), we denote with v → w the directed edge leaving

the vertex v and entering the vertex w. We use the notation v → w ∈ E to indicate

that the edge v → w belongs to the graph D. A directed graph is strongly connected

if there exists a directed path from any vertex to any other vertex. In this paper we

will mostly use labeled directed multigraphs, i.e. directed graphs with labeled edges

and multiple edges allowed. Given G = (V,E) a labeled directed multigraph with

set of labels L, we denote with v
l→ w the directed edge from v to w labeled by

l ∈ L and we write v
l→ w ∈ E if this edge belongs to the graph G. We say that a

path in G from vertex v to vertex w is labeled by a sequence L = l1 . . . ls if there

exist w2, . . . , ws ∈ V such that for every j ∈ [s], wj
lj→ wj+1 ∈ E, where w1 = v

and ws+1 = w. In this case we also use the notation v
L→ w ∈ E to express the fact

that there exists a path in G from v to w labeled by L = l1 . . . ls.

A set of nonnegative matrices {M1, . . . ,Mm} is said to be irreducible if the ma-

trix
∑m

i=1Mi is irreducible. Irreducibility is a necessary but not sufficient condition

for a matrix set to be primitive (see [27], Section 1).

Remark 5. Given a set M of n × n matrices, consider the directed graph DM =

(V,E) where V = [n] and i→ j ∈ E if and only if ∃M ∈M s.t. M [i, j] > 0. It

is easy to see that M is irreducible if and only if DM is strongly connected. In

terms of matrix products, the fact that DM is strongly connected means that for
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every i, j ∈ [n], there exists a product P of at most n− 1 matrices of M such that

P [i, j] > 0. If the set M is primitive, then DM is also the underlying graph of

Aut(M). This implies that Aut(M) is strongly connected or, equivalently, that for

every i, j ∈ [n], there exists a product A of at most n− 1 matrices of Aut(M) such

that A[i, j] = 1.

The synchronization of a DFA can be established by the following criterion:

Proposition 6 ( [38], Section 2) Let A = {A1, . . . , Am} be a DFA on n states

and let SG(A) = (V,E) be the the labeled directed graph (usually called the square

graph) with label set A, where V = {(i, j) : 1 ≤ i ≤ j ≤ n} and (i, j)
Ak→ (i′, j′) ∈ E

if and only if Ak[i, i′] > 0 and Ak[j, j′] > 0, or Ak[i, j′] > 0 and Ak[i, j′] > 0.

Then A is synchronizing if and only if for any vertex (i, j) with i 6= j there exists a

path in SG(A) from it to a vertex (k, k), for some k ∈ [n]. Furthermore, it holds that

diam
(
SG(A)

)
≤ rt(A), where diam

(
SG(A)

)
indicates the diameterd of SG(A).

3. The Synchronizing Probability Function for Primitive Sets

Here we introduce primitivity as a two-player game on a labeled directed multigraph.

We remind that all the matrix products have to be read as boolean matrix products

(see Definition 4). Given v ∈Rn
≥0, we denote with [v] the binary vector such that

[v]i = 1 if vi > 0, [v]i = 0 otherwise.

Definition 7. Let M = {M1, . . . ,Mm} be a set of n × n NZ-matrices. We define

DM = (VM, EM) to be the labeled directed multigraph with set of labels L such that:

• VM = {v ∈ {0, 1}n : v 6= (0, . . . , 0)T };
• L = {M1, . . . ,Mm};
• v Mi−−→ w ∈ EM if and only if [vTMi] = wT .

Notice that for any v ∈ VM and i ∈ [m], there exists exactly one edge in DM leaving

v and labeled by Mi. This implies that, given a sequence of labels l = Mi1 . . .Mir

and a vertex v ∈ VM, there is exactly one path in DM leaving v and labeled by l.

Consequently, for any sequence of labels l and vertex v ∈ VM, there exists a unique

vertex w ∈ VM such that v
l−→ w ∈ EM. The following example reports a set M

and the corresponding graph DM.

Example 8. Consider the following matrix set; the graph DM is shown in Fig. 2.

M =

{
M1 =

(
0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

)
, M2 =

(
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)}
.

dWe remind that the diameter of a (directed) graph is the maximal length among the shortest
(directed) paths connecting any two given vertices.
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e1
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M1 M1,M2

M1,M2

M2

M1

Figure 2. The labeled directed multigraph DM of the matrix set M in Ex. 8.

We now fix a set M = {M1, . . . ,Mm} of n× n binary NZ-matrices and an integer

t ≥ 1. We are going to describe a game between two players on the graph DM =

(VM, EM). We remind that we indicate with En the canonical basis of Rn and with

e the all-ones vector (where its length depends on the context).

Game 1. (1) Player B secretly chooses an initial vertex ei ∈ En ⊂ VM;

(2) Player A chooses a sequence l = Mi1 . . .Mir of at most t matrices in M;

(3) Let w ∈ VM s.t. ei
l−→ w ∈ EM. An entry wj of w = (w1, . . . , wn)T is chosen

uniformly at random: if wj = 1 then Player A wins, otherwise Player B wins.

Notice that the vertex w in point (3) is the vector [eTi Mi1 · · ·Mir ].

We consider that both players can choose probabilistic strategies. The policy of

player B is a probability distribution over the canonical basis En, that is any stochas-

tic vector p ∈ Rn
≥0; he chooses the vertex ei with probability pi. Let M≤t denote

the set of all the products of elements from M of length at most t. The policy of

Player A is a probability distribution over the setM≤t, that is a stochastic vector q

of length equal to the cardinality ofM≤t: Player A chooses to play the j-th element

of M≤t with probability qj .

We are interested in an optimal strategy for Player A. Notice that if Player A can

play a sequence l = Mi1 . . .Mir such that for all ei ∈ En, ei
l−→ e ∈ EM, then he is

sure to win. To meet these conditions, the product M = Mi1 · · ·Mir has to have

all positive entries, i.e. it has to be a positive product. Therefore, if the set M
is primitive and t ≥ exp(M), then Player A has an optimal strategy for winning

surely by playing a positive product.

For t < exp(M), Player A wants to maximize her probablity of winning. The term

pTMi1 · · ·Mir

e

n
(3)

represents the probability that Player A wins by playing the product Mi1 · · ·Mir

given the policy p of Player B; indeed e/n is the uniform distribution over the set

[n]. Player A wants to maximize the term (3) over all her choices of the product

Mi1 · · ·Mir ∈ M≤t, while Player B wants to minimize it over all his choices of

the distribution p, if he wants to play optimally. The Synchronizing Probability
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Figure 3. The function K(t) for the set M0 (left picture) and for the set M1 (central picture) in

Eq. (5) and for the set M2 (right picture) in Eq. (6).

Function for primitive sets, presented in the following definition, formalizes this

idea: it represents the probability that Player A wins if both players play optimally.

Definition 9. Let M be a set of n × n binary NZ-matrices. The Synchronizing

Probability Function (SPF) for the set M is the function KM : N→ R such that:

KM(t) = min
p∈Rn

≥0
, pT e=1

{
max

M∈M≤t
pTM

( e
n

)}
. (4)

By convention we assume that the product of length zeroM0 is the identity matrix.

Sometimes we will indicate the SPF just with K(t) when the matrix set will be clear

from the context.

We have seen that if the setM is primitive, then Player A has a strategy for winning

surely when t ≥ exp(M). The opposite is also true: if Player A is sure to win at

time t, then M must have a positive product of length at most t. The following

proposition formalizes this fact:

Proposition 10. The function KM(t) takes values in [0, 1] and it is nondecreasing

in t. Moreover, there exists t∈N such that KM(t)=1 if and only if M is primitive.

In this case, exp(M)=min{t : KM(t)=1}.

Proof. Since we are using the boolean matrix product, for every M ∈M≤t and

any stochastic vector p ∈ Rn
≥0, it holds that 0 ≤ pTM(e/n) ≤ pT e ≤ 1. KM(t) is

nondecreasing since for every t ≥ 0, M≤t ⊆ M≤t+1. Finally, Eq.(4) implies that

KM(t) is equal to 1 if and only if for any stochastic vector p there exist M ∈M≤t
such that pTM(e/n) = 1. By taking p = e/n, it follows that the matrix M is the

all-ones matrix and so exp(M)=min{t : KM(t)=1}.

The next example shows the graph plot of the SPF of three different primitive sets.

Proposition 10 says that we can read the magnitude of their exponent directly from

the graphs of their SPF, as it is equal to the abscissa of the point at which K(t)

reaches the value 1.

Example 11. Fig. 3 reports the SPF of the following primitive sets:
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M0 =
{(

0 1 0
1 0 0
0 0 1

)
,
(

1 0 1
0 0 1
0 1 0

)}
,M1 =

{(
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0

)
,

(
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
1 0 0 0 0
0 1 0 0 0

)}
, (5)

M2 =

{(
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0

)
,

(
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 1

)
,

(
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

)}
. (6)

It holds that exp(M0) = 7, exp(M1) = 9 and exp(M2) = 13.

The SPF seems to increase quite regularly after an initial stagnation: it measures

how fast a primitive set reaches its first positive product by taking into account the

evolution of the matrix semigroup generated by the set.

3.1. The linear programming formulation

The SPF can be reformulated as a linear programming problem, which let us prove

interesting properties on its behavior. Before showing this in Theorem 13 we need

the following definition, where we remind thatM≤t denotes the set of all the prod-

ucts of elements from the matrix set M of length at most t and that e represents

the all-ones vector.

Definition 12. Given a setM of n×n binary NZ-matrices, we denote with ht the

cardinality of the set M≤t. We define the matrix Ht to be the n× ht matrix whose

i-th column is equal to Aie, with Ai the i-th element of M≤t.

The matrix Ht has entries in [n] due to the boolean product and H0 = e; in

particular, if ci is the i-th column of Ht and Ai is the i-th element of M≤t, cil is

the number of positive entries in the l-th row of Ai. Note that if the vector ne is a

column of Ht, then there must be a positive product in M≤t and so KM(t) = 1.

Theorem 13. The synchronizing probability function KM(t) is given by:

min
p,k

k

n
s.t.


pTHt ≤ keT

pT e = 1

p ≥ 0

, (7)

where p is vector of length n. The function KM(t) is also given by:

max
q,k

k

n
s.t.


Htq ≥ ke
eT q = 1

q ≥ 0

, (8)

where q is a vector of length ht.

Proof. Programs (7) and (8) are the dual of each other. Since they both admit

feasible solutions, their optima must be equal by the duality theorem of linear

programming (see [3], Theorem 4.2).
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The linear program (7) represents the point of view of Player B: he wants to

minimize the outcome of Player A over his possible choices of p, thus maximizing

his own outcome. Theorem 13 shows that Player B can make his policy p public

without changing the outcome of the game if both players play optimally, as Player

A can as well play before Player B.

We now exploit Theorem 13 to analyze the game. The first result characterizes

the behavior of K(t) for small and big t: it shows that the SPF presents an initial

stagnation at the value 1/n of length at most n− 1 and that it has to leave it with

high discrete derivative; with high discrete derivative it also leaves the last step

before hitting the value 1. This is formalized in the following proposition:

Proposition 14. Let M be a set of n× n binary NZ-matrices. It holds that:

(1) KM(0) = 1/n,

(2) KM(n) > 1/n,

(3) KM(t) > 1/n ⇒ KM(t) ≥ (n+ 1)/n2,

(4) KM(t) < 1 ⇒ KM(t) ≤ (n2 − 1)/n2.

Proof.

(1) Since H0 = e, then k = 1 and p = e/n is a feasible solution for the linear

program (7), so K(0) ≤ 1/n. On the other hand, q = 1 and k = 1 is a feasible

solution for the linear program (8), so K(0) ≥ 1/n.

(2) We claim that K(t) = 1/n if and only if Ht has an all-ones row. In fact, if Ht

has the i-th row entrywise equal to 1, then p = ei and k = 1 is an optimal

solution for the linear program (7), so K(t)=1/n. On the other hand, suppose

that every row of Ht has at least one entry greater than 1: let p be a stochastic

vector and j an index such that pj > 0. Then it holds that maxi{(pTHt)i} ≥
2pj + (1− pj) > 1, which implies that k > 1 and so K(t) > 1/n. We have hence

proved the claim. Since the set M is primitive and NZ, there must be M ∈M
with at least two positive entries in the same row, as otherwise it would be a

set of permutation matrices, which is never primitive: therefore, H1 must have

a column with an entry ≥ 2. Suppose this entry is in row s. By Remark 5,

for any l ∈ [n] there exists a product Pl of at most n − 1 matrices in M such

that Pl[l, s] > 0. This implies that (PlMe)l ≥ (Me)s ≥ 2 and PlM ∈M≤n.

Therefore, for every l ∈ [n], Hn has a column whose l-th entry is greater than

1, which implies that K(n) > 1/n.

(3) Let p ∈ Rn
≥0 be a stochastic vector and j such that pj ≥ 1/n. By item (2),

if K(t) > 1/n then every column of Ht has an entry greater than one, so

maxi{(pTHt)i} ≥ 1 + 1/n. It follows that K(t) ≥ (n+ 1)/n2.

(4) If K(t) < 1, then every column of Ht has at least one entry smaller than n. It

follows that k = eT ke/n ≤ (eT /n)Htq =
(
(eT /n)Ht

)
q ≤

(
(n2 − 1)/n

)
eT q =

(n2 − 1)/n and so K(t) ≤ (n2 − 1)/n2.

Computing the SPF can be hard due to the possible exponential growth of the
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size of the matrix Ht. The next results show that we can implement some strategies

in order to reduce the size of the linear program. In particular, Proposition 15 shows

that in order to compute the SPF, there is no need to use the full matrix Ht but we

can always potentially find a much smaller submatrix that reaches the same optimal

value. Proposition 16 states that we can replace the set M≤t by the set Mt of all

the products of length exactly t in some cases.

Proposition 15. For any set M of n × n binary NZ-matrices and any integer

t ≥ 1, there always exists a submatrix H ′t of Ht of size n × r, r ≤ n, such that we

can replace Ht with H ′t in the program (8) without changing the optimal value.

Proof. We indicate with (8)′ the program (8) where Ht is replaced by a submatrix

H ′t of size n× r and with K ′(t) its optimum. Let q′∗ be one of the optimal solutions

of (8)′; q′∗ is a feasible solution also for program (8) so K ′(t) ≥ K(t). We now show

that for an appropriate submatrix H ′, we have K ′(t) ≤ K(t). Let q∗ be an optimal

solution of (8) having all positive entries: if this is not the case, we can remove its

zero entries and the corresponding columns of Ht without changing the optimum.

If Ht has more than n columns, the system Htx = 0 has a nonzero solution. We can

suppose without loss of generality that eTx ≤ 0. By setting λ = minxi<0{q∗i / (−xi)},
we obtain that q∗ + λx is a feasible solution for program (8): indeed q∗ + λx ≥ 0

by the definition of λ, and Ht(q
∗ + λx) = Htq

∗ ≥ ke. Furthermore eTx ≤ 0 implies

that eT (q∗ + λx) ≤ 1 since λ > 0. In the case eT (q∗ + λx) < 1 we can increase a

nonzero entry of q∗+λx until the sum is equal to one without losing optimality. By

construction, q∗+λx has a zero entry so we can remove the corresponding column in

Ht without changing the optimum. We conclude by iteratively applying the above

argument until there are no more than n columns in Ht.

Proposition 16. For any integer t and for any set M of binary NZ-matrices in

which there exists at least one that dominates a permutation matrix, the set M≤t
can be replaced by the set Mt in program (7) without changing the optimal value.

Proof. Since Mt ⊂ M≤t, it is clear that the optimal value decreases; we show

that it actually remains the same. Let Aj ∈M≤tj for tj < t: we claim that there

exists a product L ∈Mt such that Aie ≤ Le. In this case we can erase the column

Aie from Ht as for any optimal solution p of program (7), pTAie ≤ pTLe ≤ k. Let

M ∈Mt−tj be a product that dominates a permutation matrix (it always exists

by hypothesis) and L = AjM ; it holds that for every column a of Aj there exists

a column l of L such that a ≤ l, which implies Aie ≤ Le. Since L is a product of

length t, the claim is proven.

Proposition 16 may fail for sets in which all the matrices do not dominate a

permutation matrix, as showed in Ex. 17. In this case, if we denote by K=(t) the

optimal solution of program (7) withM≤t replaced byMt, K=(t) can still provide

an approximation of K(t). Indeed, if s is the first time such that M≤s contains a
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Figure 4. The functions K(t), K=(t)

and K=(t + s) of the set M in Ex. 17.
In this case it holds that s = 3.

matrix that dominates a permutation matrix (s must exist if the set is primitive),

then for every t > s it holds that

K(t) ≥ K=(t) ≥ K(t− s) . (9)

This means that, if s is small enough, K=(t) is an accurate approximation of K(t).

Furthermore, Eq.(9) implies that min{t : K=(t + s) = 1} ≤ exp(M) ≤ min{t :

K=(t) = 1} , so K= also provides upper and lower bounds for the exponent of a

primitive set. An example of the functions K(t), K=(t) and K=(t+ s) is reported

in Fig. 4.

Example 17. Consider the primitive set M =

{(
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

)
,

(
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
0 1 0 1 0

)}
.

Each matrix of M does not dominate a permutation matrix. In Fig. 4 are reported

the functions K(t), K=(t) and K=(t + s) for the set M; in this case it holds that

s = 3, exp(M) = 6, min{t : K=(t) = 1} = 7 and min{t : K=(t+ s) = 1} = 4. The

functions K(t) and K=(t) do not coincide, so replacing M≤t with Mt in program

(7) does change its optimal value.

We remark that, due to the boolean matrix product that we are using, it holds that

Ht+1 6= {Mc : c column of Ht,M∈M}, so we cannot build Ht+1 recursively from

Ht. Consequently, to compute Ht+1 we first need to compute M≤t+1 recursively

from M≤t, and then set Ht+1 = {Me : M ∈M≤t+1}. The following strategies can

be implemented in order to reduce the size of Ht and so decrease the complexity of

the problem:

• If A1,A2∈M≤t and A2≤A1, then A2 can be erased fromM≤t and not

being considered for the computation ofM≤t+1: first notice that A2≤A1

implies A2e≤A1e, and so for any stochastic vector p such that pTA1e ≤ k, it

also holds pTA2e ≤ k. We can therefore erase A2e from Ht without changing

the optimal value. Secondly, for any binary NZ-matrix B, A2 ≤ A1 implies

BA2 ≤ BA1, which again implies BA2e ≤ BA1e. Consequently, A2 can be

permanently erased fromM≤t as for every t′ ≥ 1 and for every B ∈M≤t′ , the

product BA2 will not play a role in the solution of program (7) at time t+ t′.

• If c1 and c2 are two columns of Ht and c1 ≤ c2, then c1 can be erased

from Ht: indeed, for any stochastic vector p, the constraint pT c1 ≤ k in pro-

gram (7) is automatically fulfilled by the constraint pT c2 ≤ k .
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• If r1 and r2 are two rows of Ht and r1 ≥ r2, then r1 can be erased

from Ht: indeed, for any stochastic vector q, the constraint r1q ≥ k in program

(8) is automatically fulfilled by the constraint r2q ≥ k.

3.2. Approximation of the exponent

Computing the exponent of a primitive set M is in general an NP-hard problem,

and so must be computing the SPF until t = exp(M). In this section we describe

how to use the SPF to approximate the exponent of a primitive set of NZ-matrices.

We say that the function K(t) has a stagnation at time t̄ if there exists an integer

l > 0 such that K(t̄) = K(t̄+1) = · · · = K(t̄+ l). If K(t) has a stagnation at time t̄,

we denote with lt̄ the maximal integer such that K(t̄) = K(t̄+ 1) = · · · = K(t̄+ lt̄).

Proposition 14 showed that K(t) has always an initial stagnation at time t̄ = 0 for

l0 ≤ n−1; Ex. 18 shows that this upper bound on l0 is sharp. This fact suggests that

we could start solving the liner program (7) directly from t = l0 +1, as the behavior

for t ≤ l0 is known. The problem whether we can do this without computing the

sets M≤t for all t ≤ l0 is still open.

After the initial stagnation, the SPF seems to have a quite linear behavior:

this can be leveraged to guess the magnitude of the exponent of a primitive set

without explicitly computing it. This idea is developed in the next paragraph, where

we report numerical experiments that show the goodness of the approximation of

the exponent via the SPF. We then approach the problem of approximating the

exponent from a theoretical point of view by showing that results on the behavior

of K(t) could be used to obtain an upper bound on expNZ(n)e.

3.2.1. Linear approximation of the SPF

We want to approximate the behavior of the SPF via a linear function and consider

as approximation of the exponent the abscissa of the point at which this function

reaches the value 1. One simple way to do it is to choose a time t′ > l0 and take the

straight line r1 passing through the points
(
l0,K(l0)

)
and

(
t′,K(t′)

)
; we call this

the r1-method. We can also consider as straight line, the line r2 that is computed as

linear regression on all the points (i,K(i)) for i = l0, l0 + 1, . . . , t′ via least square

method; we call this the r2-method. It is reasonable to think about t′ as an increasing

function of n; intuitively, the greater t′ is, the better the approximation should be.

Figure 5 represents the lines r1 and r2 of the primitive setM in Example 18, where

in this case l0 = 3 and we have chosen t′ = 8. Both the methods return slightly

more than 16 as approximation of exp(M), while the real value is exp(M) = 19.

Example 18. Consider the matrix setM =

{(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

)}
. Its SPF and

eWe remind that expNZ(n) denotes the maximal exponent among the primitive sets of n × n
NZ-matrices.
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Figure 5. The SPF of the set M in Ex.

18, together with the approximation lines r1
and r2, where l0 = 3 and t′ = 8.

the approximation lines r1 and r2 are reported in Fig. 5. We can also see that n = 4

and its initial stagnation lasts till t = 3 = n− 1.

We would like to know how good is the approximation of the exponent via the

linearization of the SPF. To establish this, we would need to know the exponents of

a large number of primitive sets of NZ-matrices for different matrix sizes, in order

to compare them with the corresponding approximations. Several issues arise:

(1) primitivity is a rather new concept so, to the best of our knowledge, there does

not exist any database collecting the exponents of several primitive sets that

we can use to test our approximation;

(2) if we generate a set of binary NZ-matrices according to the uniform distribution,

it has very low exponent most of the times, usually of magnitude around 5

regardless of the matrix size. Consequently, in this case the real exponent is

computable but it is too low to meaningfully test our approximation;

(3) very few primitive sets with quadratic exponent are known (see e.g. [5]) and

are usually provided just quadratic lower bounds on their exponents, not the

exact values.

In view of this, we firstly decided to focus on sets of permutation matrices with a

0-entry of one of the matrices changed into a 1, that we call perturbed permutation

sets. These kind of sets have the least number of positive entries that a primitive

set of NZ-matrices can have, which should intuitively lead to larger exponents; they

are also primitive with high probability if generated uniformly at random ( [5],

Theorem 11). Secondly, as the exponent of these sets is hard to compute, we de-

cided to compare our method with another approximation method. The Eppstein’s

heuristic [10] is a greedy algorithm for approximating the reset threshold of a syn-

chronizing DFA by efficiently computing a synchronizing word (generally not the

shortest). Given a synchronizing DFA A, we denote with Epp(A) the Eppstein’s

approximation of rt(A). In view of Theorem 2, for any set M of n × n binary

NZ-matrices it holds that exp(M) ≤ Epp
(
Aut(M)

)
+ Epp

(
Aut(MT )

)
+ n − 1.

We also remind that, in view of Proposition 6 and Theorem 2, it holds that

diam
(
SG(Aut(M))

)
≤ rt

(
Aut(M)

)
≤ exp(M). We will compare the approxima-

tion of the exponent via SPF with the upper and lower bounds on exp(M) in these
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Figure 6. Percentage of the perturbed permutation sets for which the SPF approx. was smaller
than the Eppstein heuristic in Eq.(11), for each matrix size n = 10, 15, 20, 25 and method r1, r2.

equations.

For our first experiment we proceed as follows: we choose three different func-

tions for t′, namely t′(n) = log n, t′(n) = (3 log n)/2 and t′(n) = 2 log n. For each

of these functions and each matrix size n = 10, 15, 20, 25, we generate 5n per-

turbed permutation sets uniformly at random. For each primitive generated set, we

compute the approximation of the exponent via SPF using the r1-method and the

r2-method, that we respectively denote with r1(M) and r2(M); we then check if

the two below conditions hold:

r1(M), r2(M) ≥ diam
(
SG(Aut(M))

)
(10)

r1(M), r2(M) ≤ Epp
(
Aut(M)

)
+ Epp

(
Aut(MT )

)
+ n− 1. (11)

The data we obtained showed that in all the cases Eq.(10) was fulfilled. In Fig.

6 we report the percentage of sets whose approximations of the exponent via the

r1-method and the r2-method resulted to fulfil Eq.(11), with respect to the matrix

size n. We can notice that the SPF approximation usually behaves better than the

Eppstein heuristic for smaller values of n, while the behavior is reversed for larger

values of n. We also underline that the SPF approximation seems to behave better

when t′(n) becomes larger (as we were expecting) and that the r1-method seems to

provide slightly better approximations than the r2-method.

We then tested the SPF approximation on primitive sets with quadratic expo-

nent. The first families we consider are the families presented by the authors in [5].

Let n∈N and let Q1, Q2 be two n×n matrices such that: if n is even,

Q1[i, j] =

{
1 if i = 1 = j, i = n = j, j = i+ 1 for i even , j = i− 1 for i odd

0 otherwise
,

Q2[i, j] =

{
1 if i = 1 = j, j = i+ 1 for i odd , j = i− 1 for i even

0 otherwise
,

if n is odd,

Q1[i, j] =

{
1 if i = 1 = j, j = i+ 1 for i even , j = i− 1 for i odd

0 otherwise
,
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Figure 7. Behavior of the SPF approx. of
exp(Mn) via the r1- and r2-method w.r.t.

the upper and lower bounds of Eq.(12). The
y axis is in logarithmic scale.

Q2[i, j] =

{
1 if i = n = j, j = i+ 1 for i odd , j = i− 1 for i even

0 otherwise
.

Let Ii,j be the n× n identity matrix with the [i, j]-th entry equal to 1. Let

{Mn}n≥5 be the matrix set family such that Mn = {Q1, Q2, I1,n−2} for n = 4k,

Mn = {Q1, Q2, I1,n−4} for n = 4k+2 andMn = {Q1, Q2, In−1
2 ,n+1

2
} for n = 2k+1.

In [5] it has been proved that for any n ≥ 5 the set Mn has quadratic ex-

ponent, by showing that its associated DFA has quadratic square graph diame-

ter. We suppose that the conjecture they state on rt(Aut(Mn)) ( [5], Conjecture

29) holds true, that is we suppose that rt(Aut(Mn)) = (n2 − 2)/2 for n = 4k,

rt(Aut(Mn)) = (n2 − 10)/2 for n = 4k + 2 and rt(Aut(Mn)) = (n2 − 1)/2 for

n = 2k + 1. Theorem 2 then implies that:
(n2 − 2)/2 ≤ exp(Mn) ≤ (n2 − 2)/2 + Epp

(
Aut(MT

n )
)

+ n− 1 if n = 4k,

(n2 − 10)/2 ≤ exp(Mn) ≤ (n2 − 10)/2 + Epp
(
Aut(MT

n )
)

+ n− 1 if n = 4k + 2,

(n2 − 1)/2 ≤ exp(Mn) ≤ (n2 − 1)/2 + Epp
(
Aut(MT

n )
)

+ n− 1 if n = 2k + 1.

(12)

Figure 7 reports the SPF approximation of exp(Mn) via the r1-method and the

r2-method for t′(n) = log n and for n from 5 to 15. We call upper b. and lower b.

respectively the right-hand terms and left-hand terms of Eq.(12). We can notice

that both methods behave quite similarly and that they always successfully provide

a better approximation of exp(Mn) than the upper and lower bounds of Eq.(12).

Secondly, we tested the SPF approximation on the family of primitive sets whose

associated DFAs are the Černý family. For every n ∈ N, we set CNZ
n = {A,B} where:

A[i, j] =

{
1 if i = j or (i, j) = (n, 1)

0 otherwise
, B[i, j] =

{
1 if j = i+ 1 or (i, j) = (n, 1)

0 otherwise
.

It is easy to see that both Aut(CNZ
n ) and Aut((CNZ

n )T ) are the Černý automaton

on n states, so they have reset threshold of (n− 1)2. By Theorem 2 it follows that:

(n− 1)2 ≤ exp(CNZ
n ) ≤ 2(n− 1)2 + n− 1 . (13)

Figure 8 reports the SPF approximation of exp(CNZ
n ) via the r1-method and the

r2-method for t′(n) = log n, t′(n) = 3 log n/2 and t′(n) = 2 log n and for n from 5

to 15. We call upper b. and lower b. respectively the right-hand term and left-hand



March 6, 2019 3:38 WSPC/INSTRUCTION FILE
The˙Synchronizing˙Probability˙function˙for˙primitive˙sets

18 C. Catalano, R. M. Jungers

Figure 8. Behavior of the SPF approx. of exp(CNZ
n ) via the r1- and r2-method w.r.t. the upper

and lower bounds of Eq.(13) for different functions t′(n). The y axis is in logatithmic scale.

term of Eq.(13). We can notice that the r1-method and the r2-method behave quite

similary but for t′(n) = 2 log n sometimes the r2-method manages to get a better

approximation of exp(CNZ
n ) than the lower bound (n − 1)2, while the r1-method

does not. We can observe again that, as the function t′(n) increases from log n to

2 log n, the SPF approximation improves.

3.2.2. Upper bounding expNZ(n) via the SPF

Suppose that one could prove the existence of a function a = a(n) such that for

any primitive set of n × n NZ-matrices and for any of its stagnation points t̄ with

K(t̄) < 1, it holds that lt̄ ≤ a (i.e. any stagnation has length at most a). Suppose

furthermore that one could prove the existence of a function b=b(n) such that, for

any primitive set of n× n NZ-matrices and for any integers t1 > t2, K(t1)>K(t2)

implies that K(t1) − K(t2) ≥ 1/b. In view of the fact that exp(M) = min{t :

KM(t)=1} and K(0) = 1/n, it would hold that

expNZ(n) ≤ ab(n− 1)/n . (14)

In particular, if both a(n) and b(n) were linear in n, we would have a quadratic

upper bound on expNZ(n). Unfortunately our numerical simulations suggest that

the difference K(t1)−K(t2) for t1 > t2 can be arbitrarily small, thus letting open the

question whether the function b(n) exists. What we can say about the stagnations

of K(t) is summarized in Proposition 20, but before stating it we need the following

definition:

Definition 19. Given a set M of binary NZ-matrices and an integer t, we denote

with Pt the set of optimal solutions of the linear program (7).

Since the matrix Ht (see Definition 12) has always rank ≥ 1, then 1 ≤ dim(Pt) ≤
n− 1. Given a set of vectors V and a matrix M , we set MTV = {MT v : v ∈ V }.

Proposition 20. If KM(t)=KM(t+ 1), then Pt+1 ⊆ Pt and for any binary row-

stochastic matrix R such that R ≤M for some M ∈M, it holds that RTPt+1 ⊆ Pt.

Proof. The fact that Pt+1 ⊆ Pt is trivial. Let now p ∈ Pt+1, R be a binary row-

stochastic matrix such that R ≤M for some M ∈M, and A∈M≤t. By hypothesis,
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nK(t) = k ≥ pT (MA)e ≥ pT (RA)e = pTR(Ae), where the last two passages hold

because R is binary and row-stochastic. Since (pTR)T = RT p is a stochastic vector,

it follows that RT p ∈ Pt.

We remark that, if we prove that Pt+1 is strictly contained in Pt at any time t

such that K(t)=K(t+ 1), then it would hold that K(t+ n) > K(t) for any t such

that K(t) < 1 in view of the fact that dim(Pt+1) < dim(Pt) ≤ n − 1. In this case

we would have that a(n) = n− 1.

In the next section we show that we can define a function K̄(t) ≥ K(t) where

we can bound the length of its stagnations by a function a(n) = O(n2) and the

magnitude of its jumps K(t1)−K(t2) ≥ 1/b by a linear function b(n).

4. The approximated synchronizing probability function

We can simplify Game 1 by requiring Player B to consider just deterministic

strategies, i.e. to choose his policy p among the vectors of the canonical basis

En ={e1, . . . , en}.

Definition 21. Given a primitive set M of n × n binary NZ-matrices, we define

the approximated synchronizing probability function as the function

K̄M(t) = min
ei∈En

{
max

M∈M≤t
eTi M

e

n

}
.

The function K̄(t) is an upper bound on K(t) and it can be more easily computed

by using the matrix Ht (see Definition 12), as shown in the following Proposition.

Proposition 22. The approximated SPF is such that for every t ≥ 0, K̄M(t) ≥
KM(t), and so min{t : K̄M(t) = 1} ≤ exp(M). Furthermore, K̄(t) is given by the

optimal value of the following linear program:

min
ei∈En, k

k

n
s.t. eTi Ht ≤ keT . (15)

It also holds that

K̄M(t) =
1

n
min
i

{
max

{
Ht[i, :]

}}
. (16)

Proof. Trivial.

In this case the dual formulation of the linear program (15) as in Theorem 13

is no more possible, so in this simplified game Player B needs to keep his choice

secret. Figure 9 shows, for each matrix set M0, M1, M2 in Eqs. (5) and (6), both

the functions K(t) and K̄(t).

In view of Eq. (16), the function K̄(t) takes values in the set {j/n : j∈ [n]}. It then

holds that

K̄(t1) > K̄(t2) ⇒ K̄(t1)− K̄(t2) ≥ 1/n . (17)
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Figure 9. The functions K(t) (solid line) and K̄(t) (dashed line) of the setsM0 (left picture) and
M1 (central picture) in Eq. (5) and of the set M2 (right picture) in Eq. (6).

Notice that K̄(0) = 1/n. The following theorem shows that we can upper bound

the length of the stagnations of K̄ by a linear function in almost all the cases. We

denote with P̄t ⊆ En the set of the optimal solutions of the linear program (15); it

clearly holds that 1 ≤ |P̄t| ≤ n.

Theorem 23. Let M = {M1, . . . ,Mm} be a primitive set of n × n binary NZ-

matrices and t ∈ N such that K̄M(t) < 1 and K̄M(t) = K̄M(t+ 1) = k/n for some

k ∈ [n]. Then it holds that:

(1) if |P̄t| < n, K̄M(t+ n− 1) > K̄M(t).

(2) if |P̄t| = n, K̄M
(
t+ n2(k−1)

2k + n
)
> K̄M(t).

In particular, K̄M(n) > K̄M(0) = 1/n.

Proof. (1) If K̄(t) = K̄(t + 1), then P̄t+1 ⊆ P̄t. By the same reasoning used in

the proof of Proposition 20, it holds that for any binary row-stochastic matrix R

s.t. R≤M for some matrix M ∈M, RT P̄t+1 ⊆ P̄t. We now claim that P̄t+1 ( P̄t.

Indeed, suppose by contrary that P̄t+1 = P̄t. This means that RT P̄t ⊆ P̄t for any

binary row-stochastic matrix R dominated by an element of M and so for any

product R1 · · ·Rl of binary row-stochastic matrices dominated by matrices in M,

it holds that (R1 · · ·Rl)
T P̄t ⊆ P̄t. The set of all the binary row-stochastic matrices

dominated by at least a matrix inM is the DFA Aut(M) (see Definition 1): sinceM
is primitive, Aut(M) is synchronizing by Theorem 2, and so there exists a product

R̄ = Ri1 · · ·Ris of its letters that has an all-ones column, say in position j. Since

{ej} = R̄T P̄t ⊆ P̄t, we have that ej ∈ P̄t. By Remark 5, for any l 6= j there exists a

product Wl of the matrices in Aut(M) such that Wl[j, l]=1 and so the product R̄Wl

has an all-ones column in position l. Therefore {el} = (R̄Wl)
T P̄t ⊆ P̄t, so el ∈ P̄t

for every l ∈ [n], which contradicts the hypothesis. This means that P̄t+1 ( P̄t and

so |P̄t+1| < |P̄t| < n. If K̄(t+ 2) > K̄(t+ 1) we are done; otherwise we can iterate

the same argument on P̄t+1 thus proving that |P̄t+2| < |P̄t+1|. It follows that if

K̄(t) = K̄(t+ 1) = · · · = K̄(t+ n− 2), then |P̄t+n−2| = 1, and since the set of the

optimal solutions cannot be empty, it must hold that K̄(t+ n− 1) > K̄(t).

(2) Let d > 0 be the maximal integer such that K̄(t) = K̄(t+1) = · · · = K̄(t+d)

and |P̄t| = |P̄t+1| = · · · = |P̄t+d| = n. We can apply item (1) at time t + d + 1,
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so it holds that K̄(t + d + n) > K̄(t). We show that d ≤ n2(k − 1)/2k and so the

thesis follows. By the definition of d, each of the matrices Ht, Ht+1, . . . ,Ht+d (see

Definition 12) has the following properties: all the entries are ≤ k and in each row

there is an entry equal to k. This is equivalent to say that, for every u = 0, . . . , d,

all the matrices in M≤t+u have at most k positive entries in each row and for all

i ∈ [n], there exists a matrix inM≤t+u that has exactly k positive entries in the i-th

row. We now exhibit a product in M≤t+n2(k−1)/2k+1 that has a row with at least

k+ 1 positive entries, which implies that d < n2(k−1)/2k+ 1. For every i ∈ [n], let

Wi ∈M≤t be a product with k positive entries in the i-th row. We claim that there

are at least ak = d(n−k)/ke rows of Wi whose supportf is not contained in Wi[i, :];

this comes from the fact that Wi is NZ and each row does not have more than k

positive entries. Let ri1, . . . , r
i
ak

be the indices of these rows. Note that a product L

such that L[q, i] = 1 = L[q, rij ] for some j ∈ [ak] and i, q ∈ [n] would imply that LWi

has a row with at least k+1 positive entries. We now want to estimate the minimal

length of L over all i, q ∈ [n] and j ∈ [ak]g. To do so we introduce the labeled

directed multigraph D = (V,E), where M = {M1, . . . ,Mm} is the set of labels,

V = {(i, j) : 1 ≤ i ≤ j ≤ n} and (i, j)
Mr→ (i′, j′) ∈ E if and only if Mr[i′, i] > 0 and

Mr[j′, j] > 0, or Mr[j′, i] > 0 and Mr[i′, j] > 0. A path in D from (i, j) to (q, q)

labeled by Ml1 . . .Mlu means that Ml1 · · ·Mlu [q, i] > 0 and Ml1 · · ·Mlu [q, j] > 0.

Consequently, we need to estimate the minimal length on i, q ∈ [n] and j ∈ [ak] of

the shortest path in D connecting (i, rij) to (q, q). The vertex set V has cardinality

n(n + 1)/2 and it has exactly n vertices of type (q, q); furthermore, in the set of

vertices {(i, rij)}
i∈[n]
j∈[ak] there are at least nak/2 different elements. Therefore, this

minimal length is at most of n(n+ 1)/2−nak/2−n+ 1 = (n2(k− 1)/2k) + 1. This

means that there exists a product L ∈M≤(n2(k−1)/2k)+1 and i ∈ [n] such that LWi

has a row with at least k + 1 positive entries, and so d < (n2(k − 1)/2k) + 1. This

in turn implies that K̄
(
t+ (n2(k − 1))/2k + n

)
> K̄(t) by what shown before.

Lastly, we have to prove that K̄(n) > K̄(0). If K̄(1) > K̄(0), we can conclude

since K̄ is nondecreasing. Suppose now that K̄(1) = K̄(0) = 1/n; we claim that

|P̄1| < n and so K̄(1 + n − 1) = K̄(n) > K̄(1) by item (1). Since the set M is

primitive and NZ, there must exist a matrix inM with at least two positive entries

in the same row, as otherwise M would be a set of permutation matrices, which

is never primitive. This means that the matrix H1 (see Definition 12) must have

an entry ≥ 2, say in row i and column j, so (eTi H1)j ≥ 2. Since K̄(1) = 1/n, by

the representation of K̄ via the linear program (15), it follows that ei /∈ P̄1 and so

|P̄1|<n.

The proof of item (2) in Theorem 23 showed that if we want to improve the upper

fWe remind that the support of a nonnegative vector v is the set {i : vi > 0}.
gFor every i, q ∈ [n] and j ∈ [ak] the product L exists by Theorem 1 in [1], which states that a
set M is primitive iff for every i, j, k ∈ [n] there exists a product B of matrices in M such that
B[k, i] > 0 and B[k, j] > 0.
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bound on the length of the stagnations of K̄ when |P̄t| = n, it suffices to improve

the estimate of the value d = max{d′ ≥ 0 : |P̄t+d′ | = n and K̄(t) = K̄(t + d′)}. In

particular, if d was linear in n, then so would be the length of the stagnations; our

numerical results suggest that this should be the case.

Conjecture 2. There exists a linear function f(n) such that, for every primitive set

M of n×n binary NZ-matrices and t ∈ N s.t. K̄M(t) < 1, K̄M(t) = K̄M(t+1) and

|P̄t| = n, it holds that d=max{d′≥0 : |P̄t+d′ |=n and K̄M(t)=K̄M(t+d′)} ≤ f(n).

The reason why we are interested in the stagnations of K̄ is that an upper bound

on mint{K̄(t) = 1} translates into an upper bound on exp(M).

Proposition 24. If there exists a function U(n) such that, for any primitive setM
of n×n binary NZ-matrices, min{t : K̄M(t) = 1} ≤ U(n), then expNZ(n) ≤ 2U(n).

Proof. LetM = {M1, . . . ,Mm} be a primitive set of n×n binary NZ-matrices and

let t0 = min{t : K̄M(t) = 1}. By Eq. (16), we have that every row ofHt0 has an entry

equal to n, which means that for every i ∈ [n] there exists a matrix Mi ∈ M≤t0 ⊂
M≤U(n) that has the i-th row entrywise positive. Since the function U(n) depends

only on n, we can apply the same reasoning to the set MT = {MT
1 , . . . ,M

T
m}: for

every i ∈ [n] there exists Ni ∈ (MT )≤U(n) that has the i-th row entrywise positive.

The matrix NT
i Mi is a positive product of length at most 2U(n), so expNZ(n) ≤

2U(n).

If Conjecture 2 was true, it would lead to a quadratic upper bound on expNZ(n) and

on the reset threshold of a class of automata, as stated by the following proposition.

Proposition 25. If Conjecture 2 is true, then it holds that:

(1) expNZ(n) = O(n2);

(2) for every DFA A on n states such that A = Aut(M) for some primitive set M
of binary NZ-matrices, it holds that rt(A) = O(n2).

Proof. (1) If Conjecture 2 is true, then by of Theorem 23 it holds that K̄
(
t +

O(n)
)
> K̄(t) for every t ∈ N such that K̄(t) < 1. This, combined with Eq. (17),

implies that min{t : K̄M(t)=1} = O(n). By applying Proposition 24, we conclude.

(2) Straightforward by item (1) and Theorem 2.

5. Conclusions

In this paper we addressed the primitivity phenomenon from a probabilistic game

point of view by developing a tool, the synchronizing probability function for prim-

itive sets, whose aim is to bring more understanding to the primitivity process. We

believe that this tool would also lead to a better insight on the synchronization phe-

nomenon and provide new possibilities to prove Černý’s conjecture, in view of the

strong connection between synchronizing DFAs and primitive sets. The SPF takes
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into account the speed at which a primitive set reaches its first positive product:

numerical experiments have shown that its behavior seems smooth and regular (af-

ter a potential stagnation phase of length smaller than n), and it can thus be used

to efficiently approximate the exponent of a primitive set. We have then introduced

the function K̄(t), which is an upper bound on the SPF, and we have showed that

it cannot remain constant for too long. We have also proved that an estimate of the

time at which K̄(t) reaches the maximal value of 1 would imply an upper bound

on expNZ(n). Supported by numerical experiments, we have stated a conjecture

that, if true, would lead to a quadratic upper bound on expNZ(n) and on the reset

threshold of the class of synchronizing DFAs associated to some primitive set. We

underline that in view of Eq.(14), an upper bound on the length of the stagnations

of the SPF K(t), together with a lower bound on the magnitude of its jumps, would

also translate into a new upper bound on expNZ(n). In order to improve the ef-

fective computation of the SPF, we wonder whether we could avoid to compute its

initial stagnation as nothing interesting is happening there.
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[36] J. Černý, Poznámka k homogénnym eksperimentom s konečnými automatami,
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