
Counting Subwords and Regular Languages

Charles J. Colbourn and Ryan E. Dougherty
Computing, Informatics, and Decision Systems Engineering

Arizona State University
P.O. Box 878809

Tempe, AZ 85287-8809
USA

ryan.dougherty@asu.edu

Charles.Colbourn@asu.edu

Thomas Finn Lidbetter and Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L3G1

Canada
finn.lidbetter@uwaterloo.ca

shallit@uwaterloo.ca

June 22, 2018

Abstract

Let x and y be words. We consider the languages whose words z are those for
which the numbers of occurrences of x and y, as subwords of z, are the same (resp.,
the number of x’s is less than the number of y’s, resp., is less than or equal). We give
a necessary and sufficient condition on x and y for these languages to be regular, and
we show how to check this condition efficiently.

1 Introduction

A major theme in formal language theory is counting occurrences of letters in words. Let Σ
be a finite alphabet. For a word z ∈ Σ∗ and a letter a ∈ Σ we write |z|a for the number of
occurrences of a in z. A classic example of a language that is context-free but not regular

1

ar
X

iv
:1

80
4.

11
17

5v
2

 [
cs

.F
L

]
 2

0
Ju

n
20

18

is {z ∈ {a, b}∗ : |z|a = |z|b}; see, for example, [4, Exercise 3.1 (e), p. 71]. The Parikh map
(see, e.g., [7]) is another example of this theme.

We can generalize the counting of letter occurrences to the counting of word occurrences.
Let w, y ∈ Σ∗. We say y is a subword1 of w if there exist x, z ∈ Σ∗ such that w = xyz. Define
|w|y to be the number of (possibly overlapping) occurrences of y in w. Thus, for example,
|banana|ana = 2.

In this paper we study the languages

Lx<y = {z ∈ Σ∗ : |z|x < |z|y},
Lx≤y = {z ∈ Σ∗ : |z|x ≤ |z|y},
Lx=y = {z ∈ Σ∗ : |z|x = |z|y}

and their complements. The following is easy to see:

Proposition 1. For all words x and y, the languages Lx<y, Lx≤y, Lx=y, and their comple-
ments Lx≥y, Lx>y, Lx 6=y are all deterministic context-free languages.

Proof. We prove this only for Lx=y, with the other cases being analogous. We construct a
deterministic pushdown automaton M that recognizes Lx=y as follows: its states record the
last max(|x|, |y|) − 1 letters of the input seen so far. The stack of M is used as a counter
to maintain the absolute value of the difference between the number of x’s seen so far and
the number of y’s (a flag in the state records the sign of the difference). We have M accept
its input if and only if this difference is 0. Since there is only one possible action for every
triple of state, input symbol, and top-of-stack symbol, M is deterministic (any “invalid”
configurations transition to a dead state d).

While Lx=y is always deterministic context-free, sometimes — perhaps surprisingly — it
can also be regular. For example, when the underlying alphabet Σ is unary, then Lx=y is
always regular. Less trivially, for Σ = {0, 1} it is an easy exercise to show that L01=10 is
regular, and is recognized by the 5-state DFA in Figure 1; however, L01=10 is not regular
when Σ = {0, 1, 2}. On the other hand, L0011=1100 is never regular, even when Σ = {0, 1}.

The goal of this paper is to give a necessary and sufficient condition for these languages
to be regular, and show how to check it efficiently. The case Lx<y is covered in Section 5,
and the case Lx=y is covered in Section 6. The remaining case Lx≤y is virtually the same as
Lx<y, and is left to the reader.

We assume a basic background in formal languages and automata; for all unexplained
notions, see [4]. Four things are worth noting: if L is a language, then we write Lc for the
complement Σ∗ − L. Also, if x is a word, then xR denotes the reverse of the word x. If
x = a1a2 · · · an is a word, with each ai ∈ Σ, then x[i..j] := ai · · · aj. Finally, if x = tu, then
by xu−1 we mean the word t, and by t−1x we mean the word u.

1Sometimes called “factor”, especially in the European literature.

2

q0

q1

0

q2

1

0

q31

1

q4
0

0

1

1

0

Figure 1: A DFA recognizing L01=10 over Σ = {0, 1}

2 Bordered words and periodicity

Let y, z be words with y nonempty. We say that z is y-bordered if z 6= y and y is both a
prefix and a suffix of z. There are two types of y-bordered words: one where the prefix and
suffix y do not overlap in z (that is, where |y| ≤ |z|/2), and one where they do (that is, where
|y| > |z|/2). In the first case, we say that z is disjoint y-bordered, and in the second case,
overlapping y-bordered. For example, entanglement is disjoint ent-bordered, and alfalfa

is overlapping alfa-bordered. For more about borders of words, see, for example, [2].
We will need two lemmas about bordered words.

Lemma 1. Suppose z ∈ Σ∗ is y-bordered. Then there exist words u ∈ Σ+ and v ∈ Σ∗ and
an integer e ≥ 0 such that y = (uv)eu and z = (uv)e+1u.

Proof. Follows immediately from the Lyndon-Schützenberger theorem (see, for example, [6]
or [9, Theorem 2.3.2]).

Lemma 2. Let u ∈ Σ+, v ∈ Σ∗, and e ≥ 0. Suppose that y = (uv)eu. Define z1 = (uv)e+1

and z2 = (uv)e+2. Let c = |z1|y and d = |z2|y − |z1|y. Then c, d ≥ 1 and |(uv)i|y =
(i− e)d+ c− d for all integers i > e.

Proof. If x = (uv)e+1, then |x|y = c. Appending uv to x on the right results in d ≥ 1
additional copies of y. The result now follows by induction.

We also recall the following classical result.

Theorem 1. Let x, y be nonempty words. There exists a word with two distinct factorizations
as a concatenation of x’s and y’s if and only if xy = yx.

Proof. This follows from the so-called “defect theorem” [5], or from [3, Theorem 1].

3

3 Automata

We will need the following well-known result about pattern-matching automata (for example,
see [1, §32.3]).

Theorem 2. Given a word w ∈ Σn, a DFA M = ({q0, . . . , qn},Σ, δ, q0, {qn}) exists of n+ 1
states such that δ(q0, x) = qn if and only if w is a subword (resp., suffix) of x. Here the state
qi can be interpreted as asserting that the longest suffix of the input that matches a prefix of
w is of length i.

4 Interlacing

Suppose y is a subword of every x-bordered word. In this case we say x is interlaced by
y. For example, it is easy to check that 000100 is interlaced by 1000 when the underlying
alphabet Σ is {0, 1}. The following lemma gives the fundamental property of interlacing:

Lemma 3. Suppose x is interlaced by y, and suppose z is a word satisfying |z|y = |z|x + k.
Then for all t we have |zt|y ≥ |zt|x + k − 1. In particular, |t|y ≥ |t|x − 1 for all t.

Proof. Identify the starting positions of all occurrences of x in zt. Since x is interlaced by
y, between any two consecutive occurrences of x, there must be at least one occurrence of
y. So if zt has i more occurrences of x than z does, then zt must have at least i − 1 more
occurrences of y than z does.

5 The language Lx<y

Theorem 3. The language Lx<y is regular if and only if either x is interlaced by y or y is
interlaced by x.

Proof. ⇐=: There are two cases: (i) x is interlaced by y; and (ii) y is interlaced by x.

Case (i): Using Lemma 3, we can build a finite automaton M recognizing Lx<y as follows:
using the pattern-matching automata for x and y described in Section 3, on input z the
machine M records whether

(a) |z|x = |z|y + 1;

(b) |z|x = |z|y;

(c) |z|x = |z|y − 1, and |z′|x ≥ |z′|y − 1 for all prefixes z′ of z;

(d) |z′|x ≤ |z′|y − 2 for some prefix z′ of z.

4

Of course we do not maintain the actual numbers |z|x and |z|y in M , but only which of
(a)–(d) hold. Lemma 3 implies that the four cases above cover all the possibilities. It is
not possible to have |z|x ≥ |z|y + 2, and if (d) ever occurs, we know from Lemma 3 that
|z|x < |z|y for all words z extending z′. So in this case the correct action is for the automaton
to remain in state (d), an accepting state that loops to itself on all inputs. The automaton
accepts the input if and only if it is in the states corresponding to conditions (c) and (d).

Case (ii): Using Lemma 3, as in Case (i), we can build a finite automaton recognizing Lx<y

as follows: using the pattern-matching automata for x and y described in Section 3, on input
z the machine M records whether

(a) |z|y = |z|x + 1;

(b) |z|y = |z|x, and |z′|y ≥ |z′|x for all prefixes z′ of z;

(c) |z′|y ≤ |z′|x − 1 for some prefix z′ of z.

Lemma 3 implies that the three cases above cover all the possibilities. It is not possible to
have |z|y ≥ |z|x + 2, and if (c) ever occurs, we know from Lemma 3 that |z|x ≥ |z|y for all
words z extending z′. So in this case the correct action is for the automaton to remain in
state (c), a rejecting “dead” state that loops to itself on all inputs. The automaton accepts
the input if and only if it is in the state corresponding to condition (a).

=⇒: We proceed by proving the contrapositive. So suppose that there is some y-bordered
word r such that x is not a subword of r, and some x-bordered word s such that y is not a
subword of s. Using Lemma 1, we know that there are words u, v, p, q and natural numbers
e, f such that r = (uv)e+1u, and y = (uv)eu, and s = (pq)f+1p, and x = (pq)fp.

Suppose that x is a subword of (uv)iu for some i ≥ 0. Since x is not a subword of r,
we know that i ≥ e + 2. If x is a subword of (uv)e+2u and not a subword of (uv)e+1u, then
y = (uv)eu must be a subword of x. But then y is a subword of s, a contradiction. So x is
not a subword of (uv)iu for any i. By exactly the same reasoning we deduce that y is not a
subword of (pq)jp for any j ≥ 0.

Let c = |(uv)e+1|y and d = |(uv)e+2|y − |(uv)e+1|y. Similarly, define c′ = |(pq)f+1|x and
d′ = |(pq)f+2|x − |(pq)f+1|x. Consider a word z = (uv)i(pq)j, where i > e and j > f . From
above and Lemma 2, we know that |(uv)i|x = 0 for all i ≥ 0 and |(pq)j|x = (j− f)d′+ c′− d′
for j > f . Let m be the number of additional occurrences of x that straddle the boundary
between (uv)e+1 and (pq)f+1. That is, m is the number of distinct values for k, such that x is
a subword of (uv)e+1(pq)f+1 starting at index k and (e+1)|uv|+2−|x| ≤ k ≤ (e+1)|uv|+1.
Similarly, we know that |(uv)i|y = (i−e)d+ c−d for i > e and |(pq)j|y = 0 for all j ≥ 0. Let
n be the number of additional occurrences of y that straddle the boundary between (uv)e+1

and (pq)f+1. The precise definition of n is given as above by replacing m and x with n and
y respectively. Thus z has (j − f)d′ + c′ − d′ +m occurrences of x and (i− e)d+ c− d+ n
occurrences of y.

5

Now assume, contrary to what we want to prove, that Lx<y is regular. Define L =
Lx<y ∩ (uv)e(uv)+(pq)f (pq)+. Then L is regular. Define a morphism h : {a, b}∗ → Σ∗ as
follows: h(a) = uv, and h(b) = pq. We claim that h−1(z) = {aibj}. One direction is clear.
For the other, suppose h−1(z) included some word other than aibj. Then by Theorem 1, we
know that uv and pq commute. But then by the Lyndon-Schützenberger theorem [6], uv
and pq are both powers of some word t. But then x would be a subword of (uv)`u for some
`, which we already saw to be impossible.

By a well-known theorem (e.g., [9, Theorem 3.3.9]), h−1(L) is regular. But h−1(L) =
{aibj : (i − e)d + c − d + n < (j − f)d′ + c′ − d′ + m, for i > e, j > f} which, using the
pumping lemma, is not regular.

6 The language Lx=y

Theorem 4. The language Lx=y is regular if and only if either x is interlaced by y or y is
interlaced by x.

Proof. The proof is quite similar to the case Lx<y, and we indicate only what needs to be
changed.
⇐=: Without loss of generality we can assume that x is interlaced by y. Using Lemma 3 we
can build a finite automaton recognizing Lx=y just as we did for Lx<y, using case (i). The
only difference now is that the accepting state corresponds to (b).

=⇒: Proceeding by contraposition, suppose that there is some y-bordered word r such that
x is not a subword of r, and some x-bordered word s such that y is not a subword of s. Once
again, we follow the argument used for Lx<y, but there is one difference.

Recall that z = (uv)i(pq)j for some i > e and j > f . By the argument for Lx<y we know
that z has (j − f)d′ + c′ − d′ + m occurrences of x and (i − e)d + c − d + n occurrences of
y. Let A = (−(m + c′)) mod d′ and B = (−(n + c)) mod d. Let w be the shortest suffix of
(uv)e+2 such that wz has (i − e)d + c − d + n + B occurrences of y; let w′ be the shortest
prefix of (pq)f+2 such that zw′ has (j− f)d′+ c′− d′+m+A occurrences of x. Then by our
construction wzw′ has (j − f +C)d′ occurrences of x and (i− e+D)d occurrences of y, for
some C,D ≥ 0.

Now assume, contrary to what we want to prove, that Lx=y is regular. Define L′ =
Lx=y ∩ w(uv)e(uv)+(pq)f (pq)+w′. Then L′ is regular. Define L = #L′#, where # is a new
symbol not in the alphabet Σ; then L is regular. Define a morphism h : {a, b, a′, b′}∗ → Σ∗ as
follows: h(a′) = #w, h(a) = uv, h(b) = pq, and h(b′) = w′#. We claim that h−1(#wzw′#) =
{a′aibjb′}. One direction is clear, and the other follows from Theorem 1. By a well-known
theorem (e.g., [9, Theorem 3.3.9]), h−1(L) is regular. But h−1(L) = {a′aibjb′ : (i−e+D)d =
(j − f + C)d′, for i > e, j > f} which, using the pumping lemma, is not regular.

6

7 Testing the criteria

Given x, y we can test if there is some y-bordered word z such that x is not a subword of z,
as follows: create a DFA recognizing the language

(Σ∗xΣ∗)c ∩ yΣ+ ∩ Σ+y.

A simple construction gives such a DFA M with at most N = (|x|+1)(|y|+3)(|y|+2) states
and at most N |Σ| transitions.

This can be improved to N ′ = (|x| + 1)(2|y| + 3) states as follows: first build a DFA of
(2|y|+ 3) states recognizing the language yΣ+ ∩ Σ+y by “grafting” the DFA, A1, of |y|+ 3
states recognizing yΣ+ onto the DFA, A2, of |y|+2 states recognizing Σ+y. This can be done
by modifying the pattern-matching DFA described in Theorem 2. Simply replace transitions
to the final state in A1 with transitions to the appropriate states in A2. The final state of A1

and the initial state of A2 both become unreachable. Then form the direct product with the
DFA for (Σ∗xΣ∗)c. The resulting DFA has N ′ states. We can then use a depth-first search
on the underlying transition graph of M to check if L(M) 6= ∅.

Thus, we have proved:

Corollary 1. There is an algorithm running in time O(|Σ||x||y|) that decides whether the
criteria of Theorems 3 and 4 hold.

Corollary 2. If there exists a y-bordered word z such that x is not a subword of z, then
|z| < N ′.

Proof. If M = (Q,Σ, δ, q0, F) accepts any word at all, then it accepts a word of length at
most |Q| − 1.

8 Improving the bound in Corollary 2

As we have seen in Corollary 2, if x is not a subword of some y-bordered word, then there is
a relatively short “witness” to this fact. We now show that this witness can be taken to be of
the form yty for some t of constant length. The precise constant depends on the cardinality
of the underlying alphabet Σ. In Corollary 3 we prove that if |Σ| ≥ 3, then this constant is
1. In Corollary 4 we prove that if |Σ| = 2, then this constant is 3.

Theorem 5. Suppose Σ is an alphabet that contains at least three symbols, and let x, y ∈ Σ∗.
Without loss of generality assume that {0, 1, 2} ⊆ Σ. If x is a subword of y0y and y1y and
y2y, then x is a subword of y.

Proof. Assume, contrary to what we want to prove, that x is not a subword of y. Also
assume that |y| = m and |x| = n. For x to be a subword of y0y (resp., y1y, y2y), then, it
must be that x “straddles” the y—y boundary. More precisely, when we consider where x
appears inside y0y, the first symbol of x must occur at or to the left of position m+ 1 of y0y

7

(resp., y1y, y2y). Similarly, the last symbol of x must occur at or to the right of position
m+ 1 of y0y (resp., y1y, y2y).

For a = 0, 1, 2, label the x that matches yay as xa, and assume that the position of the
0 that matches x0 is i, the position of the 1 that matches x1 is j, and the position of the
2 that matches x2 is k. Note that x0 = x1 = x2 = x; the indices just allow us to refer to
the diagram below. Without loss of generality we can assume 1 ≤ i < j < k ≤ n. Thus we
obtain a picture as in Figure 2. Here we have labeled the two occurrences of y as y and y′,
so we can refer to them unambiguously. Note that i ≥ 1 and k ≤ m+ 1. Furthermore, note
that n ≤ m+ i.

y a y′

0

1

2

= x0

= x1

= x2

Figure 2: Matches of x against y0y, y1y, and y2y

We now use “index-chasing” to show that x[k] = x[i]; this will give us a contradiction,
since x[k] = 2 and x[i] = 0. We will use the following identities, which can be deduced by
observing Figure 2.

x1[`] = y[`+m+ 1− j] for 1 ≤ ` ≤ j − 1; (1)

x2[`] = y[`+m+ 1− k] for 1 ≤ ` ≤ k − 1; (2)

x0[`] = y′[`− i] for i+ 1 ≤ ` ≤ n; (3)

x1[`] = y′[`− j] for j + 1 ≤ ` ≤ n. (4)

Notice that j+1 ≤ k ≤ n, so we can take ` = k in (4) to get x[k] = y[k−j]. Additionally,
k − j ≥ 1, giving i + 1 ≤ i + k − j. Also i− j < 0 ≤ n− k, so i + k − j ≤ n. Thus we can
take ` = i+ k − j in (3) to obtain y[k − j] = x[i+ k − j].

Since i ≥ 1 and k − j ≥ 1, we get i+ k − j ≥ 2. Since j − i ≥ 1 we have i− j ≤ −1 and
i+ k− j ≤ k− 1. Thus we can take ` = i+ k− j in (2) to get x[i+ k− j] = y[i+m+ 1− j].
Since 1 ≤ i ≤ j − 1, we we can take ` = i in (1) to get y[i+m+ 1− j] = x[i]. Putting these
observations together, we finally obtain

2 = x[k] = y[k − j] = x[i+ k − j] = y[i+m+ 1− j] = x[i] = 0,

which produces the desired contradiction.

Corollary 3. Suppose |Σ| ≥ 3. Then x is a subword of yty for all t with |t| = 1 if and only
if y is interlaced by x.

8

We now turn to case of a binary alphabet. This case is more subtle. For example,
consider when x = 10100 and y = 01001010. Then, as can be verified, x is a subword of
the self-overlaps y(010)−1y and y0−1y, as well as the words yy, y0y, y1y, y00y, y01y, y10y,
y11y, y000y, y001y, y010y, y011y, y100y, y101y. But x is not a subword of y110y.

For a binary alphabet Σ, a special role is played by the language

A = 01+ ∪ 10+ ∪ 0+1 ∪ 1+0.

We also define the following languages. For each integer k ≥ 1, let B0k1 := (1 + 01 +
· · · + 0k−11)+0k0∗ and B10k := 0∗0k(1 + 10 + · · · + 10k−1)+. Similarly, define B1k0 and B01k

by relabeling 0 to 1 and 1 to 0.

Lemma 4. Suppose Σ = {0, 1} and x ∈ A. Then y ∈ Bx if and only if x is not a subword
of y, but x is a subword of all y-bordered words.

Proof. We consider the case where x = 0k1 and note that the case where x = 1k0 is given
by relabeling 0 to 1 and 1 to 0, and the other two cases are given by a symmetric argument.

=⇒: Suppose that y ∈ Bx = B0k1 = (1 + 01 + · · · + 0k−11)+0k0∗ and z is a y-bordered
word. By the definition of Bx, observe that x is not a subword of y. By Lemma 1 there exist
u ∈ Σ+, and v ∈ Σ∗, and a natural number e ≥ 0 such that y = (uv)eu and z = (uv)e+1u.

We first show that e ≤ 1. If we assume the contrary, then y = (uv)e−2uvuvu. We know
that vu has the suffix 10k+i for some i ≥ 0. But since there is at least one 1 in vu we have
that 0k1 is a subword of vuvu, giving a contradiction.

If e = 0 then z = uvu = yvy for some v ∈ Σ∗. Since vy has at least one 1 and y has
a suffix of 0k, we get that x is a subword of yvy = z. If e = 1 then y = uvu such that vu
has the suffix 0k and there is at least one 1 in vu. Then z = (uv)2u = uvuvu has 0k1 as a
subword.
⇐=: Assume, to get a contradiction, that there is some y ∈ Σ∗ \ Bx = Σ∗ \ B0k1 such

that x is a subword of all y-bordered words and x is not a subword of y. Then y satisfies at
least one of the following cases, and we will get a contradiction in each of these.

Case (i): y = 0i for some i ≥ 0. Clearly, x is not a subword of the y-bordered word yy.
Case (ii): y has x = 0k1 as a subword, giving an immediate contradiction.
Case (iii): The suffix of y is 10i for some 0 ≤ i < k. Then consider the y-bordered word

z = y1y. If x is a subword of z but x is not a subword of y, then x must straddle the y—y
boundary in z. So the 1 in x = 0k1 must align with the 1 between the y’s in z = y1y. But
the suffix of y is 10i for i < k. So x cannot be a subword of y1y.

However, for x 6∈ A, it turns out that if x is not a subword of y, then there is some word
t of length 3 such that x is not a subword of yty. To prove this we first give two preliminary
lemmas.

Lemma 5. Suppose Σ = {0, 1}, and let x, y ∈ Σ∗ with |x| = n and |y| = m. Suppose x is
not a subword of y, but x is a subword of yty for all t ∈ Σ∗ such that |t| = 3 and x /∈ A.
Then for every integer k satisfying max{1,m− n + 2} ≤ k ≤ min{2m + 3− n,m + 2} and

9

for all pairs of words t1, t2 ∈ Σ∗ with |t1| = |t2| = 3, we have either x 6= (yt1y)[k..k + n− 1]
or x 6= (yt2y)[k + 1..k + n], or both.

Proof. Assume, to get a contradiction, that there exist x, y ∈ Σ∗ such that x is not a
subword of y and x /∈ A and that there exist t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 and an integer k
satisfying max{1,m−n+ 2} ≤ k ≤ min{2m+ 3−n,m+ 2} such that (yt1y)[k..k+n− 1] =
(yt2y)[k + 1..k + n] = x, and furthermore x is a subword of yty for all t ∈ Σ∗ with |t| = 3.
Let t1 = a1b1c1 and t2 = a2b2c2 and x = x1x2 · · ·xn. Before proceeding, first observe that
n ≥ 3 since for all x with |x| ≤ 2 we have that either x ∈ A or x is not a subword of one of
y000y and y111y.

Case (i): max{1,m− n+ 3} ≤ k ≤ min{2m+ 3− n,m+ 1}.
If max{1,m−n+4} ≤ k ≤ min{2m+3−n,m} then n ≥ 4 and we can write x = x1va1b1c1w =
va2b2c2wxn for some v, w ∈ Σ∗ where x1v = va2 and c1w = wxn and a1b1 = b2c2. Then, by
the first theorem of Lyndon-Schützenberger, we have that v = xi1 and w = xjn for integers
i, j ≥ 0. Thus x can be re-written as x = xi1a1b1x

j
n for x1, a1, b1, xn ∈ Σ and i, j ≥ 1.

If k = m− n+ 3 then, where n ≥ 3, we can write x = x1va1b1 = va2b2c2 for v ∈ Σ∗ and
after applying the first theorem of Lyndon-Schützenberger we get x = xi1a1b1 where i ≥ 1.

Similarly if k = m + 1 then we can write x = a1b1c1w = b2c2wxn and applying the first
theorem of Lyndon-Schützenberger gives x = a1b1x

j
n for j ≥ 1.

So we have that x = xi1a1b1x
j
n for a1, b1, x1, xn ∈ Σ and i, j ≥ 0 and either i ≥ 1 or j ≥ 1.

We will proceed by getting a contradiction for each possible assignment of a1, b1, x1, xn to
symbols in Σ for all valid i, j. Table 1 gives contradictions for all possible assignments where
x1 = 0. Note that the remaining cases can be ruled out by relabeling 0 to 1 and 1 to 0.

Case (iii): k = m− n+ 2 ≥ 1.
We can write x = x1wa1 = wa2b2 for some w ∈ Σ+, where x1w = wa2. So by the first theorem
of Lyndon-Schützenberger, we get w = xi1 for some integer i ≥ 1 and thus x = xi+1

1 xn for
x1, xn ∈ Σ. If x1 = xn, then xi+1

1 xn = xi+2
1 . But, since x is not a subword of y we cannot

have that xi+2
1 is a subword of both y111y and y000y, giving a contradiction. If instead we

have x1 6= xn, then xi+1
1 xn ∈ A, an immediate contradiction.

Case (iv): k = m+ 2 ≤ 2m+ 3− n.
We can write x = b1c1w = c2wxn and similar to Case (iii), we get x = x1x

i+1
n for x1, xn ∈ Σ

and i ≥ 1. By the same argument as in Case (iii), we get a contradiction if x1 = xn and if
x1 6= xn.

10

Table 1: Contradictions for each a1, b1, xn ∈ Σ and x1 = 0, where in each row x = xi1a1b1x
j
n

and i, j ≥ 0 and either i ≥ 1 or j ≥ 1. The contradictions rely on the assumption that x is
not a subword of y.

x1 a1 b1 xn Contradiction

0 0 0 0 For all i, j ≥ 0 we have that x is not a subword of y111y.

0 0 0 1 For all i ≥ 0:
If j = 0, then x is not a subword of y111y;
If j = 1, then x = 0i+21 ∈ A;
If j > 1, then if x is a subword of y101y, then y has 0i+21j−1 as a
suffix. But if x is a subword of y011y, then y has 0i+1 as a suffix.

0 0 1 0 For all i ≥ 0:
If j = 0, then x = 0i+11 ∈ A;
If j > 0, then x is not a subword of y111y.

0 0 1 1 If i = 0 or j = 0, then x ∈ A.
If i > 0 and j > 0, then if x is a subword of y101y, then y has 0i+11j

as a suffix. But if x is a subword of y011y, then y has 0i as a suffix.

0 1 0 0 If i = 0, then x = 10j+1 ∈ A.
If i > 0, then x is not a subword of y111y.

0 1 0 1 If i = 0 and j > 0, then x is not a subword of y000y.
If i > 0 and j = 0, then x is not a subword of y111y.
If i > 0 and j = 1, then if x is a subword of y011y, then y has 0i1
as a suffix. But if x is a subword of y111y, then y has 0i10 as a suffix.
If i = 1 and j > 0, then if x is a subword of y001y, then y has 01j

as a prefix. But if x is a subword of y000y, then y has 101j as a prefix.
If i > 1 and j > 1, then if x is a subword of y011y, then y has 0i1
as a suffix. But if x is a subword of y111y, then y has 0i101` as a suffix
for some ` < j. Since i > 1, this is a contradiction.

0 1 1 0 If i = 0 and j = 1, then x = 110 ∈ A.
If i = 1 and j = 0, then x = 011 ∈ A.
If i > 1 and j = 0, then if x is a subword of y101y, then y has 0i1
as a suffix. But if x is a subword of y011y, then y has 0i−1 as a suffix.
If i=0 and j > 1, then if x is a subword of y101y, then y has 10j

as a prefix. But if x is a subword of y110y, then y has 0j−1 as a prefix.
If i > 0 and j > 0, then x is not a subword of y111y.

0 1 1 1 For all j ≥ 0 :
If i = 0, then x is not a subword of y000y;
If i = 1, then x = 01j+2 ∈ A;
If i > 1, then if x is a subword of y011y, then y has 0i−1 as a suffix.
But if x is a subword of y101y, then y has 0i1j+1 as a suffix.

11

Lemma 6. Suppose Σ = {0, 1}, and let x, y ∈ Σ∗ with |x| = n and |y| = m. If x is a
subword of yty for all t ∈ Σ∗ such that |t| = 3 and x /∈ A, and x is not a subword of y, then
for all pairs of words t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 we have either x 6= (yt1y)[m+ 1..m+n],
or x 6= (yt2y)[m+ 3..m+ 2 + n], or both.

Proof. Assume, to get a contradiction, that there exist x, y ∈ Σ∗ such that x is not a
subword of y and x /∈ A and that there exist t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 such that
(yt1y)[m+ 1..m+ n] = (yt2y)[m+ 3..m+ 2 + n] = x, and furthermore x is a subword of yty
for all t ∈ Σ∗ with |t| = 3. Let t1 = a1b1c1 and t2 = a2b2c2 and x = x1x2 · · ·xn, and assume
|y| = m.

We can write x = a1b1c1w = c2wxn−1xn. So b1c1w = wxn−1xn and by the first theorem
of Lyndon-Schützenberger there exist u ∈ Σ+ and v ∈ Σ∗ and an integer i ≥ 0 such that
b1c1 = uv and xn−1xn = vu and w = (uv)iu = u(vu)i. This gives x = x1wxn−1xn =
x1(uv)iuvu = x1(uv)i+1u. We now consider each possible u ∈ Σ+ and v ∈ Σ∗, seeking a
contradiction in each case. The contradictions are summarized in Table 2. Note again that
the contradictions are given for all cases where x1 = 0; the remaining cases can be obtained
by relabeling 0 to 1 and 1 to 0.

Table 2: Contradictions for each valid u ∈ Σ+, v ∈ Σ∗, and x1 = 0, where in each row
x = x1(uv)i+1u for i ≥ 0. The contradictions rely on the assumption that x is not a subword
of y.

x1 u v Contradiction

0 00 ε x is not a subword of y111y.

0 0 0 x is not a subword of y111y.

0 01 ε If x is a subword of y111y, then y has 0(01)i+10 as a suffix.
But if x is a subword of y011y, then y has 0(01)i+1 as a suffix.

0 0 1 x is not a subword of y111y.

0 10 ε x is not a subword of y111y.

0 1 0 If x is a subword of y111y then y has 0(10)i+1 as a suffix.
But if x is a subword of y011y then y has (01)i+1 as a suffix.

0 11 ε x ∈ A.

0 1 1 x ∈ A.

Theorem 6. Suppose Σ = {0, 1} and let x, y ∈ Σ∗. If x is a subword of yty for all t ∈ Σ∗

such that |t| = 3 and x /∈ A, then x is a subword of y.

12

Proof. Define the function f : Σ∗ × Σ∗ → N over pairs of words x,w ∈ Σ∗ such that x is
a subword of w as f(x,w) = min{i ∈ N : w[i..i + |x| − 1] = x}. Also, define the bitwise
complements of elements of Σ as 0 = 1 and 1 = 0.

Assume, to get a contradiction, that x is not a subword of y and also assume that |y| = m
and |x| = n. If x is a subword of yty for each t ∈ Σ∗ with |t| = 3, then for each such t we
have f(x, yty) ≤ m+ 3 and f(x, yty) + n− 1 ≥ m+ 1. Since the position of x in yty cannot
be the same for all valid t, let t0 = a0b0c0 be the choice of t for which f(x, yty) is greatest
across all valid t and let t4 = a4b4c4 6= t0 be the choice of t for which f(x, yty) is smallest
across all valid t. We now consider two cases depending on the position of x in yt0y.

Case (i): f(x, yt0y) = m + 3. Consider t1 = a40c0 and t2 = a41c0. Since t1 and t2 differ
from t4 in the first index of t4, and t4 gives the leftmost position for x as a subword of
yty over all valid choices of t, we know f(x, yt1y) 6= f(x, yt4y) and f(x, yt2y) 6= f(x, yt4y).
Similarly we have f(x, yt1y) 6= f(x, yt0y) and f(x, yt2y) 6= f(x, yt0y). Applying Lemma 5
to the pairs t4, t1 and t4, t2 and Lemmas 5 and 6 to the pairs t1, t0 and t2, t0 we have that
f(x, yt1y) + n − 1 ≥ m + 3 and f(x, yt2y) + n − 1 ≥ m + 3 and that f(x, yt1y) ≤ m + 1
and f(x, yt2y) ≤ m + 1. So for yt1y (resp., yt2y), the position of x is such that it entirely
overlaps t1 (resp., t2). But since t1 6= t2 we know that the positions of x as a subword of
yt1y and yt2y are distinct, i.e., f(x, yt1y) 6= f(x, yt2y).

So suppose without loss of generality that f(x, yt1y) > f(x, yt2y). We now perform an
index chasing argument, similar to that of the ternary case, using t0, t1, t2 and seeking the
contradiction c0 = (yt0y)[m+3] = (yt2y)[m+3] = c0. We use the same labeling scheme as in
the ternary case. So define i, j, k such that i = m+4−f(x, yt0y) and j = m+4−f(x, yt1y) and
k = m+ 4− f(x, yt2y), giving x0[i] = t0[3] = c0 and x1[j] = t1[3] = c0 and x2[k] = t2[3] = c0.
Note that in this case we have i = 1 by assumption and j ≥ i+ 3 by Lemmas 5 and 6. From
Figure 3 we obtain the following identities.

x1[`] = y[`+m+ 3− j] for 1 ≤ ` ≤ j − 3; (5)

x2[`] = y[`+m+ 3− k] for 1 ≤ ` ≤ k − 3; (6)

x0[`] = y′[`− i] for i+ 1 ≤ ` ≤ n; (7)

x1[`] = y′[`− j] for j + 1 ≤ ` ≤ n. (8)

Since j + 1 ≤ k ≤ n, we can apply (8) to get x1[k] = y′[k − j]. Then, since i ≤ j and k ≤ n,
we have i + k ≤ n + j, giving i + k − j ≤ n. This, together with the inequality k − j ≥ 1
giving i+ 1 ≤ i+ k − j, means that we can apply (7) to get y′[k − j] = x0[i+ k − j]. Next,
j − i ≥ 3 gives i + k − j ≤ k − 3, so applying (6) gives x2[k + i − j] = y[i + m + 3 − j].
Finally, since 1 ≤ i ≤ j − 3, we can apply (5) to get y[i + m + 3− j] = x1[i]. Together this
gives the contradiction

c0 = x2[k] = y′[k − j] = x0[i+ k − j] = y[i+m+ 3− j] = x2[i] = c0.

13

y a b c y′

c0

a4 0 c0

a4 1 c0

= x0

= x1

= x2

Figure 3: Positions of x in yt0y, yt1y, yt2y for Case (i).

Case (ii): f(x, yt0y) ≤ m + 2. Consider t1 = a4b0c0 and t2 = a4b0c0 and t3 = a4b0c0.

By the same argument as in Case 1 we get that the positions of x as a subword of each
of yt0y, yt1y, yt2y, yt3y, yt4y are all distinct. Furthermore, by Lemma 5 we have that for
each pair ti, tj with 0 ≤ i, j ≤ 4 and i 6= j the difference in positions of x as a subword of
ytiy and ytjy is |f(x, ytiy) − f(x, ytjy)| ≥ 2. We now order these choices of t and relabel
t1, t2, t3 if necessary such that f(x, yt0y) > f(x, yt3y) > f(x, yt1y) > f(x, yt2y) > f(x, yt4y).
At this point we again perform an index-chasing argument using t0, t1, t2. If we have that
t2[3] = c0 then the argument given in Case (i) holds to give a contradiction. If instead we
have that t2[3] = c0, then we know that t2[2] = b0 and we will get the contradiction b0 =
(yt0y)[m+2] = (yt2y)[m+2] = b0. To do this we define i, j, k such that i = m+3−f(x, yt0y)
and j = m + 3 − f(x, yt1y) and k = m + 3 − f(x, yt2y), giving x0[i] = t0[2] = b0 and
x1[j] = t1[2] and x2[k] = t2[2] = b0. Since f(x, yt0y) > f(x, yt3y) > f(x, yt1y), Lemma 5
gives f(x, yt0y) ≥ f(x, yt3y)+2 and f(x, yt3y) ≥ f(x, yt1y)+2. So f(x, yt0y) ≥ f(x, yt1y)+4
and thus j ≥ i+ 4. From Figure 4 we get the following identities. Note that these identities
are centered around t[2] instead of t[3] as in Case 1.

x1[`] = y[`+m+ 2− j] for 1 ≤ ` ≤ j − 2; (9)

x2[`] = y[`+m+ 2− k] for 1 ≤ ` ≤ k − 2; (10)

x0[`] = y′[`− i− 1] for i+ 2 ≤ ` ≤ n; (11)

x1[`] = y′[`− j − 1] for j + 2 ≤ ` ≤ n. (12)

Since j + 2 ≤ k ≤ n we can apply (12) to get x1[k] = y′[k − j − 1]. Then since i ≤ j
and k ≤ n we have i + k ≤ n + j, giving i + k − j − 1 < i + k − j ≤ n. This, together
with k − j ≥ 2 giving i + 2 ≤ i + k − j by Lemma 5, means that we can apply (11) to get
y′[k− j− 1] = x0[i+ k− j]. Next, j− i ≥ 4 gives i+ k− j ≤ k− 4 < k− 2, so applying (10)
gives x2[k + i− j] = y[i+m+ 2− j]. Finally, since 1 ≤ i ≤ j − 4 < j − 2, we can apply (9)
to get y[i+m+ 2− j] = x1[i]. Together this gives the contradiction

b0 = x2[k] = y′[k − j − 1] = x0[i+ k − j] = y[i+m+ 2− j] = x2[i] = b0.

14

y a b c y′

b0 c0

a4 t1[2] c0

a4 b0 c0

= x0

= x1

= x2

Figure 4: Positions of x in yt0y, yt1y, yt2y for Case (ii) where t2[3] = c0.

Corollary 4. Let Σ = {0, 1}. Then x is a subword of every y-bordered word if and only if
x is a subword of yty for all words t of length 3.

Proof. If x is a subword of every y-bordered word, then clearly x is a subword of yty for all
words t of length 3. For the other direction there are two cases.

Case 1: x /∈ A. Then by Theorem 6 we know x is a subword of y. So x is also a subword
of every y-bordered word.

Case 2: x ∈ A. Then x has the form 01i, or 0i1, or 10i, or 1i0 for some i ≥ 1. We
consider the case where x = 01i and note that the case where x = 1i0 follows by a symmetric
argument and the other cases are given by relabeling 0 to 1 and 1 to 0. If x is a subword of
y then the result follows trivially. So suppose that x = 01i is not a subword of y, but that
x is a subword of yty for all words t of length 3. Then, since x is a subword of y000y, we
have that 1i is a prefix of y. Additionally, since x is a subword of y111y, we know that 01j

is a suffix of y for some j satisfying 0 ≤ j < i. So we have y = 1iw01j for some w ∈ Σ∗.
Now consider a y-bordered word z. Let k be the index of the first 0 in z. Since z has y as
a prefix and a suffix, and z 6= y, we know that |z| ≥ |y| + k. This is because the y-suffix of
z must start after the first 0 in z. So we have that there are i consecutive 1’s in z starting
at some index ` > k. Let k′ be the largest index less than ` such that z[k′] = 0. Then
z[k′..k′ + i] = 01i. So x is a subword of z.

Remark 1. The number 3 is optimal in Corollary 4. Consider x = 10100, y = 01001010.
Then x is a subword of every y-bordered word of length ≤ 2|y|+ 2 = 18, but not a subword
of yty with t = 110.

9 Finiteness

We now examine when Lx=y is finite.

Theorem 7. Let x, y ∈ Σ+. Then Lx=y is finite if and only if |Σ| = 1 and x 6= y.

15

Proof. There are four cases to consider.
Case (i): x = ai and y = aj for integers i, j > 0. If |Σ| = 1, then Lx=y is finite if and only
if x 6= y, for otherwise without loss of generality i < j, and for n ≥ j the word an contains
n− j + 1 occurrences of aj, but n− i+ 1 occurrences of ai.

Otherwise |Σ| > 1. Let b ∈ Σ and b 6= a. Then for each z ∈ b∗ we have |z|x = |z|y = 0.
Thus Lx=y is infinite.
Case (ii): x = ai and y = bj for two distinct symbols a, b and i, j > 0. Then for each z of
the form (xy)n we have |z|x = |z|y = n. Thus Lx=y is infinite.
Case (iii): x = ai for some i > 0 but y contains two different symbols. Let b ∈ Σ with
b 6= a. Then for each z ∈ b∗ we have |z|x = |z|y = 0. Thus Lx=y is infinite.
Case (iv): x and y both contain two different symbols. Let a ∈ Σ∗. Then for each z ∈ a∗
we have |z|x = |z|y = 0. Thus Lx=y is infinite.

We could consider the generalization of Lx=y to more than two words:

Lx1=x2=···=xn = {z ∈ Σ∗ : |z|x1 = |z|x2 = · · · = |z|xn}.

The following examples show that deciding the finiteness of Lx1=x2=···=xn for n ≥ 3 is more
subtle than the case n = 2. Suppose Σ = {0, 1}. Then L0=1=00=11 and L0=1=01=10 are finite
languages, but L00=11=000=111 is not.

Consider L0=1=00=11. For any maximal subword consisting of 0’s, the number of 0’s
exceeds the number of 00’s, and similar for 1 and 11. So L0=1=00=11 = {ε}.

Consider L0=1=01=10. Since |z|01 = |z|10, as shown in Figure 1, the words in this language
must start and end with the same character. There cannot be a 00 or the number of 0’s
exceeds that of 01 and 10, and similar for 11. So, the language is a subset of (01)∗0 ∪
(10)∗1 ∪ {ε}. But no word z in this language, other than ε, has |z|0 = |z|1. Therefore,
L0=1=01=10 = {ε}.

Consider L00=11=000=111. It contains (01)∗, and hence is infinite.
Lacking a general condition for finiteness, we prove the following sufficient condition.

Theorem 8. If |x1| = · · · = |xn| then Lx1=x2=···=xn is infinite.

Proof. Let ` = |x1|. Consider the cyclic order-` de Bruijn word w of length k` over the
cardinality-k alphabet Σ. Such a word is guaranteed to exist for all k ≥ 2 and ` ≥ 1; see,
e.g., [8]. Let w′ be the prefix of w of length `−1. Then wiw′ ∈ Lx1=x2=···=xn for all i ≥ 1.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[2] A. Ehrenfeucht and D. M. Silberger. Periodicity and unbordered segments of words.
Discrete Math. 26 (1979), 101–109.

16

[3] G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in rectangular arrays.
Info. Proc. Letters 118 (2017), 58–63.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[5] M. Lothaire. Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and Its
Applications. Addison-Wesley, 1983.

[6] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Math. J. 9 (1962), 289–298.

[7] R. J. Parikh. On context-free languages. J. ACM 13 (1966), 570–581.

[8] A. Ralston. De Bruijn sequences — a model example of the interaction of discrete
mathematics and computer science. Math. Mag. 55 (1982), 131–143.

[9] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
Univ. Press, 2009.

17

	1 Introduction
	2 Bordered words and periodicity
	3 Automata
	4 Interlacing
	5 The language Lx<y
	6 The language Lx=y
	7 Testing the criteria
	8 Improving the bound in Corollary ??
	9 Finiteness

