
ar
X

iv
:1

80
6.

08
47

6v
2

 [
cs

.F
L

]
 5

 S
ep

 2
01

8

A General Approach to State Complexity of

Operations: Formalization and Limitations⋆

Sylvie Davies

Department of Pure Mathematics
University of Waterloo, Waterloo, Ontario, Canada

sldavies@uwaterloo.ca

Abstract. The state complexity of the result of a regular operation
is often positively correlated with the number of distinct transforma-
tions induced by letters in the minimal deterministic finite automaton of
the input languages. That is, more transformations in the inputs means
higher state complexity in the output. When this correlation holds, the
state complexity of a unary operation can be maximized using languages
in which there is one letter corresponding to each possible transforma-
tion; for operations of higher arity, we can use m-tuples of languages in
which there is one letter corresponding to each possible m-tuple of trans-
formations. In this way, a small set of languages can be used as witnesses
for many common regular operations, eliminating the need to search for
witnesses – though at the expense of using very large alphabets. We for-
malize this approach and examine its limitations. We define a class of
“uniform” operations for which this approach works; the class is closed
under composition and includes common operations such as star, con-
catenation, reversal, union, and complement. Our main result is that the
worst-case state complexity of a uniform operation can be determined
by considering a finite set of witnesses, and this set depends only on the
arity of the operation and the state complexities of the inputs.

1 Introduction

Given a regular operation, how do we determine its (deterministic) state com-
plexity? There is probably no universal method for solving these problems.
Nonetheless, for many operations there is a common approach we can take.
While this approach is not new, it does not seem to be universally known to re-
searchers. The key idea first appeared in a 1978 paper of Sakoda and Sipser [19],
but it has seldom been used in the context of state complexity. In cases where
it was used, authors typically did not acknowledge the full power and generality
of the approach. This paper attempts to give a formal, general account of the
approach and its uses in state complexity.

We will refer to the approach in question as the “one letter per action”
(OLPA) approach. We give an informal description of the OLPA approach below.

⋆ This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871.

http://arxiv.org/abs/1806.08476v2

The root of the approach is to think about regular operations in terms of how
they affect deterministic finite automata (DFAs). Typically, a regular operation
takes some DFAs as input and modifies or combines them in some way to produce
a new DFA. Many of these DFA constructions have the following properties:

– If a new letter is added to the input DFAs, then the state complexity of the
output DFA will not decrease.

– If a new letter is added to the input DFAs, and in each DFA this letter acts
the same as an existing letter, then the state complexity of the output DFA
will stay the same.

If we know an operation has these two properties, this suggests a way to maxi-
mize the state complexity of the operation: keep adding new letters to the input
DFAs, until the point where we have letters corresponding to all possible ac-
tions across all the input DFAs. The first property ensures that adding letters
can only increase or maintain the state complexity of the output, while the sec-
ond property ensures that the state complexity of the output will eventually
reach a maximum. In this way, we can obtain witnesses for the worst-case state
complexity of the operation.

Figure 1 shows the result of applying this construction to a two-state DFA
with unspecified initial and final states, to be used as input for a unary operation.
The DFA has one letter for each of the four functions from {1, 2} to itself. To
illustrate the construction for a three-state DFA, we would need 33 = 27 letters!

1 2

a11, a12 a12, a22

a21, a22

a11, a21

Fig. 1. Two-state “one letter per action” DFA, with initial and final states unspecified.

Since the state complexity of the output is not affected only by the actions of
letters in the inputs, but also the initial states and final state sets of the inputs,
we construct these witnesses for each configuration of initial and final states.
Then for each configuration, it remains to solve the combinatorial problem of
counting reachable and pairwise distinguishable states in the output DFA, under
the assumption that every possible action in the input DFAs is available.

Of course, these combinatorial problems can sometimes be quite hard, and
this method produces witnesses over extremely large alphabets. Nonetheless, we
believe the OLPA approach is useful to know for several reasons. For one, it gives
a way to compute the exact worst-case state complexity of certain operations for
inputs with small state complexity. Naively, computing this value would require
checking all possible input DFAs under the state complexity threshold. However,
if our operation has the aforementioned two properties, we can just check the
small set of witness DFAs previously described. This check is quite slow because
of the large alphabets of the witnesses, but the computation is often feasible for a

2

handful of small values, and often these small values are enough to start making
conjectures about the general behaviour of the state complexity function.

Second, using “OLPA witnesses” with one letter for each action of the input
DFAs can simplify proofs and make the ideas behind them more clear. State
complexity proofs using witnesses over optimal or near-optimal alphabets are
often rather technical. Consider the following proof that for n ≥ 2, the state
complexity of the reversal operation is 2n:

Let D = (Q,Σ, δ, q0, F) be a DFA with n states. Suppose for each func-
tion t : Q → Q, there is a letter at ∈ Σ such that δ(q, at) = t(q). Let R =
(Q,Σ,∆, F, {q0}) be an NFA for the reverse of L(D), where ∆(q, at) = {p ∈
Q : δ(p, at) = q}. For each S ⊆ Q, let s be a function that maps S into F and
Q \ S into Q \ F . Then ∆(F, as) = {p ∈ Q : δ(p, as) ∈ F} = S, so all 2n subsets
of Q are reachable. Distinct sets S, T ⊆ Q are distinguished as follows: choose
an element q that (without loss of generality) is in S but not T , and choose a
function s that maps q0 to q and Q \ {q0} into Q \ {q}. Then ∆(S, as) contains
the final state q0 and ∆(T, as) does not, so the sets are distinguished. ⊓⊔

Because we are free to choose letters that do exactly what we want, this proof
is very simple. It is also rather illuminating, since we can immediately extract a
sufficient condition for attaining the worst-case state complexity from the proof:
it suffices that there are letters which induce, for each S ⊆ Q, a function that
maps S into F and Q \ S outside of F , and for each q ∈ Q, a function that
maps q0 to q and no other elements to q. Furthermore, if one notices that letters
can be replaced by words throughout the proof (that is, the hypothesis “there
is a letter at ∈ Σ such that δ(q, at) = t(q)” can be replaced by “there is a word
wt ∈ Σ∗ such that δ(q, wt) = t(q)”), one recovers the result of Salomaa, Wood
and Yu [20] that the state complexity is maximized if the transition monoid
of D contains all functions from Q to itself (in addition to strengthening the
aforementioned sufficient condition from letters to words).

For contrast, consider the proofs given by Jirásková and Šebej [14] that the
worst-case state complexity can be attained over ternary and binary alphabets.
The ternary proof is about as short as the proof above, but somewhat more terse,
asking the reader to compute transitions under the word bci2−i1−1ai1 . It also
does not offer the same insight into general conditions for attaining the worst-
case complexity. Meanwhile, the binary proof is long and involves a complicated
multi-case induction argument. Of course, it is useful and desirable to have proofs
that use witnesses with small alphabets, and we do not bring up these proofs to
criticize them or suggest they should be replaced. We just believe that proofs
using the OLPA approach can sometimes be simpler and more illuminating.

Our third reason for studying the OLPA approach is that we believe it could
lead to a better general understanding of state complexity of operations, and the
conditions that lead to maximal blow-ups in complexity. The fact that this ap-
proach exists and applies to many of the operations studied in the state complex-
ity literature perhaps suggests something about the nature of state complexity.
Suppose we think of each letter in an alphabet as an “instruction”, and a se-
quence of instructions as a “program”; then a language of state complexity n can

3

be viewed as a collection of programs for a “computer” with n possible mem-
ory states. It seems many operations attain their worst-case state complexity
when provided with languages that have an optimal “economy of description”
for programs – one instruction (letter) for each possible program (action). Is
the key to finding witnesses over small alphabets to maximize this “economy of
description” with respect to the alphabet size? Can the effectiveness of Brzo-
zowski’s “universal witnesses” [3], which have small alphabets and maximize the
complexity of several operations simultaneously, be explained in this framework?

We will also see there are operations for which the OLPA approach does not
work. Our main example is the operation 1

2L = {x ∈ Σ∗ : xy ∈ L, |x| = |y|},
which belongs to a general class of operations called proportional removals [7].
If the OLPA approach fails for an operation, what does this imply about the
nature and behaviour of this operation? Are the state complexity problems for
these operations “harder” to solve in general? Studying operations for which the
OLPA approach fails could be a fruitiful line of research.

The purpose of this paper is to initiate a formal and general study of the
OLPA approach. We define a class of regular operations, called “uniform op-
erations”, for which the OLPA approach provably works. The class of uniform
operations includes common operations such as reversal, star, power, concate-
nation, and all boolean operations (union, intersection, complement, etc.) but
also includes more esoteric operations like cyclic shift [15] and shuffles on tra-
jectories [11,17]. The class is also closed under composition, and thus includes
combined operations like “star-complement-star” [13].

We prove that for uniform operations, the worst-case state complexity can be
determined by considering just a finite set of witnesses. For an m-ary operation,
if the state complexity of the j-th input is at most nj , then the worst-case state
complexity of the output can be determined using 2(n1 + · · · + nm) different
witness languages, and by testing 2mn1 · · ·nm different combinations of these
witnesses. Additionally, the same set of witnesses can be used for all uniform
operations of a particular arity.

In the main sections of this paper, we will first state our definitions and
prove our results in the special case of unary operations, before moving on to
the general case. While this is ultimately redundant, focusing on the unary case
simplifies the notation and makes the definitions and results easier to digest.
The reader may find it useful to skip over the discussions of the general case
on the first reading, and come back after they fully understand how the OLPA
approach is formalized in the unary case.

To close the introduction, we give a history of the ideas behind the OLPA
approach. As mentioned, the key insight dates back to a 1978 paper of Sakoda
and Sipser [19]. They constructed languages wherein the alphabet letters were
directed graphs representing behaviours of non-deterministic finite automata
and two-way deterministic finite automata, with one letter for each possible
behaviour. They used these languages to prove results on the complexity of
conversions between different models of finite automata.

4

Perhaps the closest ancestor of our work is a 1990 paper of Ravikumar [18],
who treated the “Sakoda-Sipser technique” as a “systematic method to prove
lower bounds on the size complexity of finite automata”, and applied it to five
different problems, two of which were operational state complexity problems!
This is the first work we are aware of to present the OLPA approach as a gen-
eral problem-solving method. Unfortunately, the field of state complexity was
not very well-developed at the time, and Ravikumar seemingly did not realize
the full generality and applicability of the approach in operational state com-
plexity. Furthermore, Ravikumar’s use of the OLPA approach was less refined
than the version we present; Ravikumar used n-state OLPA witnesses each with
an alphabet of size nn as inputs to an n-ary operation, which is not guaranteed
to maximize the state complexity of the operation. Our version of the approach
would use an alphabet of size nn · · ·nn = (nn)n.

In 1992, building off Ravikumar’s work, Birget [1] used this “unrefined” ver-
sion of the OLPA approach to prove lower bounds on the state complexity of
intersection and union.

In 1994, Yu, Zhuang and Salomaa [22] published their seminal paper on
the state complexities of basic operations. Notably, even though Yu, Zhuang
and Salomaa cited Ravikumar’s work, they did not use or mention the “Sakoda-
Sipser technique” anywhere in their paper, instead using various ad-hoc methods
to prove lower bounds. The technique then seemingly faded into obscurity for a
while. It reappeared as the “full automata technique” in a 2006 paper of Yan [21],
who credited Sakoda and Sipser for the idea, and applied it to nondeterministic
finite automata and automata on infinite words (ω-automata). Yan’s paper is
frequently cited in the field of ω-automata, so the idea seems to have gained
some currency there.

In the field of deterministic state complexity, the OLPA approach has made
occasional past appearances. Jirásková and Okhotin [15] and later Domaratzki
and Okhotin [10] used the OLPA approach to compute the exact worst-case
complexity of the cyclic shift and power operations for small values. Brzozowski,
Jirásková, Liu, Rajasekaran, and Szyku la [4] used the OLPA approach to ob-
tain reachability results for the state complexity of shuffle. Cho, Han, Ko and
Salomaa [6] used an OLPA-like construction to establish lower bounds on the
state complexity of some “inversion” operations. Interestingly, their construction
includes unnecessary extra letters; perhaps these letters were added to somehow
make the proof easier.

Outside the context of descriptional complexity, in 2002, Domaratzki, Kisman
and Shallit [9] used OLPA automata to enumerate the languages accepted by
n-state automata.

In 2018, Caron, Hamel-De le court, Luque and Patrou [5] independently
obtained many of the results in this paper using a different formalism. OLPA
witnesses are called “monsters” in their work, and uniform operations are called
“depictable operations”. Their paper was submitted to arXiv just ten days after
the first version of this paper was submitted.

5

2 Preliminaries

2.1 Relations and Functions

A binary relation ρ between X and Y is a subset of X × Y . If ρ ⊆ X × Y and
τ ⊆ Y × Z, the composition of ρ and τ is the relation

ρτ = {(x, z) ∈ X × Z : there exists y ∈ Y such that (x, y) ∈ ρ and (y, z) ∈ τ}.

For x ∈ X and ρ ⊆ X × Y , the image of x under ρ is the set xρ = {y ∈ Y :
(x, y) ∈ ρ}. For x 6∈ X we define xρ = ∅. The converse of a binary relation
ρ ⊆ X × Y is the relation ρ−1 = {(y, x) : (x, y) ∈ ρ} ⊆ Y × X . The set
yρ−1 = {x ∈ X : (x, y) ∈ ρ} is called the preimage of y under ρ.

A function f : X → Y is a binary relation f ⊆ X × Y such that |xf | = 1
for all x ∈ X . Following our notation for binary relations, we write functions to
the right of their arguments. Composition of functions is defined by composing
the corresponding relations. Thus the order of composition is left-to-right ; in a
composition fg, first f is applied and then g. A transformation of a set X is a
function t : X → X , that is, a function from X into itself.

2.2 Languages and Automata

A finite automaton (FA) is a tuple A = (Q,Σ, T, I, F) where Q is a finite set of
states, Σ is a finite set of letters called an alphabet, T ⊆ Q × Σ × Q is a set of
transitions, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states.
The triple (Q, I, F) is called the state configuration of the automaton.

We now define a binary relation Tw ⊆ Q × Q for each w ∈ Σ∗. Define
Tε = {(q, q) : q ∈ Q}; in terms of maps, this is the identity map on Q. For
a ∈ Σ, define Ta = {(p, q) ∈ Q × Q : (p, a, q) ∈ T }. For w = a1 · · ·ak with
a1, . . . , ak ∈ Σ, define Tw = Ta1 · · ·Tak

. The relation Tw is called the relation
induced by w or the action of w. If Tw is a transformation of the state set Q, it
may also be called the transformation induced by w. The set {Tw : w ∈ Σ∗} is a
monoid under composition, called the transition monoid of A.

If A = (Q,Σ, T, I, F) is a finite automaton such that |I| = 1 and Ta is a
function for each a ∈ Σ, we say A is deterministic. We abbreviate “determin-
istic finite automaton” to DFA. As a result of this definition, that all DFAs we
consider in this paper are complete DFAs (that is, they have exactly one tran-
sition defined for each state-letter pair), and a finite automaton with an empty
state set or with no initial state is not considered a DFA.

Let A = (Q,Σ, T, I, F) be an FA. A word w ∈ Σ∗ is accepted by A if we
have ITw ∩F 6= ∅. If A is a DFA with I = {i}, this condition becomes iTw ∈ F .
The language of A, denoted L(A), is the set of all words it accepts. If L is
the language of A, we also say that A accepts L and that A is an FA for L.
Languages of FAs are called regular languages.

A regular operation of arity m is a function that takes m regular languages as
input and produces a regular language. A DFA operation of arity m is a function

6

that takes m DFAs as input and produces a DFA. We say a regular operation
Φ is equivalent to a DFA operation Ψ if both operations have the same arity
m, and for all m-tuples of DFAs (D1, . . . ,Dm), we have L((D1, . . . ,Dm)Ψ) =
(L(D1), . . . ,L(Dm))Φ. In other words, they are equivalent if the DFA operation
Ψ is an “implementation” of the regular operation Φ, in the sense that we can
compute the output of Φ by taking arbitrary DFAs for the input languages,
feeding them to Ψ , and taking the language of the output DFA.

In this paper we consider only DFA operations Ψ that are alphabet-preserving
in the following sense:

– An input (D1, . . . ,Dm) is only valid if all the DFAs have the same alphabet.
– If Σ is the common alphabet of the input DFAs, then Σ will be the alphabet

of the output DFA.

Furthermore, we consider only regular operations that are equivalent to an
alphabet-preserving DFA operation.

2.3 State Complexity

A DFA for a regular language L is minimal if it has the minimal number of states
amongst all DFAs that accept L. The state complexity of a regular language is the
number of states in a minimal DFA accepting the language. The state complexity
of L is denoted sc(L).

The notion of state complexity extends to regular operations. Let Φ be a
unary regular operation. The state complexity of the operation Φ is the following
function which takes a positive integer as input:

n 7→ max{sc(LΦ) : sc(L) ≤ n}.

That is, the state complexity of Φ is the worst-case state complexity of the
output LΦ, expressed as a function of the maximal allowed state complexity of
the input L. Note that max{sc(LΦ) : sc(L) ≤ n} might not exist for all n; in
such cases, the output of the function is ∞.

This idea generalizes to operations of higher arity. Let Φ be an m-ary regular
operation. The state complexity of Φ is the following function which takes an
m-tuple of positive integers as input:

(n1, . . . , nm) 7→ max{sc((L1, . . . , Lm)Φ) : sc(Li) ≤ ni, 1 ≤ i ≤ m}.

The output is either a positive integer, or ∞ if the maximum does not exist.

2.4 Morphisms

Let Σ and Γ be alphabets. A morphism is a function ϕ : Σ∗ → Γ ∗ such that
(xy)ϕ = (xϕ)(yϕ); in other words, a morphism is just a monoid homomorphism
between two free monoids. To define a morphism ϕ : Σ∗ → Γ ∗, it is sufficient to
specify its values on letters from Σ; the values on letters completely determine
the values on words.

7

If L ⊆ Γ ∗ is regular, then Lϕ−1 is regular. To see this, let ϕ : Σ∗ → Γ ∗ be
a morphism and let B = (Q,Γ, T, i, F) be a DFA. We can construct a DFA for
L(B)ϕ−1 as follows: let Bϕ−1 = (Q,Σ, T ′, i, F), where T ′ = {(q, a, qTaϕ) : q ∈
Q, a ∈ Σ}. Then it is easily verified that L(Bϕ−1) = L(B)ϕ−1. We call Bϕ−1

the inverse morphism DFA of B with respect to ϕ.
Note that Bϕ−1 has the same state configuration as B. This will be useful

for multiple reasons, but in particular it implies the following result for regular
languages L and K:

Lemma 1. If L = Kϕ−1, then sc(L) ≤ sc(K).

3 Transformation Languages

In this section, we formally define the witness languages that are used in the
OLPA approach.

Fix a set Q and let Σ be a set of transformations of Q. For i ∈ Q and F ⊆ Q,
the transformation language Σ(i, F) is the language of the DFA (Q,Σ, T, i, F),
where T = {(q, t, qt) : q ∈ Q, t ∈ Σ}. This DFA is called the standard DFA for
the transformation language.

The set of all transformations of a set Q is called the full transformation
monoid on Q, and is denoted TQ. The full transformation languages of the form
TQ(i, F) play in important role in the theory behind the OLPA approach.

Notice that the language TQ(i, F) has alphabet TQ, and the standard DFA for
TQ(i, F) has transitions {(q, t, qt) : q ∈ Q, t ∈ TQ}. This DFA has one letter per
transformation of the state set Q, that is, one letter per possible action on the
DFA’s states. Full transformation languages are the languages used as witnesses
when applying the OLPA approach to unary operations.

Let L be a regular language over Σ recognized by a DFA D = (Q,Σ, T, i, F).
The standard transformation morphism of L (with respect to D), denoted by
ϕL : Σ∗ → T ∗

Q, is defined by aϕL = Ta. The following fact is easily verified:

Proposition 2. L = TQ(i, F)ϕ−1
L .

Full transformation languages do not suffice as OLPA witnesses for operations
of arity greater than one. When applying the OLPA approach to operations
of arity m, we want to use an m-tuple (D1, . . . ,Dm) of DFAs (where Dj =
(Qj , Σ, Tj, ij, Fj) for 1 ≤ j ≤ m) with the following property: for each m-tuple
of transformations (t1 : Q1 → Q1, . . . , tm : Qm → Qm), there exists a letter a ∈ Σ

such that a induces transformation tj in Dj for 1 ≤ j ≤ m. That is, we have one
letter for every possible combination of actions across all the input DFAs.

For this purpose, we define transformation tuple languages. Let Q1, . . . , Qm

be finite sets and let Σ be a subset of T = TQ1 × · · · × TQm
. For j with 1 ≤

j ≤ m, i ∈ Qj , and F ⊆ Qj , the transformation tuple language Σj(i, F) is
the language of the DFA (Qj , Σ, T, i, F) where T = {(q, (t1, . . . , tm), qtj) : q ∈
Qj , (t1, . . . , tm) ∈ Σ}. This DFA is called the standard DFA of the transformation
tuple language. The full transformation tuple languages of the form Tj(i, F) are
used as OLPA witnesses in the case of m-ary operations.

8

There is a generalization of Proposition 2 for full transformation tuple lan-
guages. Let (L1, . . . , Lm) be an m-tuple of regular languages over Σ, where Lj

is recognized by the DFA Dj = (Qj , Σ, Tj, ij , Fj) for 1 ≤ i ≤ j. The standard
transformation tuple morphism of (L1, . . . , Lm) (with respect to (D1, . . . ,Dm)),
denoted by ϕ(L1,...,Lm) : Σ∗ → (TQ1 × · · · × TQm

)∗, is defined by aϕ(L1,...,Lm) =
((T1)a, . . . , (Tm)a). As shorthand, let T = TQ1×· · ·×TQm

and let ϕ = ϕ(L1,...,Lm).

Proposition 3. We have (L1, . . . , Lm) = (T1(i1, F1)ϕ−1, . . . ,Tm(im, Fm)ϕ−1).

Proof. It suffices to show for all w ∈ Σ∗ that w ∈ Lj ⇐⇒ wϕ ∈ Tj(ij , Fj). Fix
j and let (Qj ,T, T, ij, Fj) be the standard DFA of Tj(ij , Fj). Then we have

w ∈ Lj ⇐⇒ ij(Tj)w ∈ Fj ⇐⇒ ijTwϕ ∈ Fj ⇐⇒ wϕ ∈ Tj(ij , Fj),

as required.
The second two-way implication may not be obvious. To see that it holds,

first note that if w is empty, then (Tj)w and Twϕ are both the identity map
on Qj. Otherwise, suppose w = a1 · · · ak with a1, . . . , ak ∈ Σ. We may write
wϕ = (a1ϕ) · · · (akϕ), and thus Twϕ = Ta1ϕ · · ·Takϕ. By definition, we have
aiϕ = ((T1)ai

, . . . , (Tm)ai
) for 1 ≤ i ≤ k. This m-tuple of transformations is a

“letter” of the alphabet T = TQ1 × · · · TQm
. Then Taiϕ is the transformation of

Qj induced by the “letter” aiϕ. By definition, this induced transformation is the
map q 7→ q(Tj)ai

for q ∈ Qj. Thus Taiϕ = (Tj)ai
for 1 ≤ i ≤ k. It follows that

Twϕ = Ta1ϕ · · ·Takϕ = (Tj)a1 · · · (Tj)ak
= (Tj)w.

Hence the implication holds. ⊓⊔

4 Uniform Regular Operations

Our goal in this section is to define a large class of operations for which the
OLPA approach works. The approach does not work for all regular operations;
it is easy to come up with rather contrived examples of operations for which
OLPA fails. Consider an operation which sends languages with one letter per
action to the empty language, and acts as the identity on all other languages.
There are a few ways we could implement this operation as a DFA operation:

– If the input DFA has one letter per action, output a DFA with no final states.
Otherwise, output the input DFA.

– If the input DFA has one letter per action, output a DFA in which the initial
state is non-final and all the actions send the initial state to a sink state.
Otherwise, output the input DFA.

The problem with this operation is that its behaviour is not “uniform” across all
languages; it detects particular languages and has special behaviour for them.
In the first case, the operation does not behave uniformly on states: for most

9

DFAs it preserves the final state set, but for DFAs with one letter per action it
can change the final state set. In the second case, the operation is not uniform
on states or on actions: for most DFAs it preserves the state configuration and
actions, but for DFAs with one letter per action, it can change whether the initial
state is final, and also replace the actions by completely different actions.

We now attempt to formally define this idea of “uniformity” for unary oper-
ations. Let Ψ be a unary DFA operation. We say Ψ is uniform if for every pair of
DFAs A = (Q,Σ, TA, i, F) and B = (Q,Γ, TB, i, F) with the same state configu-
ration, the image DFAs AΨ = (Q′

A, Σ, T
′
A, i

′
A, F

′
A) and BΨ = (Q′

B, Γ, T
′
B, i

′
B, F

′
B)

satisfy the following conditions:

1. (Q′
A, i

′
A, F

′
A) = (Q′

B, i
′
B, F

′
B).

2. Whenever (TA)a = (TB)b for a ∈ Σ and b ∈ Γ , we have (T ′
A)a = (T ′

B)b.

We will say a unary regular operation Φ is uniform if there exists a uniform
unary DFA operation equivalent to Φ.

We can interpret this definition intuitively as follows. The first condition says
that the operation is uniform with respect to state configurations: if the operation
is given two input DFAs with the same state configuration, it will produce two
output DFAs with the same state configuration. The second condition says that
the operation is uniform with respect to actions: if the operation is given two
input DFAs with the same state configuration and a common action, then it
will produce two output DFAs with a common action, and furthermore the
same letters which induce the common action in the input DFAs will induce the
common action in the output DFAs.

The definition of uniformity is heavily dependent on DFAs. Thus, it may come
as a surprise that there is a simple and purely language-theoretic characterization
of uniformity. A morphism ϕ : Σ∗ → Γ ∗ is 1-uniform if it maps letters to letters.

Proposition 4. Let L and K be regular languages over Σ and Γ respectively.
The following are equivalent:

1. The regular operation Φ is uniform.
2. For all 1-uniform morphisms ϕ : Σ∗ → Γ ∗, if L = Kϕ−1 then LΦ = KΦϕ−1.

Proof. (1) =⇒ (2): Since Φ is uniform, there is a uniform DFA operation Ψ

equivalent to Φ. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ such that L = Kϕ−1.
Let A = (QA, Σ, TA, iA, FA) be a DFA for L, and let B = (QB, Γ, TB, iB, FB) be
a DFA for K. We write wA for (TA)w, and wB for (TB)w.

Note that we can choose our DFAs so that they have the same state configura-
tion. This follows from the fact that L = Kϕ−1, and thus we can take A = Bϕ−1

which has the same state configuration as B. Henceforth write QA = QB = Q,
iA = iB = i, and FA = FB = F .

Let AΨ = A′ = (Q′
A, Σ, T

′
A, i

′, F ′
A) and let BΨ = B′ = (Q′

B, Γ, T
′
B, i

′
B, F

′
B).

Write w′
A for (T ′

A)w and w′
B for (T ′

B)w. The DFA A′ recognizes LΦ, and the
DFA B′ recognizes KΦ. By the uniformity of Ψ , we can write Q′

A = Q′
B = Q′,

i′A = i′B = i′, and F ′
A = F ′

B = F ′.

10

Now, we want to show that LΦ = KΦϕ−1. Since A = Bϕ−1, for all q ∈ Q
and a ∈ Σ we have qaA = q(aϕ)B by definition. Thus aA and (aϕ)B are equal
as transformations of Q for all a ∈ Σ. By the uniformity of Ψ , a′A and (aϕ)′B
are equal as transformations of Q′. It follows that w′

A and (wϕ)′B are equal as
transformations of Q′ for all w ∈ Σ∗. Hence we have

w ∈ LΦ ⇐⇒ i
′
w

′

A ∈ F
′
⇐⇒ i

′(wϕ)′B ∈ F
′
⇐⇒ wϕ ∈ KΦ ⇐⇒ w ∈ KΦϕ

−1
.

This proves that LΦ = KΦϕ−1.
(2) =⇒ (1): We are given a regular operation Φ. We want to produce a

uniform DFA operation Ψ such that for all DFAs A, we have L(AΨ) = L(A)Φ.
Fix an n-state DFA A = (Q,Σ, T, i, F) and let L be its language. We define

AΨ as follows. By Proposition 2, we have L = TQ(i, F)ϕ−1
L , where ϕL : Σ∗ →

T ∗
Q is the standard transformation morphism of L. By assumption, we then

have LΦ = TQ(i, F)Φϕ−1
L . Let D′ = (Q′, TQ, T ′, i′, F ′) be a minimal DFA for

TQ(i, F)Φ, and set AΨ = D′ϕ−1
L .

It is clear that we have L(AΨ) = TQ(i, F)Φϕ−1
L(A) = L(A)Φ as required. To

see that Ψ is uniform, fix DFAs A = (Q,Σ, TA, i, F) and B = (Q,Γ, TB, i, F).
We compute the images AΨ = A′ = (Q′

A, Σ, T
′
A, i

′
A, F

′
A) and BΨ = B′ =

(Q′
B, Γ, T

′
B, i

′
B, F

′
B). Now, let D′ = (Q′, TQ, T ′

D, i
′, F ′) be the minimal DFA for

TQ(i, F)Φ. By definition, we have A′ = D′ϕ−1
L(A) and B′ = D′ϕ−1

L(B). So A′ and

B′ both have the same state configuration as D′. It follows that (Q′
A, i

′
A, F

′
A) =

(Q′
B, i

′
B, F

′
B), as required.

Next, fix a ∈ Σ and b ∈ Γ such that (TA)a = (TB)b. We have q(T ′
A)a =

q(T ′
D)aϕL(A)

for all q. Also, q(T ′
B)b = q(T ′

D)bϕL(B)
for all q. By the definition of

the standard transformation morphism, we have aϕL(A) = bϕL(B), since (TA)a =
(TB)b. It follows that (T ′

A)a = (T ′
B)b, as required. Thus Ψ is uniform. ⊓⊔

Now that we have established the definition of uniformity and the language-
theoretic characterization for unary regular operations, we turn to operations of
higher arity. Let Ψ be an m-ary DFA operation. We say Ψ is uniform if for every
pair of m-tuples of DFAs (A1, · · · ,Am) and (B1, . . . ,Bm), where for each j with
1 ≤ j ≤ m, the DFAs Aj and Bj have the same state configuration, the DFA Aj

has alphabet Σ and transition set TAj
, and the DFA Bj has transition set TBj

and alphabet Γ ; the image DFAs A = (A1, · · · ,Am)Ψ and B = (B1, . . . ,Bm)Ψ
have transition sets TA and TB respectively, and the following conditions hold:

1. The image DFAs A and B have the same state configuration.
2. If there exist letters a ∈ Σ and b ∈ Γ such that (TAj

)a = (TBj
)b for each j

with 1 ≤ j ≤ m, then (TA)a = (TB)b.

There is a corresponding language-theoretic characterization of the general def-
inition of uniformity.

Proposition 5. Let (L1, . . . , Lm) and (K1, . . . ,Km) be m-tuples of regular lan-
guages, where Lj is a language over Σ and Kj is a language over Γ for 1 ≤ j ≤
m. The following are equivalent:

1. The m-ary regular operation Φ is uniform.

11

2. For all 1-uniform morphisms ϕ : Σ∗ → Γ ∗, if Lj = Kjϕ
−1 for 1 ≤ j ≤ m,

then (L1, . . . , Lm)Φ = (K1, . . . ,Km)Φϕ−1.

The proof is very similar to the proof of Proposition 4, except the general def-
inition of uniformity is used and full transformation tuple languages are used
instead of full transformation languages.

Proof. (1) =⇒ (2): Since Φ is uniform, there is a uniform DFA operation Ψ

equivalent to Φ. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ such that Lj = Kjϕ
−1

for 1 ≤ j ≤ m. We want to show that (L1, . . . , Lm)Φ = (K1, . . . ,Km)Φϕ−1.
Since Lj = Kjϕ

−1, for each j we can find a DFA Aj for Lj and a DFA Bj

for Kj such that Aj = Bjϕ
−1. Each pair of DFAs Aj and Bj has a common

state configuration (Qj, ij , Fj). For 1 ≤ j ≤ m, let Aj = (Qj , Σ, TAj
, ij , Fj) be

the DFA for Lj and let Bj = (Qj , Γ, TBj
, ij, Fj) be the DFA for Kj. By the

uniformity of Ψ , the image DFAs A = (A1, . . . ,Am)Ψ and B = (B1, . . . ,Bm)Ψ
have a common state configuration (Q, i, F). Write A = (Q,Σ, TA, i, F) and
B = (Q,Σ, TB, i, F).

Since Aj = Bjϕ
−1 for 1 ≤ j ≤ m, for all q ∈ Qj and a ∈ Σ, we have

q(TAj
)a = q(TBj

)aϕ by definition. Thus (TAj
)a = (TBj

)aϕ for all a ∈ Σ and
all 1 ≤ j ≤ m. By the uniformity of Ψ , it follows that (TA)a = (TB)aϕ. Hence
(TA)w = (TB)wϕ for all w ∈ Σ∗. Thus we have

w ∈ (L1, . . . , Lm)Φ ⇐⇒ i(TA)w ∈ F ⇐⇒ i(TB)wϕ ∈ F

⇐⇒ wϕ ∈ (K1, . . . ,Km)Φ ⇐⇒ w ∈ (K1, . . . ,Km)Φϕ−1.

This proves that (L1, . . . , Lm)Φ = (K1, . . . ,Km)Φϕ−1.
(2) =⇒ (1): We want to produce a uniform m-ary DFA operation Ψ such

that for all tuples of DFAs (A1, . . . ,Am) over a common alphabet, we have
L((A1, . . . ,Am)Ψ) = (L(A1), . . . ,L(Am))Φ.

Fix a tuple (A1, . . . ,Am) of DFAs over Σ, where Aj has state configuration
(Qj , ij, Fj), and let Lj = L(Aj) for 1 ≤ j ≤ m. We define the image A =
(A1, . . . ,Am)Ψ as follows. By Proposition 3 we have Lj = Tj(ij , Fj)ϕ

−1
(L1,...,Lm),

where ϕ(L1,...,Lm) is the standard transformation tuple morphism of (L1, . . . , Lm)
with respect to (A1, . . . ,Am), and T = TQ1 × . . . × TQm

. Let D be a minimal
DFA for (T1(i1, F1), . . . ,Tm(im, Fm))Φ, and set (A1, . . . ,Am)Ψ = Dϕ−1

(L1,...,Lm).

We claim that L((A1, . . . ,Am)Ψ) = (L(A1), . . . ,L(Am))Φ. Indeed, since
Lj = Tj(ij, Fj)ϕ

−1
(L1,...,Lm), we have

(L1, . . . , Lm)Φ = (T1(i1, F1), . . . ,Tm(im, Fm))Φϕ−1
(L1,...,Lm).

It follows that

L((A1, . . . ,Am)Ψ = L(Dϕ
−1
(L1,...,Lm)) = (T1(i1, F1), . . . ,Tm(im, Fm))Φϕ−1

(L1,...,Lm)

= (L1, . . . , Lm)Φ = (L(A1), . . . ,L(Am))Φ,

as required.

12

To see that Ψ is uniform, fixm-tuples of DFAs (A1, . . . ,Am) and (B1, . . . ,Bm)
such that for 1 ≤ j ≤ m, the DFAs Aj and Bj have the same state configura-
tion (Qj, ij , Fj), the DFA Aj has alphabet Σ and transition set TAj

, and the
DFA Bj has alphabet Γ and transition set TBj

. Write (A1, . . . ,Am)Ψ = A =
(QA, Σ, TA, iA, FA) and (B1, . . . ,Bm)Ψ = B = (QB, Γ, TB, iB, FB). Let D be
a minimal DFA for (T1(i1, F1), . . . ,Tm(im, Fm))Φ used in the definition of Ψ .
Then A and B are both inverse morphism DFAs constructed from D, so they
both have the same state configuration as D. Write (Q, i, F) for this common
state configuration.

It remains to show that whenever we have a ∈ Σ and b ∈ Γ such that
(TAj

)a = (TBj
)b for 1 ≤ j ≤ m, it follows that (TA)a = (TB)b. Fix a ∈ Σ and

b ∈ Γ with this property. Write ϕA as shorthand for ϕ(L(A1),...,L(Am), and write

ϕB for ϕ(L(B1),...,L(Bm). By definition, we have A = Dϕ−1
A and B = Dϕ−1

B . Let
TD be the transition set of D. Then for q ∈ Q, we have q(TA)a = q(TD)aϕA

and
q(TB)b = q(TD)bϕB

. By the definition of the standard transformation tuple mor-
phism, we have aϕA = ((TA1)a, . . . , (TAm

)a) and bϕB = ((TB1)b, . . . , (TBm
)b).

But we are assuming that (TAj
)a = (TBj

)b for 1 ≤ j ≤ m, so in fact aϕA = bϕB.
It then follows that (TA)a = (TB)b, as required.

This proves that Ψ is uniform, and thus Φ is uniform, since it is equivalent
to a uniform DFA operation. ⊓⊔

5 The Main Theorem

The goal of this section is to prove that the OLPA approach works for all uniform
operations. Thanks to Proposition 4 and its generalization in Proposition 5, this
is not especially difficult.

First we consider unary operations. The following lemma formalizes a “weak”
version of the OLPA approach for unary operations. The short proof contains all
the essential ideas, but the expression it gives for the state complexity function is
not practical, since it involves taking a maximum over all sets of size n. Obtaining
a practical expression for the state complexity function is just a technical matter
that we will deal with after this proof.

Lemma 6. Let Φ be a uniform unary regular operation. Let L be a regular lan-
guage recognized by a DFA (Q,Σ, T, i, F). Then sc(LΦ) ≤ sc(TQ(i, F)Φ). In
particular, the state complexity of Φ is given by the following function:

n 7→ max{sc(TQ(i, F)Φ) : |Q| = n, i ∈ Q,F ⊆ Q}.

Proof. Fix L, and recall that L = TQ(i, F)ϕ−1
L , where ϕL is the standard trans-

formation morphism of L. Since Φ is uniform, we have LΦ = TQ(i, F)Φϕ−1
L by

Proposition 4. By Lemma 1, we have sc(LΦ) ≤ sc(TQ(i, F)Φ) as required. ⊓⊔

Now, we show that to compute the state complexity function, it suffices to
just consider the set {1, . . . , n} instead of all sets of size n. Furthermore, we may
assume that i = 1, and that F is either {1, . . . , k} or {n− k+ 1, . . . , n} for some
k ≤ n. Thus it suffices to just check 2n OLPA witnesses. Write Tn for T{1,...,n},
let Fn,k,1 = {1, . . . , k}, and let Fn,k,0 = {n− k + 1, . . . , n}.

13

Theorem 7. Let Φ be a uniform unary regular operation. Let L be a regular
language recognized by a DFA (Q,Σ, T, i, F). Then sc(LΦ) ≤ sc(Tn(1, Fn,k,j)Φ),
where n = |Q|, k = |F |, and j is defined to be 1 if i ∈ F and 0 if i 6∈ F . The
state complexity of Φ is the following function:

n 7→ max{sc(Tn(1, Fn,k,j)Φ) : 0 ≤ j ≤ 1, 0 + j ≤ k ≤ n− 1 + j}.

Proof. We know from Lemma 6 that sc(LΦ) ≤ sc(TQ(i, F)Φ). Let us prove that
sc(TQ(i, F)Φ) ≤ sc(Tn(1, Fn,k,j)Φ), with n, k and j defined as in the statement
of the theorem.

By Lemma 1 and the uniformity of Φ, it suffices to exhibit a morphism
ϕ : T ∗

Q → T ∗
n such that TQ(i, F) = Tn(1, Fn,k,j)ϕ

−1. To define ϕ, first we define
a bijection β : Q → {1, . . . , n}. We take β to be a bijection with the following
properties: iβ = 1 and Fβ = Fn,k,j . The remaining elements of Q are mapped to
the remaining elements of {1, . . . , n} arbitrarily. Note that this definition of β is
only possible because of our choice of the parameter j. Indeed, we are mapping
iβ to 1, so if i ∈ F then we better have 1 ∈ Fn,k,j ; but i ∈ F implies j = 1
and thus Fn,k,j = {1, . . . , k}. On the other hand, if i 6∈ F then we better have
1 6∈ Fn,k,j , but in this case we have j = 0 giving Fn,k,j = {n − k + 1, . . . , n}.
Given this definition of β, for each t : Q→ Q, we define tϕ be the transformation
of {1, . . . , n} that sends m to mβ−1tβ.

We show that w ∈ TQ(i, F) if and only if w ∈ Tn(1, Fn,k,j)ϕ
−1. Let w =

t1 · · · tk for t1, . . . , tk ∈ TQ.

w ∈ TQ(i, F) ⇐⇒ iw ∈ F ⇐⇒ 1β−1w ∈ F ⇐⇒ 1β−1wβ ∈ Fβ

⇐⇒ 1β−1wβ ∈ Fn,k,j ⇐⇒ 1β−1t1t2 · · · tkβ ∈ Fn,k,j

⇐⇒ 1β−1t1ββ
−1t2β · · ·β

−1tkβ ∈ Fn,k,j

⇐⇒ 1(t1ϕ)(t2ϕ) · · · (tkϕ) ∈ Fn,k,j ⇐⇒ 1(wϕ) ∈ Fn,k,j

⇐⇒ wϕ ∈ Tn(1, Fn,k,j) ⇐⇒ w ∈ Tn(1, Fn,k,j)ϕ
−1.

Thus TQ(i, F) = Tn(1, Fn,k,j)ϕ
−1, as required. This completes the proof. ⊓⊔

We now consider uniform operations of arbitrary arity. The proof strategies
in this case are much the same, except full transformation tuple languages are
used as witnesses, rather than full transformation languages.

Lemma 8. Let Φ be a uniform m-ary regular operation. Let (L1, . . . , Lm) be
regular languages, where Lj is recognized by a DFA (Qj , Σ, Tj, ij , Fj). Let T =
TQ1 × · · · × TQm

. Then sc((L1, . . . , Lm)Φ) ≤ sc((T1(i1, F1), . . . ,Tm(im, Fm))Φ).

Proof. Fix (L1, . . . , Lm), and recall from Proposition 3 that (L1, . . . , Lm) =
(T1(i1, F1)ϕ−1, . . . ,Tm(im, Fm)ϕ−1), where the morphism ϕ = ϕ(L1,...,Lm) is the
standard transformation tuple morphism of (L1, . . . , Lm). Since Φ is uniform, we
have

(L1, . . . , Lm)Φ = (T1(i1, F1), . . . ,Tm(im, Fm))Φϕ−1,

14

by Proposition 5. Then by Lemma 1, we have

sc((L1, . . . , Lm)Φ) ≤ sc((T1(i1, F1), . . . ,Tm(im, Fm)Φ),

as required. ⊓⊔

As before, it suffices to only check a finite number of witnesses. Recall that
we defined Tn = T{1,...,n}, and for k ≤ n we defined Fn,k,1 = {1, . . . , k} and
Fn,k.0 = {n− k + 1, . . . , n}.

Theorem 9 (The “Fundamental Theorem of the OLPA Approach”).
Let Φ be a uniform m-ary regular operation. Let (L1, . . . , Lm) be regular lan-
guages, where Lj is recognized by a DFA (Qj , Σ, Tj, ij , Fj). Let nj = |Qj | and
let T = Tn1 × . . . Tnm

. Then we have

sc((L1, . . . , Lm)Φ) ≤ sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where kj = |Fj |, and ℓj is defined to be 1 if ij ∈ Fj and 0 if ij 6∈ Fj. The state
complexity of Φ is the function

(n1, . . . , nm) 7→ max sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where the maximum is taken over all possible values in the following ranges:
1 ≤ j ≤ m, 0 ≤ ℓj ≤ 1, and 0 + ℓj ≤ kj ≤ nj − 1 + ℓj.

To compute the worst-case state complexity of an m-ary operation for m input
DFAs of sizes n1 through nm, we use 2(n1 + · · · + nm) different languages, each
with an alphabet of size nn1

1 · · ·nnm
m . The number of input m-tuples that must

be tested is 2mn1 · · ·nm, since for the j-th component there are 2nj choices.

Proof. Define T
′ = TQ1 × . . .× TQm

. We know from Lemma 8 that

sc((L1, . . . , Lm)Φ) ≤ sc((T′
1(i1, F1), . . . ,T′

m(im, Fm))Φ).

Let us prove the following:

sc((T′

1(i1, F1), . . . ,T′

m(im, Fm))Φ) ≤ sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where nj , kj , ℓj for 1 ≤ j ≤ m are defined as in the statement of the theorem.

By Lemma 1 and the uniformity of Φ, it suffices to exhibit a morphism
ϕ : (T′)∗ → T

∗ such that T
′
j(ij , Fj) = Tj(1, Fnj ,kj ,ℓj)ϕ−1 for 1 ≤ j ≤ m. To

define ϕ, first we define bijections βj : Qj → {1, . . . , nj} for 1 ≤ j ≤ m. As
in the proof of Theorem 7, we take each βj to be a bijection with the follow-
ing properties: ijβ = 1 and Fjβ = Fnj ,kj ,ℓj . The remaining elements of Qj

are mapped to the remaining elements of {1, . . . , nj} arbitrarily. Then for each
tuple (t1, . . . , tm) ∈ T

′, we define (t1, . . . , tm)ϕ to be the transformation tuple
(β−1

1 t1β1, . . . , β
−1
m tmβm), which lies in T.

15

Now, for 1 ≤ j ≤ m, we show that w ∈ T
′
j(ij , Fj) ⇐⇒ wϕ ∈ Tj(1, Fnj ,kj ,ℓj).

Let w = (t1,1, . . . , tm,1) · · · (t1,k, . . . , tm,k), where each of these transformation
tuples lies in T

′.

w ∈ T
′
j(ij , Fj) ⇐⇒ ijw ∈ Fj ⇐⇒ ijtj,1tj,2 · · · tj,k ∈ Fj

⇐⇒ 1β−1
j tj,1tj,2 · · · tj,kβj ∈ Fnj ,kj ,ℓj

⇐⇒ 1β−1
j tj,1βjβ

−1
j tj,2βj · · ·β

−1
j tj,kβj ∈ Fnj ,kj ,ℓj

⇐⇒ 1wϕ ∈ Fnj ,kj ,ℓj ⇐⇒ wϕ ∈ Tj(1, Fnj ,kj ,ℓj).

Thus T
′
j(ij , Fj) = Tj(1, Fnj ,kj ,ℓj)ϕ−1, as required. ⊓⊔

6 Examples of Uniform and Non-Uniform Operations

In this section, we prove that a number of common operations (as well as a few
more esoteric ones) are uniform, and that the class of uniform operations is closed
under composition. We also give some examples of non-uniform operations.

6.1 Uniform Operations

First we consider a class of operations called shuffles on trajectories [11,17].
Operations in this class include shuffle, literal shuffle, balanced literal shuffle,
insertion, balanced insertion, concatenation, and anti-concatenation [17, Remark
3.1]. We denote the shuffle of languages L and L′ along the set of trajectories
X ⊆ {0, 1}∗ by L X L′. The shuffle on trajectories L X L′ is regular if and
only if X is regular [17, Theorem 5.1]. For the definition of L X L′, see [17,
Section 3]; for the following proof we only need to know the DFA construction.

Proposition 10. For all regular languages X ⊆ {0, 1}∗, the shuffle on trajec-
tories operation (L,L′) 7→ L X L′ is uniform.

Proof. Following [17], we define a DFA operation Ψ equivalent to the shuffle on
trajectories operation. Let D1 = (Q1, Σ, T1, i1, F1) and D2 = (Q2, Σ, T2, i2, F2)
be arbitrary DFAs. Let DX = (QX , {0, 1}, TX, iX , FX) be a DFA for the set of
trajectories X . We set (D1,D2)Ψ to be the determinization of the following FA
D. The FA D has state set Q1 ×QX ×Q2, alphabet Σ, initial state (i1, iX , i2),
final state set F1 × FX × F2, and transition set T defined as follows: for each
a ∈ Σ, we have

(q1, qX , q2)Ta = {(q1(T1)a, qX(TX)0, q2), (q1, qX(TX)1, q2(T2)a)}.

It was proved in [17, Theorem 5.1] that L((D1,D2)Ψ) = L(D1) X L(D2).
Let (A1,A2) and (B1,B2) be pairs of DFAs such that for 1 ≤ j ≤ 2, the

DFAs Aj and Bj have the same state configuration (Qj , ij , Fj), the DFA Aj

has alphabet Σ and transition set TAj
, and the DFA Bj has alphabet Γ and

transition set TBj
.

16

It is clear that the image DFAs A = (A1,A2)Ψ and B = (B1,B2)Ψ will have
the same state configuration. Additionally, by inspecting the definitions of the
transition sets TA of A and TB of B, it is clear that if (TAj

)a = (TBj
)b for a ∈ Σ,

b ∈ Γ and 1 ≤ j ≤ 2, then (TA)a = (TB)b. Indeed, let S ⊆ Q1 ×QX ×Q2. Then
we have

S(TA)a =
⋃

(q1,qX ,q2)∈S

{(q1, qX , q2)}(TA)a

=
⋃

(q1,qX ,q2)∈S

{(q1(TA1)a, qX(TX)0, q2), (q1, qX(TX)1, q2(TA2)a)}

=
⋃

(q1,qX ,q2)∈S

{(q1(TB1)b, qX(TX)0, q2), (q1, qX(TX)1, q2(TB2)b)}

=
⋃

(q1,qX ,q2)∈S

{(q1, qX , q2)}(TB)b = S(TB)b.

Thus Ψ is uniform, and it follows that the shuffle on trajectories operation is
uniform. ⊓⊔

The above proof illustrates the fact that once one understands the definition of
uniformity, it is often easy to determine whether an operation is uniform just by
inspecting the DFA construction. There are no difficult ideas in this proof; it is
just a statement of a DFA construction and a rudimentary calculation.

One can also use the language-theoretic characterization of uniformity to
prove that operations are uniform. Typically, proofs using the language-theoretic
characterization require somewhat more thought to write and read, but are
shorter and have less of the “boilerplate” needed for DFA-based proofs. The
rest of our uniformity proofs will use the language-theoretic characterization.

Proposition 11. The reversal operation L 7→ LR is uniform.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose L = Kϕ−1. Since
ϕ is 1-uniform, we have (wR)ϕ = (wϕ)R for all w ∈ Σ∗. It follows that

w ∈ LR ⇐⇒ wR ∈ L ⇐⇒ wR ∈ Kϕ−1 ⇐⇒ (wR)ϕ ∈ K

⇐⇒ (wϕ)R ∈ K ⇐⇒ wϕ ∈ KR ⇐⇒ w ∈ KRϕ−1.

Thus LR = KRϕ−1. Therefore, by Proposition 4, reversal is uniform. ⊓⊔

The cyclic shift operation [15] is defined by Lcyc = {uv : vu ∈ L}.

Proposition 12. The cyclic shift operation L 7→ Lcyc is uniform.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose L = Kϕ−1. We
want to show that Lcyc = Kcycϕ−1.

If w ∈ Lcyc, we can write w = uv for some u, v ∈ Σ∗ such that vu ∈ L. Since
L = Kϕ−1, we have (vu)ϕ = (vϕ)(uϕ) ∈ K. Thus (uϕ)(vϕ) = wϕ ∈ Kcyc, and
it follows that Lcyc ⊆ Kcycϕ−1.

17

If w ∈ Kcycϕ−1, then wϕ ∈ Kcyc. Thus we can write wϕ = uv for some
u, v ∈ Σ∗ such that vu ∈ K. Since ϕ is 1-uniform, w has length |u| + |v|. Write
w = xy where |x| = |u| and |y| = |v|. Then (yx)ϕ = (yϕ)(xϕ) = vu ∈ K. It
follows that yx ∈ L, which implies xy = w ∈ Lcyc. Hence Lcyc = Kcycϕ−1. By
Proposition 4, cyclic shift is uniform. ⊓⊔

Proposition 13. The star operation L 7→ L∗ is uniform.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose L = Kϕ−1. For
a language M , let t(M) be the set of all finite-length tuples of elements of M ,
and let ψM : t(M) → M∗ be the map (w1, . . . , wn)ψM = w1 · · ·wn (the empty
tuple is sent to ε). We claim that wψ−1

L 6= ∅ ⇐⇒ (wϕ)ψ−1
K 6= ∅. Indeed, if

(w1, . . . , wn) ∈ wψ−1
L then (w1ϕ, . . . , wnϕ) ∈ (wϕ)ψ−1

K . Conversely, if we have
(x1, . . . , xn) ∈ (wϕ)ψ−1

K , then wϕ = x1 · · ·xn. Since ϕ is 1-uniform, we can
write w = w1 · · ·wn with |wj | = |xj | and wjϕ = xj for 1 ≤ j ≤ n. Then since
xj = wjϕ ∈ K =⇒ wj ∈ Kϕ−1 = L, we have (w1, . . . , wn) ∈ wϕ−1

L as required.
It follows that:

w ∈ L∗ ⇐⇒ wψ−1
L 6= ∅ ⇐⇒ (wϕ)ψ−1

K 6= ∅ ⇐⇒ wϕ ∈ K∗ ⇐⇒ w ∈ K∗ϕ−1.

Thus L∗ = K∗ϕ−1. Therefore, by Proposition 4, star is uniform. ⊓⊔

An m-ary boolean function is a function β : {0, 1}m → {0, 1}. Each m-ary
boolean function defines a corresponding m-ary boolean operation on languages
over Σ∗, as follows. For L ⊆ Σ∗, let χL : Σ∗ → {0, 1} be the characteristic
function of L: if w ∈ L then wχL = 1, and if w 6∈ L then wχL = 0. Then we
define

(L1, . . . , Lm)β = {w ∈ Σ∗ : (wχL1 , . . . , wχLm
)β = 1}.

Examples of commonly used boolean operations on languages include union and
intersection (m-ary for m ≥ 2), difference and symmetric difference (binary),
and complement (unary).

Proposition 14. Boolean operations on languages are uniform.

Proof. Let β be an m-ary boolean operation on languages. Fix a 1-uniform
morphism ϕ : Σ∗ → Γ ∗ and suppose Lj = Kjϕ

−1 for 1 ≤ j ≤ m. We have

w ∈ (L1, . . . , Lm)β ⇐⇒ (wχL1 , . . . , wχLm
)β = 1

⇐⇒ (wχK1ϕ−1 , . . . , wχKmϕ−1)β = 1

⇐⇒ (wϕχK1 , . . . , wϕχKm
)β = 1

⇐⇒ wϕ ∈ (K1, . . . ,Km)β ⇐⇒ w ∈ (K1, . . . ,Km)βϕ−1.

Therefore, by Proposition 4, β is uniform. ⊓⊔

We have seen that binary concatenation is uniform, since concatenation belongs
to the class of shuffles on trajectories. Next we give a direct proof that m-ary
concatenation is uniform.

18

Proposition 15. The m-ary concatenation operation (L1, . . . , Lm) 7→L1 · · ·Lm

is uniform.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose Lj = Kjϕ
−1 for 1 ≤

j ≤ m. Define ψL : L1 × · · · × Lm → L1 · · ·Lm by (w1, . . . , wm)ψL = w1 · · ·wm

and similarly define ψK : K1 × · · · ×Km → K1 · · ·Km. Using similar arguments
to the proof of Proposition 13, we can show that wψ−1

L 6= ∅ ⇐⇒ (wϕ)ψ−1
K 6= ∅.

Thus:

w ∈ L1 · · ·Lm ⇐⇒ wψ−1
L 6= ∅ ⇐⇒ (wϕ)ψ−1

K 6= ∅ ⇐⇒ wϕ ∈ K1 · · ·Km.

Therefore, by Proposition 4, m-ary concatenation is uniform. ⊓⊔

Next, we show that the class of uniform operations is closed under composition.
It is easy to see that this holds for unary uniform operations: if Φ and Φ′ are
uniform and L = Kϕ−1 for a 1-uniform morphism ϕ, then LΦ = KΦϕ−1 and
subsequently (LΦ)Φ′ = (KΦ)Φ′ϕ−1. The general case is not much harder; the
only difficulty is in dealing with the notation.

Proposition 16. Let Φ be an m-ary uniform operation, and let Φ1, . . . , Φm be
uniform operations where Φj has arity nj. Set Nj = n1 + · · ·+nj for 1 ≤ j ≤ m,
and consider the operation of arity Nm that maps (L1, . . . , LNm

) to

((L1, . . . , LN1)Φ1, (LN1+1, . . . , LN2)Φ2, . . . (LNm−1+1, . . . , LNm
)Φm)Φ.

This operation, which we denote by Φ′, is uniform.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose Lj = Kjϕ
−1 for

1 ≤ j ≤ Nm. By Proposition 4, it suffices to show that (L1, . . . , LNm
)Φ′ =

(K1, . . . ,KNm
)Φ′ϕ−1. Let N0 = 0; then by the uniformity of Φj , for 1 ≤ j ≤ m

we have

(LNj−1+1, . . . , LNj
)Φj = (KNj−1+1, . . . ,KNj

)Φjϕ
−1.

Set Mj = (LNj−1+1, . . . , LNj
)Φj and M ′

j = (KNj−1+1, . . . ,KNj
)Φj . Then Mj =

M ′
jϕ

−1 for 1 ≤ j ≤ m. By the uniformity of Φ, we have

(L1, . . . , LNm)Φ′ = (M1, . . . ,Mm)Φ = (M ′

1, . . . ,M
′

m)Φϕ−1 = (K1, . . . ,KNm)Φ′
ϕ

−1
,

as required. ⊓⊔

This shows that all “combined operations” formed by compositions of the uni-
form operations we have seen so far are also uniform.

The following “substitution lemma” can also be used to construct new uni-
form operations from known ones.

Lemma 17. Let Φ be a k-ary operation. Fix m ≥ 1 and i1, . . . , ik ∈ {1, . . . ,m}.
Then the operation Φ′ defined by (L1, . . . , Lm) 7→ (Li1 , . . . , Lik)Φ is uniform.

19

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose Lj = Kjϕ
−1 for

1 ≤ j ≤ m. Then by the uniformity of Φ, we have

(L1, . . . , Lm)Φ′ = (Li1 , . . . , Lik)Φ = (Ki1 , . . . ,Kik)Φϕ−1 = (K1, . . . ,Km)Φ′ϕ−1.

Therefore, by Proposition 4, the operation Φ′ is uniform. ⊓⊔

As an example, we show that the power operation is uniform. Define L0 = {ε}
and for n ≥ 1, set Ln = Ln−1L.

Proposition 18. For n ≥ 0, the power operation L 7→ Ln is uniform.

Proof. For n ≥ 2, in Lemma 17, let Φ be the n-ary concatenation operation, set
m = 1 and set i1, . . . , in = 1. For n = 1, it is immediate that L 7→ L is uniform.
For n = 0, see Proposition 19 below. ⊓⊔

Another example is the anti-concatenation operation (L,L′) 7→ L′L. This be-
longs to the class of shuffles on trajectories, so we already know that it is uniform,
but an alternate proof could be given using Lemma 17: let Φ be binary concate-
nation, set m = 2, set i1 = 2 and set i2 = 1.

Next we consider some operations which depend only on the alphabet of the
input languages. These are not interesting from a state complexity perspective,
but can be used to construct interesting combined operations.

Proposition 19. Let S ⊆ N. The operation (L1, . . . , Lm) 7→
⋃

n∈S Σ
n, where

Σ is the common alphabet of the inputs, is uniform. In particular, the following
operations are uniform for all arities m:

1. (L1, . . . , Lm) 7→ ∅.
2. (L1, . . . , Lm) 7→ {ε}.
3. (L1, . . . , Lm) 7→ Σ∗.
4. (L1, . . . , Lm) 7→ Σ+.

Proof. Fix a 1-uniform morphism ϕ : Σ∗ → Γ ∗ and suppose Lj = Kjϕ
−1 for

1 ≤ j ≤ m. We claim that Σn = Γnϕ−1 for all n ≥ 0. Indeed, take a word
w ∈ Σn; then wϕ is in Γn by 1-uniformity, and so w ∈ Γnϕ−1. Conversely, if
w ∈ Γnϕ−1 = {x ∈ Σ∗ : xϕ ∈ Γn} then certainly w ∈ Σn. It follows that:

⋃

n∈S

Σn =
⋃

n∈S

Γnϕ−1 =

(
⋃

n∈S

Γn

)
ϕ−1.

By Proposition 4, operations of this type are uniform. ⊓⊔

For a language L over Σ, the right ideal generated by L is Σ∗L, the left ideal
generated by L is LΣ∗, the two-sided ideal generated by L is Σ∗LΣ∗, and the
all-sided ideal generated by L is L Σ∗, where is (ordinary) shuffle. By com-
bining our earlier results, we can show that the operations which map L to one
of the ideals it generates are uniform. For example, let Φ be ternary concate-
nation, let Φ1 and Φ3 be L 7→ Σ∗, and let Φ2 be L 7→ L. Then the operation

20

(L1, L2, L3) 7→ (L1Φ1, L2Φ2, L3Φ3)Φ is uniform by closure under composition.
Then by substitution, L 7→ (LΦ1, LΦ2, LΦ3)Φ = Σ∗LΣ∗ is uniform.

In summary, we have proved that the following operations are uniform: rever-
sal, cyclic shift, star, power, m-ary concatenation, m-ary boolean operations (in-
cluding union, intersection, difference, symmetric difference and complement),
shuffles on trajectories (including shuffle, literal shuffle, balanced literal shuf-
fle, insertion, balanced insertion, and anti-concatenation), and the “alphabet-
dependent” operations of Proposition 19. We also proved that the class of uni-
form operations is closed under composition, meaning that all combined opera-
tions formed by composing the aforementioned operations are uniform, such as
“star-complement-star” or “star of union”. Additionally, we proved a substitu-
tion lemma that gives another way to construct new uniform operations from
old, such as the “ideal generated by” operations.

6.2 Non-Uniform Operations

First we remark that constant operations, which output a fixed language regard-
less of the input, are not in general uniform. One issue is that our theoretical
framework assumes that all regular operations are alphabet-preserving, so we can-
not even define true “constant operations” that take arbitrary regular languages
as inputs; we must restrict the inputs to have the same alphabet as the constant
output language. The more fundamental problem is that constant operations
need not behave uniformly with respect to transformations. For example, let Ψ
be a constant DFA operation, and suppose that in DFA A, the letter a induces
transformation t, and in DFA B, the letter b also induces transformation t. If Ψ
is uniform, then the transformation induced by a in AΨ will be the same as the
transformation induced by b in BΨ . But the constant operation Ψ could produce
a DFA in which a and b induce different transformations, violating uniformity.
The only way to ensure uniformity is if Ψ produces a DFA in which every let-
ter induces the same transformation; if we enforce this condition, we essentially
obtain the alphabet-dependent operations of Proposition 19.

Our first example of an interesting non-uniform operation is the following:

1

2
L = {x ∈ Σ∗ : xy ∈ L, |x| = |y|}.

This “half” operation is an example of a proportional removal ; the state complex-
ity of proportional removals was studied by Domaratzki [7]. We could prove that
this operation is not uniform directly from the definition, or using the language-
theoretic characterization, but instead we will show something even stronger:
the OLPA approach does not maximize the state complexity of this operation.

If the OLPA approach worked for this operation, then by Lemma 6, the
state complexity of the operation would be maximized by a language of the
form 1

2TQ(i, F) for some state configuration (Q, i, F). However, it is not hard to
see that if F is non-empty, then 1

2TQ(i, F) is either T ∗
Q or T ∗

Q \ {ε}, depending
on whether i ∈ F . Indeed, let w be a non-empty word in T ∗

Q. We have iw = q

21

for some q ∈ Q. Let t be a transformation that sends q into F . Then wt id
|w|−1
Q

maps i into F , and so this word is in the language TQ(i, F). But w is exactly half
the length of this word, so w ∈ 1

2TQ(i, F). This means that sc(12TQ(i, F)) ≤ 2;
but Domaratzki [7] shows that there are languages L of state complexity n such
that sc(12L) = n. A similar argument shows that OLPA approach fails for many
other proportional removal operations as well, although we have not tried to
characterize the proportional removals for which the approach fails.

Next we consider deletions along trajectories [8,12], a class of operations
which includes left quotient, right quotient, deletion, scattered deletion, bi-polar
deletion, and k-deletion [8, p. 296]. We will show that the left quotient operation
and the deletion operation are not uniform. We have not investigated uniformity
for other deletions along trajectories.

The case of left quotient is interesting, because the OLPA approach actually
works for this operation despite its non-uniformity. The left quotient of L by L′

is L′\L = {x ∈ Σ∗ : wx ∈ L for some w ∈ L′}. This operation satisfies a weak
version of the language-theoretic characterization of uniformity:

For all 1-uniform morphisms ϕ : Σ∗ → Γ ∗, if Lj = Kjϕ
−1 and Lj 6= ∅ for

1 ≤ j ≤ 2, then (L2\L1)Φ = (K2\K1)Φϕ−1.

Because empty languages are excluded here, the OLPA approach would fail
if maximizing the state complexity in certain cases required the use of empty
languages. But this does not happen for left quotient.

To see that left quotient is not uniform, letΣ = {a, b} and define ϕ : Σ∗ → Σ∗

by aϕ = bϕ = b. Then define K1 = {ab}, K2 = {a}, L1 = K1ϕ
−1, and L2 =

K2ϕ
−1. If left quotient was uniform, we would have L2\L1 = (K2\K1)ϕ

−1. But
L1 = L2 = ∅, and so L2\L1 = ∅. Meanwhile, (K2\K1)ϕ−1 = ({a}\{ab})ϕ−1 =
{b}ϕ−1 = {a, b}.

The deletion of L′ from L is L L′ = {xz ∈ Σ∗ : xyz ∈ L for some y ∈ L′}.
We will show that the OLPA approach fails for this operation.

If the OLPA approach worked, the state complexity would be maximized
by some pair of OLPA witnesses. Consider the language T1(i1, F1) T2(i2, F2)
where T = TQ1 ×TQ2 for some finite sets Q1 and Q2. We claim that T1(i1, F1)
T2(i2, F2) = T

∗, which has state complexity one.

Indeed, fix a word w ∈ T
∗. Write w = (t1,1, t2,1) · · · (t1,k, t2,k). Let w1 =

t1,1 · · · t1,k, set q1 = i1w1, and choose a transformation t1 : Q1 → Q1 that sends q1
into F1. Next, choose a transformation t2 : Q2 → Q2 that sends i2 into F2. Then
i1w1t1 ∈ F1, so w(t1, t2) ∈ T1(i1, F1). However, i2t2 ∈ F2, so (t1, t2) ∈ T2(i2, F2).
It follows w ∈ T1(i1, F1) T2(i2, F2) since it can be obtained by deleting a word
in T2(i2, F2) from a word in T1(i1, F1).

This shows that using OLPA witnesses for deletion only produces languages
of state complexity one. However, Han, Ko and Salomaa [12] proved that if L has
state complexity n, then n2n−1 is a tight upper bound on the state complexity of
L L′. Hence the state complexity of deletion is not maximized by the OLPA
approach.

It is interesting that our main examples of operations for which the OLPA
approach fails involve the idea of “deletion” in some sense.

22

7 Proofs using the OLPA Approach

In the introduction, we used the OLPA approach to give a simple proof of
the worst-case state complexity of reversal. We give two additional examples
of proofs using the OLPA approach in this section. First we consider the star
operation.

Proposition 20. Let L be a regular language recognized by D = (Q,Σ, T, i, F),
where |Q| = n and |F | = k. Suppose 1 ≤ |F | ≤ n − 1. If F = {i} then L = L∗,
and otherwise we have the following tight upper bounds on sc(L∗):

sc(L∗) ≤

{
(2n−k − 1) + (2n−1 − 2n−k−1) + 1, if i 6∈ F ;

(2n−k − 1) + (2n−1), if i ∈ F and |F | ≥ 2.

Proof. By Theorem 7, it suffices to just compute the state complexity of L∗ for
L ∈ {Tn(1, Fn,k,j) : 0 ≤ j ≤ 1, 0 + j ≤ k ≤ n− 1 + j}. Given D, an FA for L∗ is
A = (Q ∪ {s}, Σ, T ′, s, F ∪ {s}) where T ′ = T ∪ {(f, a, iTa) : f ∈ F ∪ {s}}. It is
easy to see that if F = {i}, then A recognizes L. Henceforth assume F 6= {i}.

We show each non-empty set S ⊆ Q is reachable by induction on |S|. From
{s} we reach {q} for each q ∈ Q by a transformation that sends i to q. Now
suppose |S| ≥ 2 and smaller sets are reachable. Choose a set X of size |S| − 1
which contains a final state but does not contain i; this is possible since F 6= {i}.
Fix q ∈ S and choose a transformation t that maps X onto S \ {q} and i to q;
then t sends X to S. Thus all non-empty subsets of Q are reachable.

We show that sets in the following collection are pairwise distinguishable:

{S ⊆ Q : S 6= ∅ and S ∩ F = ∅} ∪ {S ⊆ Q : i ∈ S and S ∩ F 6= ∅}.

If a non-empty set S is not in this collection, it contains a final state but does not
contain i, and the set S is indistinguishable from S ∪{i}. To distinguish distinct
sets S and X in this collection, choose an element q which appears (without loss
of generality) in S but not in X , and apply a transformation t which maps q into
F and Q\{q} into Q\F . Note also that if i 6∈ F then {s} is distinguishable from
all states in this collection, but if i ∈ F then {s} and {i} are indistinguishable.
Elementary counting arguments then yield the stated bounds. ⊓⊔

For our other example, we consider boolean operations, defined in Section 6
(see the discussion before Proposition 14). In this case the proof is complicated,
but the result is very general, and we believe it would be considerably more
difficult to prove without the OLPA approach or a similar construction.

It is a bit tricky to state a tight upper bound for the worst-case state com-
plexity of an arbitrary m-ary boolean operation, because the operation’s result
might not depend on all of its arguments. For example, if the inputs to a binary
boolean operation have state complexity n1 and n2 respectively, the worst-case
state complexity can be 1, n1, n2, or n1n2, depending on which arguments (if
any) are relevant to the result.

23

To state our upper bound, we introduce some notation. Given an m-ary
boolean function β : {0, 1}m → {0, 1}, we define functions βj : N → N for 1 ≤
j ≤ m as follows. If there exist two binary m-tuples (b1, . . . , bm) and (b′1, . . . , b

′
m)

which differ only in the j-th bit (that is, bj 6= b′j and bi = b′i for all i 6= j) such that
(b1, . . . , bm)β 6= (b′1, . . . , b

′
m)β, then we define nβj = n for all n ∈ N. Otherwise,

it must be the case that for all binary m-tuples, flipping the j-th bit does not
change the result of β; in this case we define nβj = 1 for all n ∈ N. If βj is the
identity map, we say that β depends on argument j, and if βj is the constant
function sending everything to 1, we say that β does not depend on argument j.

Proposition 21. Let β be an m-ary boolean operation. Let (L1, . . . , Lm) be reg-
ular languages, where Lj is recognized by (Qj, Σ, Tj, ij , Fj) for 1 ≤ j ≤ m. Set
nj = |Qj|. Then sc((L1, . . . , Lm)β) ≤ (n1β1) · · · (nmβm) and this bound is tight.

Proof. Recall the usual direct product construction for boolean operations: D =
(Q,Σ, T, (i1, . . . , im), F) where the state set is Q = Q1×· · ·×Qm, the transition
set is T = {((q1, . . . , qm), a, (q1(T1)a, . . . , qm(Tm)a)) : (q1, . . . , qm) ∈ Q, a ∈ Σ}
and the final state set is F = {(q1, . . . , qm) ∈ Q : (q1χF1 , . . . , qmχFm

) = 1}. This
construction gives an upper bound of n1 · · ·nm. To get a tighter bound, we must
consider distinguishability. Consider the following set of states:

{(q1, . . . , qm) ∈ Q : qj = ij whenever β does not depend on argument j}.

There are precisely (n1β1) · · · (nmβm) states in this set, and we claim that every
state lying outside this set is indistinguishable from a state within the set. To
see this, fix a state (q1, . . . , qm) which is not in the above set. Then there exists
j such that qj 6= ij and β does not depend on argument j. We claim state
(q1, . . . , qm) is indistinguishable from (q1, . . . , qj−1, ij , qj+1, . . . , qm). Indeed, if
two states differ only in component j, and β does not depend on argument j,
then either both states are final or both states are non-final. Also, starting from
a pair of states which differ only in component j, we can only reach other pairs
that differ only in component j. Thus there is no way to distinguish these states.

Now we show that the upper bound is tight. Our witnesses will be OLPA
witnesses Lj = Tj(1, Fj), where T = Tn1 ×· · ·×Tnm

and Fj = {1} for 1 ≤ j ≤ m

(it does not really matter what we choose for Fj , as long as for nj ≥ 2 it is a
proper non-empty subset of {1, . . . , nj}).

The initial state of the direct product DFA is (1, 1, . . . , 1). For each state
(q1, . . . , qm) ∈ Q, let tj be a transformation that sends 1 to qj . Then the let-
ter (t1, . . . , tm) ∈ T sends the initial state to (q1, . . . , qm); thus all states are
reachable.

Next we show that all pairs of states in {(q1β1, . . . , qmβm) : (q1, . . . , qm) ∈
Q}, which has size (n1β1) · · · (nmβm), are distinguishable. Suppose we have two
distinct states (q1β1, . . . , qmβm) and (q′1β1, . . . , q

′
mβm). Since they are distinct,

they must differ in some component j, and for this j we must have qjβj = qj and
q′jβj = q′j . Hence there exist two binary m-tuples (b1, . . . , bm) and (b′1, . . . , b

′
m)

which differ only in component j such that (b1, . . . , bm)β 6= (b′1, . . . , b
′
m)β. As-

sume without loss of generality that (b1, . . . , bm)β = 1 and (b′1, . . . , b
′
m)β = 0.

24

Now, choose a tuple of transformations (t1, . . . , tm) ∈ T as follows:

– Choose tj so that qjtjχFj
= bj and q′jtjχFj

= b′j .

– For i 6= j, if β depends on argument i, choose ti so that (qiti)χFi
= bi = b′i.

If β does not depend on argument i, let ti be the identity map.

Now, we claim that (q1β1, . . . , qmβm)(t1, . . . , tm) is a final state. To determine
whether the reached state (q1β1t1, . . . , qmβmtm) is final, we look at the binary
m-tuple (q1β1t1χF1 , . . . , qmβmtmχFm

). If β depends on argument i (including
the case i = j) then we have qiβitiχFi

= bi. If β does not depend on argument
i, then qiβi = 1, transformation ti is the identity map, and Fi = {1}, so we have

qiβitiχFi
= 1. Thus (q1β1t1χF1 , . . . , qmβmtmχFm

) = (b̃1, . . . , b̃m), where b̃i is bi
if β depends on argument i, and b̃i is 1 otherwise. Now, we know that if β does
not depend on argument i, then flipping the i-th bit in a binary m-tuple will not
change the result of applying β to that m-tuple. So by flipping bits if necessary,
we see that

(b̃1, . . . , b̃m)β = (b1, . . . , bm)β = 1.

Hence (q1β1, . . . , qmβm)(t1, . . . , tm) is a final state.
On the other hand, consider the state (q′1β1, . . . , q

′
mβm)(t1, . . . , tm). For this

state we have (q′1β1t1χF1 , . . . , q
′
mβmtmχFm

) = (b̃′1, . . . , b̃
′
m), where b̃′i is b′i if β

depends on argument i, and b̃′i is 1 otherwise. Thus by the same bit-flipping
argument, we have

(b̃′1, . . . , b̃
′
m)β = (b′1, . . . , b

′
m)β = 0.

Thus this state is not final, and we have distinguished the two states. ⊓⊔

8 Conclusions

The “one letter per action” (OLPA) approach gives an easy way to find witnesses
that maximize the state complexity of many regular operations, at the expense
of requiring large alphabets. We defined a class of “uniform” regular operations
for which the OLPA approach provably works. This class contains many common
operations and is also closed under composition. We hope this paper will spark
interest in and further study of the OLPA approach.

We list a few open questions that we find interesting.

– To what extent does the OLPA approach work in subclasses of the regular
languages? It seems it will work for some “nice” subclasses but not for others.

– Can the OLPA approach be generalized to other state complexity measures,
like incomplete state complexity [16] or unrestricted state complexity [2]?

– Can we find a larger class than the class of uniform operations for which
the OLPA approach provably works, without sacrificing the nice property of
closure under composition?

25

– How do we maximize the state complexity of proportional removals like 1
2L?

Domaratzki’s work [7] does not completely solve this problem. If we find
a way to maximize their state complexity, can it be generalized to other
operations for which the OLPA approach fails?

Acknowledgements. I thank Jason Bell, Janusz Brzozowski, and the referees
of the DLT 2018 version of this paper for their careful proofreading and helpful
comments. I thank Lukas Fleischer for pointing me to some important references
I overlooked, which allowed me to give a much more complete history of the ideas
presented in this paper.

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43(4), 185–190 (1992)

2. Brzozowski, J.: Unrestricted state complexity of binary operations on regular lan-
guages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol.
9777, pp. 60–72. Springer (2016)

3. Brzozowski, J.A.: In search of most complex regular languages. Int. J. Found.
Comput. Sc. 24(06), 691–708 (2013)

4. Brzozowski, J.A., Jirásková, G., Liu, B., Rajasekaran, A., Szyku la, M.: On the
state complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F.,
Shallit, J. (eds.) DCFS 2016. pp. 73–86. Springer (2016)

5. Caron, P., Hamel-De le court, E., Luque, J.G., Patrou, B.: New tools for state
complexity. CoRR abs/1807.00663 (2018), https://arxiv.org/abs/1807.00663

6. Cho, D.J., Han, Y.S., Ko, S.K., Salomaa, K.: State complexity of inversion opera-
tions. Theoret. Comput. Sci. 610, 2–12 (2016)

7. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang.
Comb. 7(4), 455–468 (2002)

8. Domaratzki, M.: Deletion along trajectories. Theoret. Comput. Sci. 320(2), 293–
313 (2004)

9. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages
accepted by finite automata with n states. J. Autom. Lang. Comb. 7(4), 469–486
(2002)

10. Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci.
410(24), 2377–2392 (2009)

11. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. J. Autom.
Lang. Comb. 9, 217–232 (2004)

12. Han, Y.S., Ko, S.K., Salomaa, K.: State complexity of deletion and bipolar deletion.
Acta Informatica 53(1), 67–85 (2016)

13. Jirásková, G., Shallit, J.: The state complexity of star-complement-star. In: Yen,
H.C., Ibarra, O.H. (eds.) DLT 2012. pp. 380–391. Springer (2012)

14. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012)

15. Jirásková, Galina, Okhotin, Alexander: State complexity of cyclic shift. RAIRO-
Theor. Inf. Appl. 42(2), 335–360 (2008)

16. Maia, E., Moreira, N., Reis, R.: Incomplete operational transition complexity of
regular languages. Inform. and Comput. 244, 1–22 (2015)

26

https://arxiv.org/abs/1807.00663

17. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic con-
straints. Theoret. Comput. Sci. 197(1), 1–56 (1998)

18. Ravikumar, B.: Some applications of a technique of sakoda and sipser. SIGACT
News 21(4), 73–77 (1990)

19. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: STOC 1978. pp. 275–286. ACM (1978)

20. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoret. Comput. Sci. 320(2), 315–329 (2004)

21. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. pp. 589–600. Springer (2006)

22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

27

	A General Approach to State Complexity of Operations: Formalization and Limitations

