Skip to main content

Dynamics of the Independence Number and Automata Synchronization

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11088))

Included in the following conference series:

Abstract

We study the lengths of synchronizing words produced by the classical greedy compression algorithm. We associate a sequence of graphs with every synchronizing automaton and rely on evolution of the independence number to bound the lengths of produced words. By leveraging graph theoretical results we show that in many cases automata with good extension properties have good compression properties as well. More precisely, we show that the compression algorithm will produce a synchronizing word of length \(\mathcal {O}(n^2 \log (n))\) on cyclic, regular and strongly-transitive automata with n states, which is not far from the best possible bound of \((n-1)^2\). Furthermore, we provide a relatively simple proof that every n-state automaton has a synchronizing word of length at most \(\frac{n^3}{4} + \mathcal {O}(n^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can even put \(\lceil \tfrac{n-1}{k-1}\rceil \min \{\mathrm {rt}(\mathcal {A}), {n\atopwithdelims ()2}\}\) for any fixed positive integer k.

  2. 2.

    The definitions are provided in Sect. 4.

  3. 3.

    The classical definition also involves initial and final states. Since they are irrelevant for us, we will omit them. Such a model is also often referred to as semiautomaton.

  4. 4.

    Note that this sequence is not assigned to any synchronizing n-state DFA.

References

  1. Adler, R.L., Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts. Isr. J. Math. 27(1), 49–63 (1977)

    Article  MathSciNet  Google Scholar 

  2. Ananichev, D.S., Gusev, V.V.: Approximation of reset thresholds with greedy algorithms. Fundam. Inform. 145(3), 221–227 (2016)

    Article  MathSciNet  Google Scholar 

  3. Araújo, J., Cameron, P.J., Steinberg, B.: Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017)

    Article  MathSciNet  Google Scholar 

  4. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2), 277–288 (2011)

    Article  MathSciNet  Google Scholar 

  5. Berlinkov, M.V., Ferens, R., Szykuła, M.: Extending word problems in deterministic finite automata. CoRR abs/1704.08233 (2017)

    Google Scholar 

  6. Berlinkov, M.V., Szykuła, M.: Algebraic synchronization criterion and computing reset words. Inf. Sci. 369, 718–730 (2016)

    Article  Google Scholar 

  7. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  8. Carpi, A., D’Alessandro, F.: Strongly transitive automata and the Černý conjecture. Acta Inform. 46(8), 591 (2009)

    Article  MathSciNet  Google Scholar 

  9. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

    Google Scholar 

  10. Chevalier, P.Y., Hendrickx, J.M., Jungers, R.M.: Reachability of consensus and synchronizing automata. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 4139–4144. IEEE (2015)

    Google Scholar 

  11. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Inform. Théorique Appl. 32, 21–34 (1998). in French

    Article  MathSciNet  Google Scholar 

  12. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)

    Article  MathSciNet  Google Scholar 

  13. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_19

    Chapter  MATH  Google Scholar 

  14. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18098-9_17

    Chapter  Google Scholar 

  15. Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of nonnegative matrices and synchronizing automata. SIAM J. Matrix Anal. Appl. 39(1), 83–98 (2018)

    Article  MathSciNet  Google Scholar 

  16. Gonze, F., Gusev, V.V., Gerencsér, B., Jungers, R.M., Volkov, M.V.: On the interplay between Babai and Černý’s conjectures. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 185–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7_13

    Chapter  Google Scholar 

  17. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics, vol. 2. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  18. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295(1–3), 223–232 (2003)

    Article  MathSciNet  Google Scholar 

  19. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: An extremal combinatorial problem associated with the bound on the length of a synchronizing word in an automaton. Kibernetika 2, 16–20 (1987)

    MATH  Google Scholar 

  20. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Proceedings of the International Colloquium on Graph Theory and Combinatorics, vol. 75, pp. 535–548. North-Holland Mathematics Studies (1983)

    Google Scholar 

  21. Roman, A., Szykuła, M.: Forward and backward synchronizing algorithms. Expert Syst. Appl. 42(24), 9512–9527 (2015)

    Article  Google Scholar 

  22. Rystsov, I.K.: Almost optimal bound of recurrent word length for regular automata. Cybern. Syst. Anal. 31(5), 669–674 (1995)

    Article  MathSciNet  Google Scholar 

  23. Rystsov, I.K.: On the length of reset words for automata with simple idempotents. Kibernet. Sistem. Anal. 187(3), 32–39 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Salomaa, A.: Composition sequences for functions over a finite domain. Theor. Comput. Sci. 292(1), 263–281 (2003). Selected papers in honor of Jean Berstel

    Article  MathSciNet  Google Scholar 

  25. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)

    Article  Google Scholar 

  26. Szykuła, M.: Improving the upper bound on the length of the shortest reset word. In: Niedermeier, R., Vallée, B. (eds.) Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics, vol. 96, pp. 56:1–56:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany (2018)

    Google Scholar 

  27. Trahtman, A.N.: The road coloring problem. Isr. J. Math. 172(1), 51–60 (2009)

    Article  MathSciNet  Google Scholar 

  28. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Mykhaylo Tyomkyn for fruitful discussions and the reviewers for valuable comments. D. Průša was supported by the Czech Science Foundation under grant number 16-05872S. R. Jungers is a FNRS Research Associate. The work was supported by the French Community of Belgium, the Walloon Region and the Innoviris Foundation. V. Gusev is supported by the Russian Foundation for Basic Research, grant no. 16-01-00795, the Russian Ministry of Education and Science, project no. 1.3253.2017, and the Competitiveness Enhancement Program of Ural Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gusev, V.V., Jungers, R.M., Průša, D. (2018). Dynamics of the Independence Number and Automata Synchronization. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98654-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98653-1

  • Online ISBN: 978-3-319-98654-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics