Skip to main content

A Bioinformatics Protocol for Quickly Creating Large-Scale Phylogenetic Trees

  • Conference paper
  • First Online:
Book cover Practical Applications of Computational Biology and Bioinformatics, 12th International Conference (PACBB2018 2018)

Abstract

The large scale genome datasets that are now available can provide unprecedented insight into the evolution of genes and gene families. Nevertheless, handling and transforming such datasets into the desired format for downstream analyses is often a difficult and time-consuming task for researchers without a background in informatics. Here, we present a simple and fast protocol for data preparation and high quality phylogenetic tree inferences using simple to install cross-platform software applications with rich graphical interfaces. To illustrate its potential, this protocol was used to provide insight into the evolution of GULO gene in animals, a gene that encodes the enzyme responsible for the last step of vitamin C synthesis in this group of organisms. We find that GULO is always a single copy gene in all animal groups with the exception of Echinodermata. Surprisingly, we find potentially functional GULO genes in several Prostotomian groups such as Molluscs, Priapulida and Arachnida. To our knowledge, this is the first time a putative functional GULO gene is reported in Protostomians. All previously reported GULO gene losses were easily identified using the presented protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/assembly/.

  2. 2.

    http://www.sing-group.org/seda/.

  3. 3.

    http://phylogeny.lirmm.fr/phylo_cgi/data_converter.cgi.

References

  1. Patananan, A.N., Budenholzer, L.M., Pedraza, M.E., Torres, E.R., Adler, L.N., Clarke, S.G.: The invertebrate Caenorhabditis elegans biosynthesizes ascorbate. Arch. Biochem. Biophys. 569, 32–44 (2015)

    Article  Google Scholar 

  2. Drouin, G., Godin, J.-R., Page, B.: The genetics of vitamin C loss in vertebrates. Curr. Genomics 12, 371–378 (2011)

    Article  Google Scholar 

  3. Leferink, N.G.H., Jose, M.D.F., van den Berg, W.A.M., van Berkel, W.J.H.: Functional assignment of Glu386 and Arg388 in the active site of l-galactono-γ-lactone dehydrogenase. FEBS Lett. 583, 3199–3203 (2009)

    Article  Google Scholar 

  4. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)

    Article  Google Scholar 

  5. Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J.: ADOPS–Automatic Detection Of Positively Selected Sites. J. Integr. Bioinform. 9, 200 (2012)

    Article  Google Scholar 

  6. Wheeler, G., Ishikawa, T., Pornsaksit, V., Smirnoff, N.: Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife. 4 (2015)

    Google Scholar 

  7. Helgen, K.M.: The mammal family tree. Science 334, 458–459 (2011)

    Article  Google Scholar 

  8. Cui, J., Yuan, X., Wang, L., Jones, G., Zhang, S.: Recent loss of vitamin C biosynthesis ability in bats. PLoS ONE 6, e27114 (2011)

    Article  Google Scholar 

  9. Putnam, N.H., Butts, T., Ferrier, D.E.K., Furlong, R.F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J.-K., Benito-Gutiérrez, E., Dubchak, I., Garcia-Fernàndez, J., Gibson-Brown, J.J., Grigoriev, I.V., Horton, A.C., de Jong, P.J., Jurka, J., Kapitonov, V.V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L.A., Salamov, A.A., Satou, Y., Sauka-Spengler, T., Schmutz, J., Shin-I, T., Toyoda, A., Bronner-Fraser, M., Fujiyama, A., Holland, L.Z., Holland, P.W.H., Satoh, N., Rokhsar, D.S.: The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071 (2008)

    Article  Google Scholar 

  10. Dehal, P., Boore, J.L.: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005)

    Article  Google Scholar 

  11. Taylor, J.S.: Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res. 13, 382–390 (2003)

    Article  Google Scholar 

  12. Session, A.M., Uno, Y., Kwon, T., Chapman, J.A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., van Heeringen, S.J., Quigley, I., Heinz, S., Ogino, H., Ochi, H., Hellsten, U., Lyons, J.B., Simakov, O., Putnam, N., Stites, J., Kuroki, Y., Tanaka, T., Michiue, T., Watanabe, M., Bogdanovic, O., Lister, R., Georgiou, G., Paranjpe, S.S., van Kruijsbergen, I., Shu, S., Carlson, J., Kinoshita, T., Ohta, Y., Mawaribuchi, S., Jenkins, J., Grimwood, J., Schmutz, J., Mitros, T., Mozaffari, S.V., Suzuki, Y., Haramoto, Y., Yamamoto, T.S., Takagi, C., Heald, R., Miller, K., Haudenschild, C., Kitzman, J., Nakayama, T., Izutsu, Y., Robert, J., Fortriede, J., Burns, K., Lotay, V., Karimi, K., Yasuoka, Y., Dichmann, D.S., Flajnik, M.F., Houston, D.W., Shendure, J., DuPasquier, L., Vize, P.D., Zorn, A.M., Ito, M., Marcotte, E.M., Wallingford, J.B., Ito, Y., Asashima, M., Ueno, N., Matsuda, Y., Veenstra, G.J.C., Fujiyama, A., Harland, R.M., Taira, M., Rokhsar, D.S.: Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This article is a result of the project Norte-01-0145-FEDER-000008 - Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Financial support from the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016-2019) and the European Union (European Regional Development Fund - ERDF), is gratefully acknowledged. H. López-Fernández is supported by a post-doctoral fellowship from Xunta de Galicia (ED481B 2016/068-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo López-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Fernández, H. et al. (2019). A Bioinformatics Protocol for Quickly Creating Large-Scale Phylogenetic Trees. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_11

Download citation

Publish with us

Policies and ethics