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Abstract. Parkinson’s disease is one of the most common neurodegenerative 
disorders in elder people and the leucine-rich repeat kinase 2 (LRRK2) is a 
promising target for its pharmacological treatment. In this paper, QSAR models 
for identification of potential inhibitors of LRRK2 protein are designed by using 
an in house chemical library and several machine learning methods. The applied 
methodology works in two steps: first, several alternative subsets of molecular 
descriptors relevant for characterizing LRRK2 inhibitors are identified by a 
feature selection software tool; secondly, QSAR models are inferred by using 
these subsets and three different methods for supervised learning. The 
performance of all these QSAR models are assessed by traditional metrics and 
the best models are analyzed in statistical and physicochemical terms. 
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1. Introduction 

Nowadays, the search of effective treatments for neurodegenerative diseases is one of 
the urgent clinical and social needs. Number of people affected by those pathologies, 
including Alzheimer’s and Parkinson’s diseases, increase every year, mainly in 
developed countries, directly associated to the longer life expectancy. Parkinson’s 
Disease (PD) is the second most common human neurodegenerative disorder in people 
over 60 years of age, affecting 1 in 100 people and increasing to that affects 2–3% of 
the population ≥65 years of age. It is associated with Lewy bodies, abnormal aggregates 
of α-synuclein protein, and loss of dopaminergic neurons in the substantia nigra. 
Although clinical diagnosis is based on the existence of bradykinesia and other cardinal 



motor characteristics, Parkinson disease is associated with many non-motor symptoms 
that add to overall disability. 

Epidemiological and genetic studies carried on several families in Asia, the United 
States, and Europe led to discover in 2004 that mutations in a new gene, known as leucine-
rich repeat kinase 2 (LRRK2), are a major genetic risk factor for familiar and sporadic 
PD [1]. Today, LRRK2 is one of the most pursuing and promising targets for the future 
pharmacological treatment of PD. In this sense, big efforts are being done both from 
academia and pharmaceutical industry with the goal of developing selective and brain-
permeable LRRK2 inhibitors as a strategy for PD [2, 3]. LRRK2 is an unusual large 
protein (2527 amino acids) classified as a member of the ROCO superfamily. It presents 
a leucine-rich repeat (LRR) domain, a kinase domain, a DFG-like motif, a RAS domain, 
a GTPase domain, a MLK-like domain, and a WD40 domain. The protein is present 
mainly in the cytoplasm, although it is also related to the mitochondrial outer membrane. 
The physiological role of LRRK2 is poorly understood and many of its substrates remain 
unclear. However, it has been proposed to be beneficial for preventing neurodegeneration 
[4,5] and several LRRK2 inhibitors are being developed as neuroprotective agents for 
PD. Some studies revealed that LRRK mutations increases aggregation of α-synuclein in 
dopaminergic neurons that are exposed to α-synuclein fibrils [6]. 

Quantitative structure–activity/property relationship (QSAR/QSPR) modeling has 
been established itself as one of the major computational molecular modeling 
methodologies, playing a central role in drug identification or optimization. 
QSAR/QSPR models allow to identify relationships between structural information of 
chemical compounds (molecular descriptors) and a physicochemical or biological 
property under study. Now, these techniques are widely used as a surrogate for 
experimental studies to predict the activity of the molecules from their structure.  In 
particular, machine learning methods had become extensively used in this field during 
the last decades [7]. 

Regarding literature, very few QSAR studies in LRRK2 have been published. The 
works that have been reported presented a very limited predictive activity for the 
external validation datasets [8,9]. In this paper, novel QSAR models for predicting 
putative inhibitors of LRRK2 protein are developed by using machine learning 
methods. In particular, several regression and classification QSAR models are inferred 
and their performances contrasted in terms of accuracy and model complexity.   

2. Material and Methods 

Several QSAR models inferred by feature selection techniques, both for classification and 
regression models, are described. Figure 1 presents a scheme of the experimental design 
followed in this work. The database is a compilation of 67 compounds previously 
synthesized in our research group and tested as inhibitors of LRRK2 enzyme [10]. In this 
assay, LRRK2 kinase activity was measured as the percentage of enzyme inhibition for 



every compound as it is further discussed in the previous reference. This information is 
available on http://lidecc.cs.uns.edu.ar/pacbb2018.LRRK2/structures_activity.html.  
 
Database analysis and drug-like properties calculation 
A crucial step in QSAR studies is to collect a representative set of compounds in order 
to include a diversity physicochemical space. With the aim of analyzing the dataset, we 
have performed a characterization of the compounds, both from a physicochemical 
perspective and a drug-like point of view. Physicochemical and drug-like properties of 
this dataset were calculated using Qikprop and the most representative descriptors were 
analyzed to show the diversity of the dataset. 

 

Fig. 1. Scheme of the in silico experiments reported for predicting the activity of LRRK2 inhibitors.  

Some of these parameters are plotted in Fig. 2, where it can be observed a wide 
dispersion of 2 different key properties in drug discovery such as logP (x axis) and H-
bond acceptors (accptHB y-axis). Compounds are colored taking into account their stars 
values. This parameter represents the number of properties or descriptors values 
calculated that fall outside the 95% range of similar values for known drugs. For this 
reason, a large value of stars suggests that a molecule is less drug-like. In this case, all 
compounds present a value equal or lower than 2, which means that the complete 
database is based on drug-like structure. Furthermore, taking into account Lipinski rule 
of 5 [11], the 67 compounds present 1 or none violations of the rules, which means that 
the molecules have properties that make them likely orally active drug in humans. 
Therefore, and after the analysis carried out, we can conclude that the database is 
diverse in terms of physicochemical properties and all the compounds are drug like. 



 
 Fig. 2. Dispersion of the database regarding PQ properties, colors are defined by stars. 

 
QSAR models 
A total number of 3224 descriptors were computed using Dragon for the entire 
database. The experiments were designed following the procedure described in Fig. 1. 
The dataset was first divided into training (75%) and test set following a stratified 
sampling. Several subsets of descriptors were selected from the training set using 
DELPHOS [13]. This tool repeats ten times the random partition of the data in 75/25 
to perform the validation of the selected characteristics. In Table 1, a summary of the 
best molecular descriptors subsets in terms of RAE (Relative Absolute Error) is 
reported. Using these 4 subsets and different inference methods, a variety of QSAR 
models were built for regression and classification. The models are computed by 
WEKA [14] using Neural Networks (NN), Random Forest (RF) and Random 
Committee (RC) as inference methods, for computing these models default parameters 
were used in WEKA. Several methods for obtaining the QSAR models were tested due 
to the fact that recent studies have shown that there does not exist a more advisable 
strategy for inferring the QSAR from the subsets of descriptors [12]. For classification 
models, discretization thresholds of target property values were as follows: low activity 
≤ 50% and high activity >50%. Table 2 shows several metrics computed using WEKA 
for the best regression and classification QSAR models obtained with each descriptor 
subset. The performance results for classification models are reported using the accuracy 
(ACC), namely percentage of cases correctly classified, the average Receiver Operating 
Characteristic (ROC) and the Matthews Correlation Coefficient (MCC). For regression 
models, the correlation coefficient (CC) and the root relative square error (RRSE) results 
are informed. 



Table 1. Best molecular descriptors subsets obtained by DELPHOS feature selection tool. 

Subset  Cardinality MDs Descriptor Type 

M2 4 MW 
MWC08 
BEHp2 
RDF105p 

Constitutional indices 
Walk and path counts 
Burden eigenvalues 
RDF descriptors 

M3 4 MW 
JGI2 
HATs6m           R2e 

Constitutional indices 
2D autocorrelation 
GETAWAY descriptors 

M5 5 MW 
IC0 
ESpm09x 
JGI3 
L3s 

Constitutional indices 
Information indices 
Edge adjacency indices 
2D autocorrelation 
WHIM descriptors 

M25 13 MW 
HNar                  ECC 
GATs7e 
VEZ1                 VEp2 
DISPm 
RDF105p 
R8e  
B06[N-Br] B07[C-Cl] 
F04[C-C]           F05[O-Cl] 

Constitutional indices 
Topological indices 
2D autocorrelations 
2D matrix-based descriptors 
Geometrical descriptors 
RDF descriptors 
GETAWAY descriptors 
2D atom pairs 
2D atom pairs 

 

Table 2. Performances of the best regression and classification QSAR models for the 
external validation testing set. 

Model Cardinality 
Best Regression QSAR 

 Models 
Best Classification QSAR 

Models 
Method CC RRSE Method ACC ROC MCC 

M2 4 RF 0.55 87.50 RF 68.8 0.69 0.40 
M3 4 RC 0.68 74.69 RC 87.5 0.90 0.77 
M5 5 RF 0.83 60.82 RC 75.0 0.95 0.52 

M25 13 RC 0.44 92.34 RC 75.0 0.73  0.53 
 

The best classification model was inferred from the subset M3 by using Random 
Committee and achieved 87.5% of correct classification with a ROC value of 0.91, all 
results are shown in Table 2. In other hand, the best regression model was obtained with 
the subset M5 by using Random Forest and achieved a correlation coefficient of 0.83 and 
a RRSE of 60.82. The datasets used to generate the classification and regression models 
can be found in link http://lidecc.cs.uns.edu.ar/pacbb2018.LRRK2/datasets.html. 
 



The best model found in the regression case contains 5 different descriptors that 
includes a wide variety of different descriptors classes, from 0D molecular descriptors 
to 3D. For example, molecular weight is a constitutional index, inside the class of 0D-
descriptors, that is obtained from the chemical formula, as they do not consider the 
tridimensional structure of the ligands. We have also found ESpm09x descriptor, 
spectral moment 09 from edge adjacency matrix weighted by edge degrees and IC0 
information content index (neighborhood symmetry of 0-order) and JGI3: mean 
topological charge index of order 3 that are 2D descriptors from different families. 
Finally, the 3D descriptor found in this model is the L3s: 3rd component size directional 
WHIM index / weighted by I-state. Regarding the best classification model, includes 4 
descriptors and we have also found a wide representation of different descriptors 
families. MW has also been chosen in this model as a 0D descriptor. A very similar 
descriptor to JGI3 was also found in this model, JGI2, is a 2D descriptor and is related 
to the charge index of the compounds in the database. Finally, two 3D descriptors were 
selected by DELPHOS that are R2e: R autocorrelation of lag 2/weighted by Sanderson 
electronegativity and HATs6m: leverage-weighted autocorrelation of lag 6/weighted 
by mass. Both are GETAWAY descriptors (GEometry, Topology, and Atom-Weights 
AssemblY) and are related to electronegativity and mass, key parameters in protein-
ligand recognition process for protein inhibition.  

Furthermore, we analyzed the relationship among the descriptors in statistical terms 
by using VIDEAN, which is a visual analytics tool for the study of molecular descriptor 
subsets. It shows the relationships and interactions between the descriptors and the 
target property in statistical terms. The analysis of the pair correlation between the five 
descriptors that conform the regression model and the four descriptors that are part of 
the best classification model is presented in Fig. 3 using Kendall tau metric. 

 

 
 
Fig. 3. Kendall correlation analysis among the descriptors that conforms the subsets M3 y M5. 



 
In this type of analysis, the main goal is to identify models with low correlation 

among descriptors that means low redundant information. In this case, we observe a 
clear majority of light tones of links, both blue and orange, that make connection 
between the descriptors (nodes) present in the models. This fact, demonstrate the low 
data redundancy in both models that have been selected as the best ones.  

All the experimental section and protocols regarding database analysis and property 
calculation as well as QSAR models both building and analysis can be found at: 

http://lidecc.cs.uns.edu.ar/pacbb2018.LRRK2/supplementary_material.html. 

3. Conclusions 

Parkinson’s disease constitutes one of the neurodegenerative disorders with higher 
impact in elder population around the world. An auspicious target for its 
pharmacological treatment is the leucine-rich repeat kinase 2 (LRRK2). Several studies 
proposed that LRRK2 inhibitors can be a beneficial strategy for preventing 
neurodegeneration. For this reason, in this paper, QSAR models have been developed 
with the aim to use them as useful filters for virtual screening to identify potential 
inhibitors of LRRK2 protein. These models were obtained by machine learning 
methods over data from an in house chemical library. 

The computational approach used in this work follows two main steps: first, 
alternative subsets of molecular descriptors relevant for structural characterization of 
LRRK2 inhibitors are identified by a feature selection method; secondly, QSAR models 
are learned from these subsets by applying several supervised learning algorithms. The 
performance of these QSAR models was contrasted by traditional metrics.  

The molecular descriptor subsets associated with the regression and classification 
models that reached the best performances were analyzed in statistical and 
physicochemical terms. From the analysis, it is possible to observe that the selected 
subset has low cardinality but cover a wide spectrum of the molecular descriptor 
classes, contributing in this way with meaningful and diverse structural information to 
the models. Besides, the visual analytics study reveals that the selected molecular 
descriptors provides non-redundant information in statistical terms.     

Nevertheless, even when these QSAR models achieve high accuracies, it is 
important to mention that these models have been learned from datasets integrated by 
a reduced number of chemical compounds, which can limit the generalization 
properties of these predictive models. For this reason, our advice for potential 
practitioners of these models is to employ applicability domain methods over their 
testing compounds before apply these models. As future work, we hope to extend our 
in house chemical library for LRKK2 in order to improve the generalizability of these 
achievements.    
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