
Software Processes and Life Cycle Models

Ralf Kneuper

Software Processes
and Life Cycle Models
An Introduction to Modelling,
Using and Managing Agile,
Plan-Driven and Hybrid Processes

ISBN 978-3-319-98844-3 ISBN 978-3-319-98845-0 (eBook)
https://doi.org/10.1007/978-3-319-98845-0

Library of Congress Control Number: 2018953100

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Ralf Kneuper
Dr. Ralf Kneuper Consulting
Darmstadt, Germany

https://doi.org/10.1007/978-3-319-98845-0

Foreword

A number of books have been written about software process improvement over
the years, some of them quite good, some less so. Ralf has written a book that I
will be happy to add to my library. Ralf has been involved with software process
assessment and improvement for many years, so he has the experience necessary to
speak knowledgeably about the topic. He is also addressing two topics that I think
are important for systematic process improvement in today’s world.

First, he is addressing agile methods. I became involved with agile nearly 20
years ago: I was asked to write a book chapter on Extreme Programming from the
perspective of the Capability Maturity Model. I was impressed, surprised, and in-
trigued by the ideas captured in XP. While I would not agree with everything argued
by the XP advocates, for the most part I found the XP practices appealing. I followed
up with other agile methods, eventually becoming a Certified ScrumMaster. In my
encounters with the agile community, I found a variety of perspectives, ranging from
the “responsible center” to “fringe zealots”.

I believe that agile methods have a great deal to offer the process community . . .
although there are those in both communities who downplay the contributions of
the other. Process frameworks, such as CMMI, do not address every organizational
need.

Software process as captured in the Software CMM, and now CMM Integration,
focuses on building the capability of the organization to build systems. The empha-
sis is on operational excellence—meeting commitments, operating in an effective
and efficient manner. There are other priorities that an organization could choose
over operational excellence, such as innovation. In the custom software develop-
ment world, operational excellence is crucial—but innovation cannot be ignored. In
commercial software development, innovation may be the more important priority,
yet meeting commitments is also useful.

Agile methods are focused on the needs of the software team to build a specific
product in a specific context. As the agile experts all admit, you have to tailor the
agile method to the unique needs of the project. If you tailor it too far, it may no
longer be agile—but still be appropriate for the project’s context. There are many
good engineering and management practices embedded in the agile methods that

v

vi Foreword

can and should be adopted by the software community, even when “agility” is not a
major driver for the project.

Nearly 20 years ago, I listened to Bob Martin tell a story at XP Universe about
someone he ran into in the hall. That person thanked Bob, telling him that his com-
pany had adopted XP and were delighted with it. Bob asked what he thought about
pair programming—we don’t do pair programming . . . well, what about the plan-
ning game—we don’t do the planning game . . . how’s continuous integration work-
ing out for you—we don’t do continuous integration. Bob then asked, well what do
you do? And the answer: we don’t document anything! Sitting in the audience I felt
a strong sense of schadenfreude (joy in the misfortune of others). More than once
I’ve had someone tell me, we’re doing something stupid! Why? The CMM told us
to! In following up, it was never something the CMM actually directed, it was what
people felt they needed to do to check a box.

People in both the process and agile communities need to approach “the way
we build software” with both humility and a sense of inquiry. How can we do a
better job of building software? Frameworks such as the Software CMM and now
CMMI have many good ideas for the organization that can help in deploying effec-
tive methods, such as Scrum, Extreme Programming, and Feature Driven Develop-
ment. I hope that Ralf’s insights into the good ideas ranging from plan-driven to
agile will help software professionals come up with good answers to the questions
that they ask.

Second, Ralf is addressing the software process from the perspective of the Soft-
ware Engineering Body of Knowledge. SWEBOK is an attempt to capture the crit-
ical ideas fundamental to good software engineering. The IEEE Computer Society
solicited inputs from the software engineering community in a transparent, open,
consensus process on what we know about building software effectively and effi-
ciently. Integrating these insights into your software process improvement initiatives
should be useful and important.

There are many other good sources of insight into software engineering and man-
agement that could be cited, but these are two of the most influential and widely
known. I will not claim to agree with everything said in the agile community or by
the IEEE Computer Society—I’m well known not to agree with many in the process
world! Even when we disagree, keeping an open mind to potential insights and in-
tegrating those into our thinking, even when it causes us to change our minds, is the
highway to continual improvement. Basing our decisions on empirical evidence as
to what really works is the core high maturity at levels 4 and 5, but that’s a different
book.

Dallas, Texas, August 2017 Mark Paulk

Preface

Since software is of growing importance in today’s world, the importance of the pro-
cesses used to create, maintain and run such software is growing in parallel. These
processes may be defined in detail or not at all, but even a software development
project or organization that does not explicitly define their software engineering
processes will use processes implicitly to do their work.

However, an increasing proportion of software engineering organisations defines
their “set of interrelated or interacting activities which transforms inputs into out-
puts” which is the ISO 9000 definition of processes. Such process definitions may
take very different forms, from very traditional, plan-based approaches with lengthy
and sequential phases for analysis, design, implementation and test to agile ap-
proaches where essentially the same activities are performed within very short and
frequent cycles, today usually called sprints. Experience over the last decades has
shown that the best way to reliably get excellent products is to ensure that excellent
processes are used to create and maintain these products.

Software engineering as a discipline integrates a variety of tasks ranging from
“classical” computer science to business-related topics, and can roughly be distin-
guished into software technology that addresses the methodical and technological
aspects, and organisation and management of software development, which, among
other tasks, includes different planning, measurement and controlling tasks. Good
software processes help to bring these different tasks together, working towards the
common goal of delivering high-quality products on time and in budget.

As software becomes a vital component of many systems and affects many as-
pects of our day-to-day life, the processes for creating, maintaining and running
software become critical as well. To efficiently develop high quality software that
addresses their needs, companies have to align software development and software
management with their business goals and processes. To achieve this, certain guide-
lines are needed for development, defining the activities, results and roles needed
in more or less detail. This is particularly obvious in the context of regulated and
safety-critical environments, such as automotive, medical devices, or financial ser-
vices, but in different, e.g. more agile environments, alignment of the development

vii

viii Preface

processes is similarly important, with the processes possibly taking a very different
form, for example focussing on time to market rather than reliability.

Over time, plan-driven development and agile development have been developed
as the two basic philosophies for software development. They both address the same
objective of creating high-quality software in time and on budget, but with differ-
ent emphasis. While agile development puts the emphasis on customer satisfaction
and user benefit and tries to achieve these by making it easy to adapt work, plan-
driven development puts more emphasis on requirements that have been identified
in advance in order to achieve correctness and predictability. This results in different
strengths and weaknesses of both philosophies, and in practice many development
organisations use some combination of both.

Book Goals

Since process engineers and project managers face a diversity of approaches and
standards that is hard to manage, defining and enacting appropriate processes con-
stitute a challenging task that is often left to expertise and experience.

The book at hand therefore does not attempt to promote any specific approach,
type of process, or model. Instead, it aims at delivering a big picture of the compre-
hensive field of software processes, covering in particular the essential topics:

• software process modelling
• software process models and life cycle models
• software process management, deployment and governance
• software process improvement (including assessment and measurement)

Furthermore, it can be used as a reference on software process models and nota-
tions, providing at least a brief overview of all the main approaches. The book also
discusses the fundamental process principles, and presents an overview of current
“hot topics” and emerging trends.

In particular, the book addresses the topics described in Chapter 8 “Software En-
gineering Processes” of the Software Engineering Body of Knowledge (SWEBOK R©

v3). To do so, it uses a uniform conceptual and terminological framework to present
the software processes, explains the different topics by example, and shares experi-
ences gathered over the years. The present book does not propose any new processes
or methods. Its goal is to introduce software engineers into the topic of software pro-
cesses to support the systematic development of high quality software in different
and changing environments.

In discussing software processes and life cycle models, the focus lies on the bene-
fits for development organisations and their customers that can be achieved, and
what needs to be done in order to achieve them.

Conformance to relevant international standards is of course important as well,
but should not be considered as the primary goal. Experience shows that most stan-
dards can be applied in very different ways, and a focus on compliance tends to lead

Preface ix

to inefficient processes that are therefore difficult to deploy in the organisation. A
focus on the benefits of the processes, on the other hand, using standards as a tool
to where useful or required, will in general be far more helpful and, as a result, also
easier to deploy.

Target Audience

This book is aimed at graduate students, researchers, and professionals. It can be
used as a textbook for courses and lectures, for self-study, and as a reference. When
used as a textbook, it may support courses and lectures devoted to software pro-
cesses, but also as complementing literature for more basic courses, such as intro-
ductory courses on software engineering or project management.

Software engineering processes provide a structure and guidance to the software
engineering activities, and it will be difficult to understand the structure without
an understanding of the basic activities that are structured by processes. To make
effective and efficient use of the different methods and techniques of software en-
gineering, appropriate processes are needed. This book helps to understand and use
these processes, to identify which processes are most appropriate in a certain envi-
ronment, to document them and to introduce them into the organisation or project.

However, the book at hand does not try to be a general software engineering
compendium or textbook. Readers should already have some fundamental knowl-
edge about computer science, software engineering, and project management. Spe-
cific tasks, such as software development, architecture, and quality assurance, are
not part of this book, and readers are expected to bring in basic knowledge of these
topics. Furthermore, basic knowledge about software economics is beneficial.

Outline

The overall structure of the book can be found in Fig. 0.1. In Chap. 1, the founda-
tions of the topic are introduced, covering the basic concepts, a historical overview,
and an introduction to the terminology used.

Next, Chap. 2 covers the various approaches to modelling software processes and
life cycle models, before Chap. 3 discusses the contents of these models, addressing
plan-driven, agile and hybrid approaches.

The following chapters address different aspects of using software processes and
life cycle models in an organisation, looking at the management of these processes
(Chap. 4), their assessment and improvement (Chap. 5) and the measurement of
both software and software processes (Chap. 6).

Working with software processes is usually supported by different kinds of tools,
which is the topic covered in Chap. 7, before a look at current trends in software
processes in Chap. 8 concludes the book.

x Preface

Chap. 1: Foundations

Chap. 2:
Software Process
Definition and Modelling

Chap. 3: Software
Processes in the

Software Product
Life Cycle

Chap. 4:
Managing
Software
Processes

Chap. 5:
Software

Process As-
sessment and
Improvement

Chap. 6: Software
and Software Pro-
cess Measurement Chap. 7:

Tool Support
for Software
Processes

Chap. 8:
Current
Trends in
Software
Processes

Fig. 0.1 Book outline

Relationship to SWEBOK R©. The book is aligned with the Software Engineer-
ing Body of Knowledge (SWEBOK R©) version 3, chapter 8 “Software Engineer-
ing Process” and, thus, provides a general introduction to the software process.
SWEBOK R© was created by the IEEE Computer Society, and its current version
v.3 was published both as an IEEE guide and as ISO/IEC TR 19759:2015.

To some extent, the present book goes beyond the SWEBOK R© contents by also
providing insights into the topics of process selection and tailoring and by discussing
emerging trends in the field of software processes. Furthermore, agile approaches
are covered as well as plan-driven approaches, while SWEBOK has a strong em-
phasis on plan-driven development only.

Table 0.1 gives an overview of the top-level structure of the book and its relation-
ship to SWEBOK R©, Chap. 8.

Table 0.1 Relation of the present book to the topics covered by SWEBOK R©, Chap. 8

SWEBOK R© v3, Chap. 8 This book

Software Process Definition Chapter 2, Chapter 4
Software Life Cycles Chapter 3, Chapter 4
Software Process Assessment and Improvement Chapter 5
Software Measurement Chapter 6
Software Engineering Process Tools Chapter 7

While Chap. 8 of SWEBOK R© addresses software engineering processes as a
topic of their own, several other chapters of the SWEBOK R© also refer to software

Preface xi

engineering processes. Table 0.2 lists the main relevant parts of SWEBOK R© and
where these topics are covered in the present book.

Table 0.2 Relation of the present book to the topics covered by SWEBOK R©, Chap. 7 and 10

SWEBOK R© v3 This book

Chap. 7, Sect. 2.1 Process Planning Sect. 4.4
Chap. 7, Sect. 3.4 Monitor Process Sect. 4.7, Sect. 6.5
Chap. 10, Sect. 1.3 Models and Quality Characteristics Sect. 5.2
Chap. 10, Sect. 1.4 Software Quality Improvement Sect. 5.4

Just like software engineers should think about what happens to their software
after development is completed, so this book goes beyond development processes
and looks at the entire software life cycle including operations, service management
and maintenance, as well as the governance of software processes.

Terminology. Where possible, the terminology used is usually based on the current
(in 2017) version of the Software and Systems Engineering Vocabulary (SEVOCAB)
which collects definitions of terminology from various other norms and standards
published by ISO, IEC, IEEE and PMI, and expands this collection by a number of
additional definitions. SEVOCAB is publicly available from https://pascal.
computer.org, and also published periodically as ISO/IEC/IEEE 24765.

In particular, the terminology from SEVOCAB is usually used in the definitions
in this book. Where this standards includes several different definitions of the same
term, this book usually selects that definition that is most appropriate in the context
of software processes and life cycle models.

On the other hand, the same definition is sometimes used in several different
standards. In this case, only the sources most relevant in this context are given,
always including SEVOCAB if the definition is included in this standard.

Case studies and examples. To help to get a good understanding of the topics
discussed, examples and case studies are provided. In particular, the following two
companies will be used for the case studies:

Case Study 0.1. (CS AutoSystems) CS AutoSystems develops and produces
various electronic control units (ECU) for cars, e.g. electric window lifters.
These ECUs consist of hardware as well as software, and in some cases they
are safety-relevant, leading to high demands on their reliability as well as on
the validation of the systems.

The development department of CS AutoSystems is fairly small, with
about ten developers (hard- and software).

https://pascal.computer.org
https://pascal.computer.org

xii Preface

Case Study 0.2. (CS Insurance InfoSys) CS Insurance InfoSys is a large IT
service provider, with about 1000 developers. The organisation develops and
runs the information systems for its parent, a large insurance company. To a
minor extent, it also acquires software from external suppliers which is then
run in the data centre of CS Insurance InfoSys.

Both case studies are based on a combination of real, existing companies even
though the companies as described do not exist in this form. Nevertheless, every-
thing described in the case studies has actually happened in existing companies.

Example 0.1. Apart from these two case studies companies that will be used
in case studies repeatedly across the entire book, various other examples will
be used to illustrate the concepts introduced.

At the end of each chapter, references to further reading are included for those
who want to go into more detail of one of the topics covered.

Also at the end of most chapters, some exercises are included to help get a better
understanding of the concepts covered. These exercises do not just ask to repeat any
contents described in the book but refer to applying and interpreting this contents in
a certain context, sometimes the reader’s own work environment. As a result, these
exercises have rarely, if ever, a unique correct answer.

There are many norms and standards relevant in the field of software processes
and this book addresses many of them. A list of the most important such norms and
standards can be found in the appendix.

Acknowledgements. Many thanks go to Marian Benner-Wickner, Ernest Wallmüller,
Eckhard Wirth and the anonymous reviewers for their feedback on various drafts of
this book.

Many thanks also go to the copyright owners of the figures included. Unfortu-
nately, not all copyright owners managed to answer this request, and I therefore had
to remove a few figures I would have liked to include.

The author thanks the International Electrotechnical Commission (IEC) for
permission to reproduce Information from its International Standard IEC 61508-
3:2010. All such extracts are copyright of IEC, Geneva, Switzerland. All rights re-
served. Further information on the IEC is available from http://www.iec.ch.
IEC has no responsibility for the placement and context in which the extracts and
contents are reproduced by the author, nor is IEC in any way responsible for the
other content or accuracy therein.

http://www.iec.ch

Preface xiii

Trademarks.

• ITIL R© is a (registered) Trade Mark of AXELOS Limited. All rights reserved.
• PRINCE R© is a (registered) Trade Mark of AXELOS Limited. All rights reserved.
• PRINCE2 Agile R© is a (registered) Trade Mark of AXELOS Limited. All rights

reserved.
• Capability Maturity Model R©, Carnegie Mellon R© and CMM R© are registered in

the U.S. Patent and Trademark Office by Carnegie Mellon University.
• CMMI and SCAMPI are registered marks of CMMI Institute LLC.
• Team Software Process, TSP, Personal Software Process, PSP and IDEAL are

service marks of Carnegie Mellon University.
• PMI R© and PMP R© are registered marks of Project Management Institute, Inc.
• V-Modell R© ist eine geschützte Marke der Bundesrepublik Deutschland. (V-

Modell R© is a registered mark of the Federal Republic of Germany.)
• SAFe R© and Scaled Agile Framework R© are registered trademarks of Scaled Ag-

ile, Inc.
• The Open Group R© and TOGAF R© are registered trademarks of The Open Group.
• IBM R© is a registered trademark of International Business Machines Corporation.
• CORBA R©, Object Management R©, OMG R©, and UML R© are registered trade-

marks and BPMNTM, Business Process Modeling NotationTM, and Unified Mod-
eling LanguageTMare trademarks of the Object Management Group.

• COBIT R© is a registered trademark of the Information Systems Audit and Control
Association and the IT Governance Institute.

• IEEE R© iis a registered trademark of the Institute of Electrical and Electronics
Engineers, Inc.

• Microsoft R© is a registered trademark of Microsoft Corporation.

About the author. Ralf Kneuper got a diploma in mathematics from the Univ. of
Bonn, Germany, in 1985, and a Ph.D. in Computer Science from the Univ. of
Manchester, UK, in 1989. Since then, he has worked with various companies on
software quality assurance, quality management and software processes. Currently,
he works both as an independent consultant on software quality management, pro-
cess improvement and data protection, and as a professor of Business Informatics
and Computer Science at the IUBH Internationale Hochschule in Germany. He has
published extensively on CMMI, process improvement and process quality.

Contents

1 Foundations . 1
1.1 Background . 1

1.1.1 Basic Concepts . 1
1.1.2 The Purpose of Explicitly Using Software Processes 3
1.1.3 Software Processes and their Evolution 5
1.1.4 Managing Software Processes . 8
1.1.5 Software Process Models and Meta-models 11

1.2 The Software Process Ecosystem . 12
1.3 Historical Overview . 13

1.3.1 The Early Days . 14
1.3.2 The 1980s: The Rise of Software Processes 16
1.3.3 The 1990s and Early 2000s: Lightweight and Agile Processes 17
1.3.4 Recent Trends . 18

1.4 Terminology and Basic Concepts . 20
1.4.1 General Terminology . 21
1.4.2 Process Terminology . 21
1.4.3 Software Process Terminology . 24
1.4.4 Model and Meta-model Terminology . 27
1.4.5 Process Model Terminology . 29
1.4.6 Major Phases Within Software Life Cycles 32
1.4.7 Other Relevant Terminology . 34

Further Reading . 35
Exercises . 36
References . 36

2 Software Process Definition and Modelling . 41
2.1 Introduction . 41

2.1.1 Basic Concepts . 42
2.1.2 Properties of Process Meta-Models . 43
2.1.3 Meta-meta-modelling . 46
2.1.4 Core Contents of Software Process Models 47

xv

xvi Contents

2.1.5 Further Contents of Software Process Models 49
2.2 Notations for Modelling the Interactions Between Processes 49

2.2.1 Value Chain Diagrams and Process Landscape Diagrams . . . 50
2.2.2 The Multi-View Process Modeling Language (MVP-L) 50

2.3 Detailed-Level Modelling Notations for Individual Processes 53
2.3.1 Process Patterns . 53
2.3.2 Modelling Notations from Requirements Analysis 54
2.3.3 High-Level Notations for General Processes 56
2.3.4 Notations for Modelling Business Processes 58
2.3.5 Process Notations for Formal Analysis 60

2.4 Combined Modelling Notations Combining High-Level and
Detailed-Level Modelling . 61
2.4.1 Life Cycle Diagram Plus Textual Process Documentation . . . 62
2.4.2 The Software & Systems Process Engineering Meta-Model

(SPEM) . 63
2.4.3 Software Engineering Metamodel for Development

Methodologies (SEMDM) ISO/IEC 24744 64
2.4.4 V-Model XT Meta-Model . 65

Further Reading . 66
Exercises . 66
References . 67

3 Software Processes in the Software Product Life Cycle 69
3.1 Introduction . 69

3.1.1 Distinctive Properties of Software Process and Life Cycle
Models . 70

3.1.2 Software Product Life Cycle . 73
3.1.3 Organisational Software Processes . 75
3.1.4 Software Development Life Cycle . 77
3.1.5 Software Life Cycle Processes According to

ISO/IEC/IEEE 12207 . 77
3.1.6 Categories of Software Process and Life Cycle Models 78
3.1.7 Categorizing Process Models by Level of Detail 80

3.2 Basic Software Development Life Cycle Models 81
3.2.1 Waterfall Models . 81
3.2.2 The V-Model . 83
3.2.3 Component- or Matrix-Based Models 85
3.2.4 Prototyping . 86
3.2.5 Iterative, Incremental and Evolutionary Development 89
3.2.6 An Anti-Pattern: Code-and-Fix . 95
3.2.7 Digression: the Six Phases of a (Big) Project 95

3.3 Methodology-Driven Life Cycle and Process Models 96
3.4 Detailed, Combined Software Life Cycle and Process Models 97

3.4.1 The (Rational) Unified Process . 97
3.4.2 The German V-Model XT . 99

Contents xvii

3.4.3 Other Software Process Models . 100
3.5 Agile and Lean Development Processes and Methodologies 102

3.5.1 The Agile Manifesto . 102
3.5.2 Scrum. 103
3.5.3 Common Agile Practices . 108
3.5.4 Planning and Tracking Work in Agile Development 109
3.5.5 Extreme Programming (XP) . 110
3.5.6 Lean Development . 111
3.5.7 Other Common Agile and Lean Methodologies 115
3.5.8 Processes for Open Source Software Development 117
3.5.9 Scaling Agile Development . 118
3.5.10 Scaled Agile Framework (SAFe R©) . 121

3.6 Hybrid Approaches . 124
3.7 (Capability) Maturity Models . 126
3.8 IT Service Management and Operations . 126

3.8.1 The IT Infrastructure Library (ITIL) . 127
3.8.2 Other Models for IT Service Management and Operations . . 127

3.9 Integrating Software Development and Software Operations 128
3.10 Software Processes and Architecture . 130
3.11 Safety, Security and Privacy . 131

3.11.1 Basic Concepts . 131
3.11.2 Safety Standards and Software Processes 135
3.11.3 Security Standards and Software Processes 137
3.11.4 Privacy Standards and Software Processes 140
3.11.5 Safety, Security and Privacy in the Development Life Cycle . 142

3.12 Application-Specific Life Cycle Models . 144
3.12.1 Life Cycle Models for the Development of Cyber-Physical

Systems . 145
3.12.2 Life Cycle Models for Customisation, Configuration and

Integration Projects . 145
3.12.3 Life Cycle Models for Artificial Intelligence Systems 146
3.12.4 Life Cycle Models for Big Data Projects 146

3.13 Estimating the Dissemination of Software Life Cycle Models 147
Further Reading . 151
Exercises . 152
References . 152

4 Governance and Management of Software Processes 159
4.1 Introduction . 159
4.2 Process Infrastructure . 160

4.2.1 Process Roles . 160
4.2.2 Selecting a Process Notation . 165
4.2.3 Process Asset Management and Control 165

4.3 Process Definition . 168
4.3.1 Basic Concepts . 168

xviii Contents

4.3.2 Software Process Development . 169
4.4 Process Selection . 171
4.5 Process Tailoring . 176

4.5.1 Overview of Process Tailoring . 176
4.5.2 Tailoring Strategies . 178
4.5.3 Tailoring Criteria . 179

4.6 Process Deployment . 180
4.6.1 Challenges in Process Deployment . 180
4.6.2 State–Enable–Verify–Reward. 181
4.6.3 Change Management . 182

4.7 Quality Assurance . 187
4.8 IT Governance and Process Governance . 189

4.8.1 Basic Concepts . 189
4.8.2 The COBIT Framework . 194
4.8.3 Software Process Governance . 198
4.8.4 IT Governance and Agile Development 199
4.8.5 Governance of IT Architecture . 199

4.9 Software Processes as a Form of Knowledge Management 202
4.9.1 Codification vs. Personalisation of Knowledge 202
4.9.2 Probst’s Building Blocks of Knowledge Management 202
4.9.3 Armour’s Laws of Software Process . 204

4.10 (Globally) Distributed Software Processes . 205
4.11 Software Processes for Software Acquisition . 206
Further Reading . 207
Exercises . 208
References . 208

5 Software Process Assessment and Improvement 211
5.1 Introduction . 211
5.2 Quality of Software Processes and Software Process Models 212
5.3 Software Process Improvement . 214

5.3.1 Collection, Analysis and Handling of Improvement Ideas . . . 215
5.3.2 Assessments, Appraisals and Audits . 217
5.3.3 The SPI Manifesto . 220

5.4 Quality Management . 221
5.4.1 Foundations of Quality Management . 221
5.4.2 The Plan-Do-Check-Act-Cycle (PDCA) 222
5.4.3 The ISO 9000 Series of Standards . 224
5.4.4 Responsibility for Quality, Quality Management and

Quality Assurance . 226
5.4.5 Certification . 227
5.4.6 Total Quality Management (TQM) . 229

5.5 (Capability) Maturity Models . 230
5.5.1 Basic Concepts of Capability Maturity Models 231
5.5.2 Capability and Maturity Levels . 236

Contents xix

5.5.3 Capability Maturity Model Integration (CMMI R©) 237
5.5.4 SPICE (ISO/IEC 15504 and ISO/IEC 330xx) 246
5.5.5 Capability Maturity Models from the Customer’s Point of

View . 252
5.6 Assessment and Improvement in Agile and Lean Development 253
5.7 The TAME Project and Related Work . 254
5.8 Further Assessment and Improvement Approaches 256
Further Reading . 257
Exercises . 257
References . 258

6 Software and Software Process Measurement . 261
6.1 Introduction . 261

6.1.1 Why measure? . 261
6.1.2 Measurement Terminology . 262
6.1.3 Measurement Foundations . 263
6.1.4 Metrics . 265

6.2 Implementing and Deploying Measures and Measurement Systems . 265
6.2.1 Basic Concepts . 266
6.2.2 The Goal-Question-Metric Paradigm: GQM and GQM+ . . . 268
6.2.3 Measurement and Analysis in CMMI 270
6.2.4 Aggregating Different Metrics For Reporting 271

6.3 Product Metrics . 272
6.3.1 Software Metrics . 272
6.3.2 Software Quality Metrics . 273

6.4 Project and Service Metrics . 273
6.5 Process Metrics: Measuring Process Quality Using Gokyo Ri 275
6.6 Measurement and Agile Methods . 283
Further Reading . 284
Exercises . 284
References . 285

7 Tool Support for Software Processes . 287
7.1 Introduction . 287
7.2 Support for Process Modelling and Process Management 289

7.2.1 Process Editors . 289
7.2.2 Process and Process Asset Management Tools 291
7.2.3 Compliance and Quality Assurance Tools 292

7.3 Tool Support for Process Enactment in the Early Stages of the
Software Life Cycle . 292

7.4 Tool Support for Process Enactment in Software Development 293
7.4.1 Why Tool Support for the Enactment of Software

Development Processes? . 293
7.4.2 Process Visualisation . 294
7.4.3 Process-Aware Tools . 294

xx Contents

7.4.4 Tool Support for Project Management and Technical Tasks . 295
7.4.5 Development Environments . 295
7.4.6 Documentation of Source Code . 298

7.5 Tool Support for Process Enactment in the Late Stages of the
Software Product Life Cycle . 299

7.6 Compliance and Quality Assurance Tools in Process Enactment . . . 299
7.7 Privacy (Data Protection) . 300
Further Reading . 300
Exercises . 301
References . 301

8 Selected Current Trends in Software Processes . 303
8.1 Process Intelligence and Process Mining . 303

8.1.1 Basic Concepts of Process Mining . 303
8.1.2 Process Mining and Software Processes 305
8.1.3 Mining of Software Engineering Processes 306

8.2 Statistical Process Control and Six Sigma . 309
8.2.1 Statistical Process Control (SPC) . 309
8.2.2 Six Sigma . 310
8.2.3 SPC and Six Sigma for Software Processes 311

8.3 DevOps . 313
8.3.1 From Continuous Integration to Continuous Deployment . . . 314
8.3.2 The “Three Ways” of DevOps . 316
8.3.3 DevOps in Context . 318
8.3.4 DevOps and CALMS . 319
8.3.5 DevOps and ITIL . 320
8.3.6 Benefits and Challenges of DevOps . 322

Further Reading . 324
Exercises . 324
References . 325

A Relevant norms and standards . 327
A.1 A Short Overview of the Most Relevant Process Standards 327
A.2 ISO and IEC Standards . 328
A.3 Other Relevant Standard Documents . 331
Further Reading . 332
References . 332

B Gokyo Ri Check-lists to Measure Process Quality 333
B.1 Process Quality Characteristic “Process Objectives and

Requirements” . 333
B.2 Process Quality Characteristic “Process Capability” 333
References . 333

Index . 337

	Foreword
	Preface
	Book Goals
	Target Audience
	Outline

	Contents

