
ar
X

iv
:1

80
5.

04
58

0v
1

 [
cs

.F
L

]
 1

1
M

ay
 2

01
8

Branching Temporal Logic of Calls and Returns

for Pushdown Systems

Huu-Vu Nguyen1, Tayssir Touili2

1 LIPN, CNRS and University Paris 13, France
2 CNRS, LIPN and University Paris 13, France

Abstract. Pushdown Systems (PDSs) are a natural model for sequen-
tial programs with (recursive) procedure calls. In this work, we define
the Branching temporal logic of CAlls and RETurns (BCARET) that
allows to write branching temporal formulas while taking into account
the matching between calls and returns. We consider the model-checking
problem of PDSs against BCARET formulas with ”standard” valuations
(where an atomic proposition holds at a configuration c or not depends
only on the control state of c, not on its stack) as well as regular valu-
ations (where the set of configurations in which an atomic proposition
holds is regular). We show that these problems can be effectively solved
by a reduction to the emptiness problem of Alternating Büchi Pushdown
Systems. We show that our results can be applied for malware detection.

1 Introduction

Pushdown Systems (PDSs) are a natural model for sequential programs with
(recursive) procedure calls. Thus, it is very important to have model-checking al-
gorithms for PDSs. A lot of work focuses on proposing verification algorithms for
PDSs, e.g, for both linear temporal logic (LTL and its extensions) [6,10,9,11,12,17]
and branching temporal logic (CTL and its extensions) [6,7,8,18,15]. However,
LTL and CTL are not always adequate to specify properties. Indeed, some prop-
erties need to talk about matching between calls and returns. Thus, CARET
(a temporal logic of calls and returns) was introduced by Alur et al [5]. This
logic allows to write linear temporal logic formulas while taking into account
matching of calls and returns. Later, VP-µ (also named NT-µ in other works of
the same authors) [2,3,4], a branching-time temporal logic that allows to talk
about matching between calls and returns, was introduced. VP-µ can be seen
as an extension of the modal µ-calculus which allows to talk about matching of
calls and returns.

In [2], the authors proposed an algorithm to model-check VP-µ formulas for
Recursive State Machines (RSMs) [1]. RSMs can be seen as a natural model to
represent sequential programs with (recursive) procedure calls. Each procedure
is modelled as a module. The invocation to a procedure is modelled as a call
node; the return from a module corresponds to a ret node; and the remaining
statements are considered as internal nodes in the RSMs. Thus, RSMs are a

http://arxiv.org/abs/1805.04580v1

2 Huu-Vu Nguyen1, Tayssir Touili2

good formalism to model sequential programs written in structured program-
ming languages like C or Java. However, they become non suitable for modelling
binary or assembly programs; since, in these programs, explicit push and pop
instructions can occur. This makes impossible the use of RSMs to model assem-
bly programs and binary codes directly (whereas Pushdown Systems can model
binary codes in a natural way [16]). Model checking binary and assembly pro-
grams is very important. Indeed, sometimes, only the binary code is available.
Moreover, malicious programs are often executables, i.e., binary codes. Thus,
it is very important to be able to model check binary and assembly programs
against branching-time formulas with matchings between calls and returns. One
can argue that from a binary/assembly program, one can compute a PDS as
described in [16] and then apply the translation in [1] to obtain a RSM and then
apply the VP-µ model-checking algorithm of [2] on this RSM. However, by doing
so, we loose the explicit manipulation of the program’s stack. Explicit push and
pop instructions are not represented in a natural way anymore, and the stack of
the RSM does not correspond to the stack of the assembly program anymore.
Thus, it is not possible to state intuitive formulas that correspond to properties
of the program’s behaviors on the obtained RSM. Especially, when these formu-
las talk about the content of the program’s stack. Thus, it is very important to
have a direct algorithm for model-checking a branching-time temporal logic with
matching of calls and returns for PDSs.

However, VP-µ is a heavy formalism that can’t be used by novice users.
Indeed, VP-µ can be seen as an extension of the modal µ calculus with several
modalities 〈loc〉, [loc], 〈call〉, [call], 〈ret〉, [ret] that allow to distinguish between
calls, returns, and other statements (neither calls nor returns). Writing a simple
specification in VP-µ is complicated. For example, the following simple property
stating that ”the configuration e can be reached in the same procedural context
as the current configuration” can be described (as shown in [2]) by the complex
VP-µ formula ϕ′

2 = µX(e ∨ 〈loc〉X ∨ 〈call〉ϕ′
3{X}) where ϕ′

3 = µY (〈ret〉R1 ∨
〈loc〉Y ∨ 〈call〉Y {Y }). Thus, we need to define a more intuitive branching-time
temporal logic (in the style of CTL) that allow to talk naturally and intuitively
about matching calls and returns.

Therefore, we define in this work the Branching temporal logic of CAlls
and RETurns BCARET. BCARET can be seen as an extension of CTL with
operators that allow to talk about matchings between calls and returns. Using
BCARET, the above reachability property can be described in a simple way by
the formula EF ae where EF a is a BCARET operator that means ”there exists
a run on which eventually in the future in the same procedural context”. We
consider the model-checking problem of PDSs against BCARET formulas with
”standard” valuations (where an atomic proposition holds at a configuration c
or not depends only on the control state of c, not on its stack) as well as regular
valuations (where the set of configurations in which an atomic proposition holds
is a regular set of configurations). We show that these problems can be effectively
solved by a reduction to the emptiness problem of Alternating Büchi Pushdown
Systems (ABPDSs). The latter problem can be solved effectively in [15]. Note
that the regular valuation case cannot be solved by translating the PDSs to RSMs

Branching Temporal Logic of Calls and Returns for Pushdown Systems 3

since as said previously, by doing the translation of PDSs to obtain RSMs, we
loose the structure of the program’s stack.

The rest of the paper is organized as follows. In Section 2, we define La-
belled Pushdown Systems. In Section 3, we define the logic BCARET. Section
4 presents applications of BCARET in specifying malicious behaviours. Our
algorithm to reduce BCARET model-checking to the membership problem of
ABPDSs is presented in Section 5. Section 6 discusses the model-checking prob-
lem for PDSs against BCARET formulas with regular valuations. Finally, we
conclude in Section 7.

2 Pushdown Systems: A model for sequential programs

Pushdown systems is a natural model that was extensively used to model sequen-
tial programs. Translations from sequential programs to PDSs can be found e.g.
in [14]. As will be discussed in the next section, to precisely describe malicious
behaviors as well as context-related properties, we need to keep track of the call
and return actions in each path. Thus, as done in [13], we adapt the PDS model
in order to record whether a rule of a PDS corresponds to a call, a return, or
another instruction. We call this model a Labelled Pushdown System. We also
extend the notion of run in order to take into account matching returns of calls.

Definition 1. A Labelled Pushdown System (PDS) P is a tuple (P, Γ,∆, ♯),
where P is a finite set of control locations, Γ is a finite set of stack alphabet,
♯ /∈ Γ is a bottom stack symbol and ∆ is a finite subset of ((P × Γ) × (P ×
Γ ∗)×{call, ret, int}). If ((p, γ), (q, ω), t) ∈ ∆ (t ∈ {call, ret, int}), we also write

〈p, γ〉
t
−→ 〈q, ω〉 ∈ ∆. Rules of ∆ are of the following form, where p ∈ P, q ∈

P, γ, γ1, γ2 ∈ Γ , and ω ∈ Γ ∗:

– (r1): 〈p, γ〉
call
−−→ 〈q, γ1γ2〉

– (r2): 〈p, γ〉
ret
−−→ 〈q, ǫ〉

– (r3): 〈p, γ〉
int
−−→ 〈q, ω〉

Intuitively, a rule of the form 〈p, γ〉
call
−−→ 〈q, γ1γ2〉 corresponds to a call state-

ment. Such a rule usually models a statement of the form γ
call proc
−−−−−−→ γ2. In this

rule, γ is the control point of the program where the function call is made, γ1
is the entry point of the called procedure, and γ2 is the return point of the call.
A rule r2 models a return, whereas a rule r3 corresponds to a simple statement
(neither a call nor a return). A configuration of P is a pair 〈p, ω〉, where p is a
control location and ω ∈ Γ ∗ is the stack content. For technical reasons, we sup-
pose w.l.o.g. that the bottom stack symbol ♯ is never popped from the stack, i.e.,

there is no rule in the form 〈p, ♯〉
t
−→ 〈q, ω〉 ∈ ∆ (t ∈ {call, ret, int}). P defines

a transition relation =⇒P (t ∈ {call, ret, int}) as follows: If 〈p, γ〉
t
−→ 〈q, ω〉, then

for every ω′ ∈ Γ ∗, 〈p, γω′〉 =⇒P 〈q, ωω′〉. In other words, 〈q, ωω′〉 is an immediate

successor of 〈p, γω′〉. Let
∗
=⇒P be the reflexive and transitive closure of =⇒P .

4 Huu-Vu Nguyen1, Tayssir Touili2

A run of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where 〈pi, ωi〉 ∈
P ×Γ ∗ s.t. for every i ≥ 0, 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉. Given a configuration 〈p, ω〉,
let Traces(〈p, ω〉) be the set of all possible runs starting from 〈p, ω〉.

2.1 Global and abstract successors

Let π = 〈p0, ω0〉〈p1, ω1〉... be a run starting from 〈p0, ω0〉. Over π, two kinds of
successors are defined for every position 〈pi, ωi〉:

– global-successor : The global-successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉 where 〈pi+1, ωi+1〉
is an immediate successor of 〈pi, ωi〉.

– abstract-successor : The abstract-successor of 〈pi, ωi〉 is determined as follows:
• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a call statement, there are two
cases: (1) if 〈pi, ωi〉 has 〈pk, ωk〉 as a corresponding return-point in π,
then, the abstract successor of 〈pi, ωi〉 is 〈pk, ωk〉; (2) if 〈pi, ωi〉 does not
have any corresponding return-point in π, then, the abstract successor
of 〈pi, ωi〉 is ⊥.

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a simple statement, the ab-
stract successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉.

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a return statement, the ab-
stract successor of 〈pi, ωi〉 is defined as ⊥.

〈p0, ω0〉 〈p1, ω1〉

〈p2, ω2〉

〈p3, ω3〉 〈p4, ω4〉

〈p5, ω5〉

〈p6, ω6〉

〈p7, ω7〉

〈p8, ω8〉

〈p9, ω9〉

〈p10, ω10〉

〈pk, ωk〉int

call

call retglobal-successor

abstract-successor

Fig. 1: Two kinds of successors on a run

For example, in Figure 1:

– The global-successors of 〈p1, ω1〉 and 〈p2, ω2〉 are 〈p2, ω2〉 and 〈p3, ω3〉 respec-
tively.

– The abstract-successors of 〈p2, ω2〉 and 〈p5, ω5〉 are 〈pk, ωk〉 and 〈p9, ω9〉 re-
spectively.

Let 〈p, ω〉 be a configuration of a PDS P . A configuration 〈p′, ω′〉 is defined as
a global-successor of 〈p, ω〉 iff 〈p′, ω′〉 is a global-successor of 〈p, ω〉 over a run
π ∈ Traces(〈p, ω〉). Similarly, a configuration 〈p′, ω′〉 is defined as an abstract-
successor of 〈p, ω〉 iff 〈p′, ω′〉 is an abstract-successor of 〈p, ω〉 over a run π ∈
Traces(〈p, ω〉)

Branching Temporal Logic of Calls and Returns for Pushdown Systems 5

A global-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where
〈pi, ωi〉 ∈ P ×Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is a global-successor of 〈pi, ωi〉.
Similarly, an abstract-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
where 〈pi, ωi〉 ∈ P×Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is an abstract-successor of
〈pi, ωi〉. For instance, in Figure 1, 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈p3, ω3〉〈p4, ω4〉〈p5, ω5〉...
is a global-path, while 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈pk, ωk〉... is an abstract-path.

2.2 Multi Automata

Definition 2. [6] Let P = (P, Γ,∆, ♯) be a PDS. A P-Multi-Automaton (MA
for short) is a tuple A = (Q,Γ, δ, I,Qf), where Q is a finite set of states, δ ⊆
Q×Γ ×Q is a finite set of transition rules, I = P ⊆ Q is a set of initial states,
Qf ⊆ Q is a set of final states.

The transition relation −→δ⊆ Q× Γ ∗ ×Q is defined as follows:

– q
ǫ
−→δ q for every q ∈ Q

– q
γ
−→δ q

′ if (q, γ, q′) ∈ δ

– if q
ω
−→δ q′ and q′

γ
−→δ q

′′, then, q
ωγ
−−→δ q′′

A recognizes a configuration 〈p, ω〉 where p ∈ P , ω ∈ Γ ∗ iff p
ω
−→δ q for some

q ∈ Qf . The language of A, L(A), is the set of all configurations which are
recognized by A. A set of configurations is regular if it is recognized by some
Multi-Automaton.

3 Branching Temporal Logic of Calls and Returns -

BCARET

In this section, we define the Branching temporal logic of CAlls and RETurns
BCARET. For technical reasons, we assume w.l.o.g. that BCARET formulas
are given in positive normal form, i.e. negations are applied only to atomic
propositions. To do that, we use the release operator R as a dual of the until
operator U .

Definition 3. Syntax of BCARET

Let AP be a finite set of atomic propositions, a BCARET formula ϕ is defined
as follows, where b ∈ {g, a}, e ∈ AP :

ϕ ::= true | false | e | ¬e | ϕ∨ϕ | ϕ∧ϕ | EXbϕ | AXbϕ | E[ϕU bϕ] | A[ϕU bϕ] | E[ϕRbϕ] | A[ϕRbϕ]

Let P = (P, Γ,∆, ♯) be a PDS, λ : AP → 2P×Γ∗

be a labelling function
that assigns to each atomic proposition e ∈ AP a set of configurations of P .
The satisfiability relation of a BCARET formula ϕ at a configuration 〈p0, ω0〉
w.r.t. the labelling function λ, denoted by 〈p0, ω0〉 �λ ϕ, is defined inductively
as follows:

6 Huu-Vu Nguyen1, Tayssir Touili2

– 〈p0, ω0〉 �λ true for every 〈p0, ω0〉
– 〈p0, ω0〉 2λ false for every 〈p0, ω0〉
– 〈p0, ω0〉 �λ e (e ∈ AP) iff 〈p0, ω0〉 ∈ λ(e)
– 〈p0, ω0〉 �λ ¬e (e ∈ AP) iff 〈p0, ω0〉 /∈ λ(e)
– 〈p0, ω0〉 �λ ϕ1 ∨ ϕ2 iff (〈p0, ω0〉 �λ ϕ1 or 〈p0, ω0〉 �λ ϕ2)
– 〈p0, ω0〉 �λ ϕ1 ∧ ϕ2 iff (〈p0, ω0〉 �λ ϕ1 and 〈p0, ω0〉 �λ ϕ2)
– 〈p0, ω0〉 �λ EXgϕ iff there exists a global-successor 〈p′, ω′〉 of 〈p0, ω0〉 such

that 〈p′, ω′〉 �λ ϕ
– 〈p0, ω0〉 �λ AXgϕ iff 〈p′, ω′〉 �λ ϕ for every global-successor 〈p′, ω′〉 of

〈p0, ω0〉
– 〈p0, ω0〉 �λ E[ϕ1U

gϕ2] iff there exists a global-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i,
〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1U
gϕ2] iff for every global-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...of

P starting from 〈p0, ω0〉, ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i,
〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ E[ϕ1R
gϕ2] iff there exists a global-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0, if 〈pi, ωi〉 2λ ϕ2 then there
exists 0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1R
gϕ2] iff for every global-path π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 2λ ϕ2 then there exists
0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ EXaϕ iff there exists an abstract-successor 〈p′, ω′〉 of 〈p0, ω0〉
such that 〈p′, ω′〉 �λ ϕ

– 〈p0, ω0〉 �λ AXaϕ iff 〈p′, ω′〉 �λ ϕ for every abstract-successor 〈p′, ω′〉 of
〈p0, ω0〉

– 〈p0, ω0〉 �λ E[ϕ1U
aϕ2] iff there exists an abstract-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i,
〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1U
aϕ2] iff for every abstract-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P , ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i, 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ E[ϕ1R
aϕ2] iff there exists an abstract-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0, if 〈pi, ωi〉 2λ ϕ2 then there
exists 0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1R
aϕ2] iff for every abstract-path π= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 2λ ϕ2 then there exists
0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

Other BCARET operators can be expressed by the above operators:EF gϕ =
E[true Ugϕ],EF aϕ = E[true Uaϕ],AF gϕ = A[true Ugϕ], AF aϕ = A[trueUaϕ],...

Closure. Given a BCARET formula ϕ, the closure Cl(ϕ) is the set of all sub-
formulae of ϕ, including ϕ.

Regular Valuations. We talk about regular valuations when for every e ∈ AP ,
λ(e) is a regular language.

Remark 1. CTL can be seen as the subclass of BCARET where the operators
EXaϕ,AXaϕ,E[ϕUaϕ], A[ϕUaϕ], E[ϕRaϕ], A[ϕRaϕ] are not considered.

Branching Temporal Logic of Calls and Returns for Pushdown Systems 7

4 Application

In this section, we show how BCARET can be used to describe branching-time
malicious behaviors.

Spyware Behavior. The typical behaviour of a spyware is hunting for personal
information (emails, bank account information,...) on local drives by searching
files matching certain conditions. To do that, it has to search directories of the
host to look for interesting files whose names match a specific condition. When
a file is found, the spyware will invoke a payload to steal the information, then
continue looking for the remaining matching files. When a folder is found, it will
enter the folder path and continue scanning that folder recursively. To achieve
this behavior, the spyware first calls the API function FindF irstF ileA to search
for the first matching file in a given folder path. After that, it has to check
whether the call to the API function FindF irstF ileA succeeds or not. If the
function call fails, the spyware will call the function GetLastError. Otherwise,
if the function call is successful, FindF irstF ileA will return a search handle
h. There are two possibilities in this case. If the returned result is a folder, it
will call the API function FindF irstF ileA again to search for matching results
in the found folder. If the returned result is a file, it will call the API function
FindNextF ileA using h as first parameter to look for the remaining matching
files. This behavior cannot be expressed by LTL or CTL because it requires to
express that the return value of the function FindF irstF ileA should be used as
input to the API function FindNextF ileA. It cannot be described by CARET
neither (because this is a branching-time property). Using BCARET, the above
behavior can be expressed by the following formula:

ϕsb =
∨

d∈D

EF g

(

call(FindF irstF ileA) ∧EXa(eax = d) ∧ AF a

(

call(GetLastError) ∨ call(FindF irstF ileA)

∨
(

call(FindNextF ileA)∧ dΓ ∗
)

)

)

where the
∨

is taken over all possible memory addresses d which contain the
values of search handles h in the program, EXa is a BCARET operator that
means ”next in some run, in the same procedural context”; EF g is the standard
CTL EF operator (eventually in some run), while AF a is a BCARET operator
that means ”eventually in all runs, in the same procedural context”.

In binary codes and assembly programs, the return value of an API function is
put in the register eax. Thus, the return value of FindF irstF ileA is the value of
eax at its corresponding return-point. Then, the subformula (call(FindFirstFileA)∧
EXa(eax = d)) states that there is a call to the API FindF irstF ileA and the
return value of this function is d (the abstract successor of a call is its correspond-
ing return-point). When FindNextFileA is invoked, it requires a search handle

8 Huu-Vu Nguyen1, Tayssir Touili2

as parameter and this search handle must be put on top of the program stack
(since parameters are passed through the stack in assembly). The requirement
that d is on top of the program stack is expressed by the regular expression dΓ ∗.
Thus, the subformula [call(FindNextFileA)∧dΓ ∗] expresses that FindNextFileA
is called with d as parameter (d stores the information of the search handle).
Therefore, ϕsb expresses then that there is a call to the API FindF irstF ileA
with the return value d (the search handle), then, in all runs starting from that
call, there will be either a call to the API function GetLastError or a call to the
function FindF irstF ileA or a call to the function FindNextF ileA in which d
is used as a parameter.

To detect spyware, [13] used the following CARET formula:
ϕ′
sb =

∨

d∈D F g(call(FindFirstFileA) ∧Xa(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ ∗))

It can be seen that this CARET formula ϕ′
sb is not as precise as the BCARET

formula ϕsb, as it does not deal with the case when the returned result of
FindF irstF ileA is a folder or an error. Thus, this CARET formula ϕ′

sb may lead
to false alarms that can be avoided using our BCARET formula ϕsb. BCARET
can deal with it because BCARET is a branching-time temporal logic. For ex-
ample, AF a allows us to take into account all possible abstract-paths from a
certain state in the computation tree. By using AF a, ϕsb can deal with different
returned values of FindF irstF ileA as presented above.

5 BCARET Model-Checking for Pushdown Systems

In this section, we consider ”standard” BCARET model-checking for pushdown
systems where an atomic proposition holds at a configuration c or not depends
only on the control state of c, not on its stack.

5.1 Alternating Büchi Pushdown Systems (ABPDSs).

Definition 4. An Alternating Büchi Pushdown System (ABPDS) is a tuple
BP = (P, Γ,∆, F), where P is a set of control locations, Γ is the stack alphabet,
F ⊆ P is a set of accepting control locations and ∆ is a transition function that
maps each element of P × Γ with a positive boolean formula over P × Γ ∗.

A configuration of BP is a pair 〈p, ω〉, where p ∈ P is the current control
location and ω ∈ Γ ∗ is the current stack content. Without loss of generality,
we suppose that the boolean formulas of ABPDSs are in disjunctive normal
form

∨n
j=1

∧mj

i=1〈p
j
i , ω

j
i 〉. Then, we can see ∆ as a subset of (P × Γ) × 2P×Γ∗

by rewriting the rules of ∆ in the form 〈p, γ〉 →
∨n

j=1

∧mj

i=1〈p
j
i , ω

j
i 〉 as n rules

of the form 〈p, γ〉 → {〈pj1, ω
j
1〉, ..., 〈p

j
mj

, ωj
mj

〉}, where 1 ≤ j ≤ n. Let 〈p, γ〉 →
{〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of ∆, then, for every ω ∈ Γ ∗, the configura-
tion 〈p, γω〉(resp. {〈p1, ω1ω〉, ..., 〈pn, ωnω〉}) is an immediate predecessor (resp.
successor) of {〈p1, ω1ω〉, ..., 〈pn, ωnω〉} (resp. 〈p, γω〉).

A run ρ of BP starting form an initial configuration 〈p0, ω0〉 is a tree whose
root is labelled by 〈p0, ω0〉, and whose other nodes are labelled by elements in

Branching Temporal Logic of Calls and Returns for Pushdown Systems 9

P × Γ ∗. If a node of ρ is labelled by a configuration 〈p, ω〉 and has n children
labelled by 〈p1, ω1〉, ..., 〈pn, ωn〉 respectively, then, 〈p, ω〉 must be a predecessor
of {〈p1, ω1〉, ..., 〈pn, ωn〉} in BP. A path of a run ρ is an infinite sequence of
configurations c0c1c2... s.t. c0 is the root of ρ and ci+1 is one of the children of ci
for every i ≥ 0. A path is accepting iff it visits infinitely often configurations with
control locations in F . A run ρ is accepting iff every path of ρ is accepting. The
language of BP, L(BP), is the set of configurations c s.t. BP has an accepting
run starting from c.

BP defines the reachability relation =⇒BPϕ
as follows: (1) c =⇒BP {c} for

every c ∈ P × Γ ∗, (2) c =⇒BP C if C is an immediate successor of c; (3) if
c =⇒BP {c1, c2, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n, then c =⇒BP

⋃n
i=1 Ci.

Given c0 =⇒BP C′, then, BP has an accepting run from c0 iff BP has an accepting
run from c′ for every c′ ∈ C′.

Theorem 1. [15] Given an ABPDS BP = (P, Γ,∆, F), for every configura-
tion 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 ∈ L(BP) can be decided in time
O(|P |2.|Γ |.(|∆|25|P | + 2|P ||ω|)).

5.2 From BCARET model checking of PDSs to the membership
problem in ABPDSs

Let P = (P, Γ,∆, ♯) be a pushdown system with an initial configuration c0.
Given a set of atomic propositions AP , let ϕ be a BCARET formula. Let f :
AP → 2P be a function that associates each atomic proposition with a set
of control states, and λf : AP → 2P×Γ∗

be a labelling function s.t. for every
e ∈ AP , λf (e) = {〈p, ω〉 | p ∈ f(e), ω ∈ Γ ∗}. In this section, we propose an
algorithm to check whether c0 �λf

ϕ. Intuitively, we construct an Alternating
Büchi Pushdown System BPϕ which recognizes a configuration c iff c �λf

ϕ.
Then to check whether c0 �λf

ϕ, we will check if c0 ∈ L(BPϕ). The membership
problem of an ABPDS can be solved effectively by Theorem 1.

Let BPϕ = (P ′, Γ ′, ∆′, F) be the ABPDS defined as follows:

– P ′ = P ∪ (P × Cl(ϕ)) ∪ {p⊥}
– Γ ′ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ⊥}
– F = F1 ∪ F2 ∪ F3 where

• F1 = {Lp, eM | e ∈ Cl(ϕ), e ∈ AP and p ∈ f(e)}
• F2 = {Lp,¬eM | ¬e ∈ Cl(ϕ), e ∈ AP and p /∈ f(e)}
• F3 = {P ×ClR(ϕ)} where ClR(ϕ) is the set of formulas of Cl(ϕ) in the
form E[ϕ1R

bϕ2] or A[ϕ1R
bϕ2] (b ∈ {g, a})

The transition relation ∆′ is the smallest set of transition rules defined as
follows: ∆ ⊆ ∆′ and for every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ , b ∈ {g, a} and
t ∈ {call, ret, int}:

(α1) If φ = e, e ∈ AP and p ∈ f(e), then, 〈Lp, φM, γ〉 → 〈Lp, φM, γ〉 ∈ ∆′

(α2) If φ = ¬e, e ∈ AP and p /∈ f(e), then, 〈Lp, φM, γ〉 → 〈Lp, φM, γ〉 ∈ ∆′

(α3) If φ = φ1 ∧ φ2, then, 〈Lp, φM, γ〉 → 〈Lp, φ1M, γ〉 ∧ 〈Lp, φ2M, γ〉 ∈ ∆′

10 Huu-Vu Nguyen1, Tayssir Touili2

(α4) If φ = φ1 ∨ φ2, then, 〈Lp, φM, γ〉 → 〈Lp, φ1M, γ〉 ∨ 〈Lp, φ2M, γ〉 ∈ ∆′

(α5) If φ = EXgφ1, then Lp, φM, γ〉 →
∨

〈p,γ〉
t
−→〈q,ω〉∈∆

〈Lq, φ1M, ω〉 ∈ ∆′ where

t ∈ {call, int, ret}
(α6) If φ = AXgφ1, then, 〈Lp, φM, γ〉 →

∧

〈p,γ〉
t
−→〈q,ω〉∈∆

〈Lq, φ1M, ω〉 ∈ ∆′

(α7) If φ = EXaφ1, then, 〈Lp, φM, γ〉 → h1 ∨ h2 ∨ h3 ∈ ∆′, where
– h1 =

∨

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈q, γ1Lγ2, φ1M〉

– h2 =
∨

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lq, φ1M, ω〉

– h3 =
∨

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α8) If φ = AXaφ1, then, 〈Lp, φM, γ〉 → h1 ∧ h2 ∧ h3 ∈ ∆′, where

– h1 =
∧

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈q, γ1Lγ2, φ1M〉

– h2 =
∧

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lq, φ1M, ω〉

– h3 =
∧

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α9) If φ = E[φ1U
gφ2], then,

〈Lp, φM, γ〉 → 〈Lp, φ2M, γ〉 ∨
∨

〈p,γ〉
t
−→〈q,ω〉∈∆

(〈Lp, φ1M, γ〉 ∧ 〈Lq, φM, ω〉) ∈ ∆′

(α10) If φ = E[φ1U
aφ2], then, 〈Lp, φM, γ〉 → 〈Lp, φ2M, γ〉 ∨ h1 ∨ h2 ∨ h3 ∈ ∆′, where

– h1 =
∨

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈Lp, φ1M, γ〉 ∧ 〈q, γ1Lγ2, φM〉

– h2 =
∨

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lp, φ1M, γ〉 ∧ 〈Lq, φM, ω〉

– h3 =
∨

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α11) If φ = A[φ1U
gφ2], then,

〈Lp, φM, γ〉 → 〈Lp, φ2M, γ〉 ∨
∧

〈p,γ〉
t
−→〈q,ω〉∈∆

(〈Lp, φ1M, γ〉 ∧ 〈Lq, φM, ω〉) ∈ ∆′

(α12) If φ = A[φ1U
aφ2], then, 〈Lp, φM, γ〉 → 〈Lp, φ2M, γ〉∨ (h1 ∧h2∧h3) ∈ ∆′, where

– h1 =
∧

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈Lp, φ1M, γ〉 ∧ 〈q, γ1Lγ2, φM〉

– h2 =
∧

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lp, φ1M, γ〉 ∧ 〈Lq, φM, ω〉

– h3 =
∧

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α13) If φ = E[φ1R
gφ2], then, we add to ∆′ the rule:

〈Lp, φM, γ〉 → (〈Lp, φ2M, γ〉∧〈Lp, φ1M, γ〉)∨(
∨

〈p,γ〉
t
−→〈q,ω〉∈∆

(〈Lp, φ2M, γ〉∧〈Lq, φM, ω〉)

(α14) If φ = A[φ1R
gφ2], then, we add to ∆′ the rule:

〈Lp, φM, γ〉 → (〈Lp, φ2M, γ〉∧〈Lp, φ1M, γ〉)∨(
∧

〈p,γ〉
t
−→〈q,ω〉∈∆

(〈Lp, φ2M, γ〉∧〈Lq, φM, ω〉)

(α15) If φ = E[φ1R
aφ2]: 〈Lp, φM, γ〉 → (〈Lp, φ2M, γ〉∧〈Lp, φ1M, γ〉)∨h1∨h2∨h3 ∈ ∆′,

where

– h1 =
∨

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈Lp, φ2M, γ〉 ∧ 〈q, γ1Lγ2, φM〉

– h2 =
∨

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lp, φ2M, γ〉 ∧ 〈Lq, φM, ω〉

– h3 =
∨

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α16) If φ = A[φ1R
aφ2], 〈Lp, φM, γ〉 → (〈Lp, φ2M, γ〉∧〈Lp, φ1M, γ〉)∨(h1∧h2∧h3) ∈ ∆′,

where

– h1 =
∧

〈p,γ〉
call
−−→〈q,γ1γ2〉∈∆

〈Lp, φ2M, γ〉 ∧ 〈q, γ1Lγ2, φM〉

– h2 =
∧

〈p,γ〉
int
−−→〈q,ω〉∈∆

〈Lp, φ2M, γ〉 ∧ 〈Lq, φM, ω〉

Branching Temporal Logic of Calls and Returns for Pushdown Systems 11

– h3 =
∧

〈p,γ〉
ret
−−→〈q,ǫ〉∈∆

〈p⊥, γ⊥〉

(α17) for every 〈p, γ〉
ret
−−→ 〈q, ǫ〉 ∈ ∆:

– 〈q, Lγ′′, φ1M〉 → 〈Lq, φ1M, γ
′′〉 ∈ ∆′ for every γ′′ ∈ Γ , φ1 ∈ Cl(ϕ)

(α18) 〈p⊥, γ⊥〉 → 〈p⊥, γ⊥〉 ∈ ∆′

Roughly speaking, the ABPDS BPϕ is a kind of product between P and the
BCARET formula ϕwhich ensures that BPϕ has an accepting run from 〈Lp, ϕM, ω〉
iff the configuration 〈p, ω〉 satisfies ϕ. The form of the control locations of BPϕ

is Lp, φM where φ ∈ Cl(ϕ). Let us explain the intuition behind our construction:

– If φ = e ∈ AP , then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff p ∈ f(e). In other

words, BPϕ should have an accepting run from 〈Lp, eM, ω〉 iff p ∈ f(e). This is
ensured by the transition rules in (α1) which add a loop at 〈Lp, eM, ω〉 where
p ∈ f(e) and the fact that Lp, eM ∈ F .

– If φ = ¬e (e ∈ AP), then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff p /∈ f(e). In other

words, BPϕ should have an accepting run from 〈Lp,¬eM, ω〉 iff p /∈ f(e). This
is ensured by the transition rules in (α2) which add a loop at 〈Lp,¬eM, ω〉
where p /∈ f(e) and the fact that Lp,¬eM ∈ F .

– If φ = φ1 ∧ φ2, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff (〈p, ω〉 �λf

φ1 and
〈p, ω〉 �λf

φ2). This is ensured by the transition rules in (α3) stating that
BPϕ has an accepting run from 〈Lp, φ1 ∧ φ2M, ω〉 iff BPϕ has an accepting
run from both 〈Lp, φ1M, ω〉 and 〈Lp, φ2M, ω〉. (α4) is similar to (α3).

– If φ = E[φ1U
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff 〈p, ω〉 �λf
φ2 or

(〈p, ω〉 �λf
φ1 and there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t.

〈p′, ω′〉 �λf
φ). This is ensured by the transition rules in (α9) stating that

BPϕ has an accepting run from 〈Lp,E[φ1U
gφ2]M, ω〉 iff BPϕ has an accepting

run from 〈Lp, φ2M, ω〉 or (BPϕ has an accepting run from both 〈Lp, φ1M, ω〉 and
〈Lp′, φM, ω′〉 where 〈p′, ω′〉 is an immediate successor of 〈p, ω〉). (α11) is similar
to (α9).

– If φ = E[φ1R
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff (〈p, ω〉 �λf
φ2

and 〈p, ω〉 �λf
φ1) or (〈p, ω〉 �λf

φ2 and there exists an immediate successor
〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �λf

φ). This is ensured by the transition rules
in (α13) stating that BPϕ has an accepting run from 〈Lp,E[φ1R

gφ2]M, ω〉 iff
BPϕ has an accepting run from both 〈Lp, φ2M, ω〉 and 〈Lp, φ1M, ω〉; or BPϕ has
an accepting run from both 〈Lp, φ2M, ω〉 and Lp′, φM, ω′〉 where 〈p′, ω′〉 is an
immediate successor of 〈p, ω〉. In addition, forRg formulas, the stop condition
is not required, i.e, for a formula φ1R

gφ2 that is applied to a specific run,
we don’t require that φ1 must eventually hold. To ensure that the runs on
which φ2 always holds are accepted, we add Lp, φM to the Büchi accepting
condition F (via the subset F3 of F). (α14) is similar to (α13).

– If φ = EXgφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff there exists an

immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �λf
φ1. This is ensured by

the transition rules in (α5) stating that BPϕ has an accepting run from
〈Lp,EXgφ1M, ω〉 iff there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t.
BPϕ has an accepting run from 〈Lp′, φ1M, ω

′〉. (α6) is similar to (α5).

12 Huu-Vu Nguyen1, Tayssir Touili2

call

EXaφ1

ret

return-point

Lγ′′, φ1Mencoded & passed down

〈p, ω〉

〈p′, ω′〉 〈pk−1, ωk−1〉

〈pk, ωk〉

Fig. 2: 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement

– If φ = EXaφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff there exists an

abstract-successor 〈pk, ωk〉 of 〈p, ω〉 s.t. 〈pk, ωk〉 �λf
φ1 (A1) . Let π ∈

Traces(〈p, ω〉) be a run starting from 〈p, ω〉 on which 〈pk, ωk〉 is the abstract-
successor of 〈p, ω〉. Over π, let 〈p′, ω′〉 be the immediate successor of 〈p, ω〉.
In what follows, we explain how we can ensure (A1).

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 6= ⊥ of 〈p, ω〉,
〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈Lpk, φ1M, ωk〉. There are two possibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. Let us consider
Figure 2 to explain this case. 〈Lp, φM, ω〉 =⇒BPϕ

〈Lpk, φ1M, ωk〉 is ensured
by rules corresponding to h1 in (α7), the rules in ∆ ⊆ ∆′ and the rules
in (α17) as follows: rules corresponding to h1 in (α7) allow to record φ1

in the return point of the call, rules in ∆ ⊆ ∆′ allow to mimic the run
of the PDS P and rules in (α17) allow to extract and put back φ1 when
the return-point is reached. In what follows, we show in more details

how this works: Let 〈p, γ〉
call
−−→ 〈p′, γ′γ′′〉 be the rule associated with the

transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then we have ω = γω′′ and ω′ = γ′γ′′ω′′.
Let 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 be the transition that corresponds to the

ret statement of this call on π. Let then 〈pk−1, β〉
ret
−−→ 〈pk, ǫ〉 ∈ ∆ be

the corresponding return rule. Then, we have necessarily ωk−1 = βγ′′ω′′,
since as explained in Section 2, γ′′ is the return address of the call. After
applying this rule, ωk = γ′′ω′′. In other words, γ′′ will be the topmost
stack symbol at the corresponding return point of the call. So, in order
to ensure that 〈Lp, φM, ω〉 =⇒BPϕ

〈Lpk, φ1M, ωk〉, we proceed as follows:

At the call 〈p, γ〉
call
−−→ 〈p′, γ′γ′′〉, we encode the formula φ1 into γ′′ by

the rule corresponding to h1 in (α7) stating that 〈Lp,EXaφ1M, γ〉 −→
〈p′, γ′Lγ′′, φ1M〉 ∈ ∆′. This allows to record φ1 in the corresponding return
point of the stack. After that, the rules in ∆ ⊆ ∆′ allow BPϕ to mimic
the run π of P from 〈p′, ω′〉 till the corresponding return-point of this
call, where Lγ′′, φ1M is the topmost stack symbol. More specifically, the

following sequence of P : 〈p′, γ′γ′′ω′′〉
∗
=⇒P 〈pk−1, βγ

′′ω′′〉
∗
=⇒P 〈pk, γ

′′ω′′〉
will be mimicked by the following sequence of BPϕ: 〈Lp

′, γ′Lγ′′, φ1Mω
′′〉

=⇒BPϕ
〈pk−1, βLγ′′, φ1Mω

′′〉 =⇒BPϕ
〈pk, Lγ

′′, φ1Mω
′′〉 using the rules of ∆.

At the return-point, we extract φ1 from the stack and encode it into pk

Branching Temporal Logic of Calls and Returns for Pushdown Systems 13

by adding the transition rules in (α17) 〈pk, Lγ
′′, φ1M〉 → 〈Lpk, φ1M, γ

′′〉.
Therefore, we obtain that 〈Lp, φM, ω〉 =⇒BPϕ

〈Lpk, φ1M, ωk〉. The property
holds for this case.

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the ab-
stract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we
get that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules corresponding to
h2 in (α7), we get that 〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈Lp′, φ1M, ω
′〉. Therefore,

〈Lp,EXaφ1M, ω〉 =⇒BPϕ
〈Lpk, φ1M, ωk〉. The property holds for this case.

2. Now, let us consider the case where 〈pk, ωk〉, the abstract successor of
〈p, ω〉, is ⊥. This case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a re-
turn statement. Then, one abstract successor of 〈p, ω〉 is ⊥. Note that ⊥
does not satisfy any formula, i.e., ⊥ does not satisfy φ1. Therefore, from
〈Lp,EXaφ1M, ω〉, we need to ensure that the path of BPϕ reflecting the pos-
sibility in (A1) that 〈pk, ωk〉 �λf

φ1 is not accepted. To do this, we exploit
additional trap configurations. We use p⊥ and γ⊥ as trap control location and
trap stack symbol to obtain these trap configurations. To be more specific, let

〈p, γ〉
ret
−−→ 〈p′, ǫ〉 be the rule associated with the transition 〈p, ω〉 =⇒P 〈p′, ω′〉,

then we have ω = γω′′ and ω′ = ω′′. We add the transition rule correspond-
ing to h3 in (α7) to allow 〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω
′′〉. Since a run

of BPϕ includes only infinite paths, we equip these trap configurations with
self-loops by the transition rules in (α18), i.e., 〈p⊥, γ⊥ω

′′〉 =⇒BPϕ
〈p⊥, γ⊥ω

′′〉.
As a result, we obtain a corresponding path in BPϕ: 〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω
′′〉 =⇒BPϕ

〈p⊥, γ⊥ω
′′〉. Note that this path is not accepted by BPϕ

because p⊥ /∈ F .

In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 6= ⊥,
then, 〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈Lpk, φ1M, ωk〉; otherwise 〈Lp,EXaφ1M, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω
′′〉 =⇒BPϕ

〈p⊥, γ⊥ω
′′〉 which is not accepted by BPϕ. Therefore, (A1)

is ensured by the transition rules in (α7) stating that BPϕ has an accepting
run from 〈Lp,EXaφ1M, ω〉 iff there exists an abstract successor 〈pk, ωk〉 of
〈p, ω〉 s.t. BPϕ has an accepting run from 〈Lpk, φ1M, ωk〉.

– If φ = AXaφ1: this case is ensured by the transition rules in (α8) together
with (α17) and ∆ ⊆ ∆′. The intuition of (α8) is similar to that of (α7).

– If φ = E[φ1U
aφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff 〈p, ω〉 �λf
φ2 or

(〈p, ω〉 �λf
φ1 and there exists an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t.

〈pk, ωk〉 �λf
φ) (A2) . Let π ∈ Traces(〈p, ω〉) be a run starting from 〈p, ω〉

on which 〈pk, ωk〉 is the abstract-successor of 〈p, ω〉. Over π, let 〈p′, ω′〉 be
the immediate successor of 〈p, ω〉.

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 6= ⊥ of 〈p, ω〉,
〈Lp, φM, ω〉 =⇒BPϕ

{〈Lp, φ1M, ω〉, 〈Lpk, φM, ωk〉}. There are two possibilities:

• If 〈p, ω〉=⇒P 〈p′, ω′〉 corresponds to a call statement. From the rules corre-
sponding to h1 in (α10), we get that 〈Lp, φM, ω〉 =⇒BPϕ

{〈Lp, φ1M, ω〉, 〈p
′, ω′〉}

where 〈p′, ω′〉 is the immediate successor of 〈p, ω〉. Thus, to ensure that
〈Lp, φM, ω〉 =⇒BPϕ

{〈Lp, φ1M, ω〉, 〈Lpk, φM, ωk〉}, we only need to ensure that
〈p′, ω′〉 =⇒BPϕ

〈Lpk, φM, ωk〉. As for the case φ = EXaφ1, 〈p
′, ω′〉 =⇒BPϕ

〈Lpk, φM, ωk〉 is ensured by the rules in ∆ ⊆ ∆′ and the rules in (α17):

14 Huu-Vu Nguyen1, Tayssir Touili2

rules in ∆ ⊆ ∆′ allow to mimic the run of the PDS P before the return
and rules in (α17) allow to extract and put back φ1 when the return-point
is reached.

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the ab-
stract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we get
that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules corresponding to h2 in
(α10), we get that 〈Lp,E[φ1U

aφ2]M, ω〉 =⇒BPϕ
{〈Lp, φ1M, ω〉, 〈Lp

′, φM, ω′〉}.
Therefore, 〈Lp,E[φ1U

aφ2]M, ω〉 =⇒BPϕ
{〈Lp, φ1M, ω〉, 〈Lpk, φM, ωk〉}. In other

words, BPϕ has an accepting run from both 〈Lp, φ1M, ω〉 and 〈Lpk, φM, ωk〉
where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉. The property holds for
this case.

2. Now, let us consider the case where 〈pk, ωk〉 = ⊥. As explained previously,
this case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return statement.
Then, the abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy any
formula, i.e., ⊥ does not satisfy φ. Therefore, from 〈Lp,E[φ1U

aφ2]M, ω〉, we
need to ensure that the path reflecting the possibility in (A2) that (〈p, ω〉 �λf

φ1 and 〈pk, ωk〉 �λf
φ) is not accepted by BPϕ. This is ensured as for the

case φ = EXaφ1 by the transition rules corresponding to h3 in (α10).

In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 6= ⊥,
then, 〈Lp,E[φ1U

aφ2]M, ω〉 =⇒BPϕ
{〈Lp, φ1M, ω〉, 〈Lpk, E[φ1U

aφ2]M, ωk〉}; other-
wise 〈Lp,E[φ1U

aφ2]M, ω〉 =⇒BPϕ
〈p⊥, γ⊥ω

′′〉 =⇒BPϕ
〈p⊥, γ⊥ω

′′〉 which is not
accepted by BPϕ. Therefore, (A2) is ensured by the transition rules in (α10)
stating that BPϕ has an accepting run from 〈Lp,E[φ1U

aφ2]M, ω〉 iff BPϕ has
an accepting run from 〈Lp, φ2M, ω〉; or BPϕ has an accepting run from both
〈Lp, φ1M, ω〉 and 〈Lpk, E[φ1U

aφ2]M, ωk〉 where 〈pk, ωk〉 is an abstract successor
of 〈p, ω〉.

– The intuition behind the rules corresponding to the cases φ = A[φ1U
aφ2],

φ = E[φ1R
aφ2], φ = A[φ1R

aφ2] are similar to the previous cases.

The Büchi accepting condition. The elements of the Büchi accepting condi-
tion set F of BPϕ ensure the liveness requirements of until-formulas on infinite
global paths, infinite abstract paths as well as on finite abstract paths.

– With regards to infinite global paths, the fact that the liveness require-
ment φ2 in E[φ1U

gφ2] is eventually satisfied in P is ensured by the fact
that Lp,E[φ1U

gφ2]M doesn’t belong to F . Note that 〈p, ω〉 �λf
E[φ1U

gφ2]
iff 〈p, ω〉 �λf

φ2 or there exists a global-successor 〈p′, ω′〉 s.t. (〈p, ω〉 �λf
φ1

and 〈p′, ω′〉 �λf
E[φ1U

gφ2]). Because φ2 should hold eventually, to avoid
the case where a run of BPϕ always carries E[φ1U

gφ2] and never reaches φ2,
we don’t set Lp,E[φ1U

gφ2]M as an element of the Büchi accepting condition
set. This guarantees that the accepting run of BPϕ must visit some control
locations in Lp, φ2M which ensures that φ2 will eventually hold. The liveness
requirements of A[φ1U

gφ2] are ensured as for the case of E[φ1U
gφ2].

– With regards to infinite abstract paths, the fact that the liveness requirement
φ2 in E[φ1U

aφ2] is eventually satisfied in P is ensured by the fact that

Branching Temporal Logic of Calls and Returns for Pushdown Systems 15

Lp,E[φ1U
aφ2]M doesn’t belong to F . The intuition behind this case is similar

to the intuition of E[φ1U
gφ2]. The liveness requirements of A[φ1U

aφ2] are
ensured as for the case of E[φ1U

aφ2].

call

EXaφ1

proc
ret

return-point

Lγ′′, φ1Mencoded & passed down

〈p0, ω0〉 〈pi, ωi〉

〈pi+1, ωi+1〉

〈pk−2, ωk−2〉

〈pk−1, ωk−1〉

〈pk, ωk〉

Fig. 3: 〈pi, ωi〉 finally reach its corresponding return-point

call

EXaφ1

proc

Lγ′′, φ1Mencoded & passed down

〈p0, ω0〉 〈pi, ωi〉

〈pi+1, ωi+1〉

〈pi−1, ωi−1〉

Fig. 4: 〈pi, ωi〉 never reach its corresponding return-point

– With regards to finite abstract paths 〈p0, ω0〉〈p1, ω1〉...〈pm, ωm〉 where 〈pm, ωm〉
=⇒P 〈pm+1, ωm+1〉 corresponds to a return statement, the fact that the live-
ness requirement φ2 in E[φ1U

gφ2] is eventually satisfied in P is ensured
by the fact that p⊥ doesn’t belong to F . Look at Figure 3 for an illustra-
tion. In this figure, for every i + 1 ≤ u ≤ k − 1, the abstract path start-
ing from 〈pu, ωu〉 is finite because the abstract successor of 〈pk−1, ωk−1〉 is
⊥ since 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 corresponds to a return statement. Sup-
pose that we want to check whether 〈pk−1, ωk−1〉 �λf

E[φ1U
aφ2], then, we

get that 〈pk−1, ωk−1〉 �λf
E[φ1U

aφ2] iff 〈pk−1, ωk−1〉 �λf
φ2 or there ex-

ists an abstract-successor 〈p′, ω′〉 s.t. (〈pk−1, ωk−1〉 �λf
φ1 and 〈p′, ω′〉 �λf

E[φ1U
aφ2]). Since φ2 should eventually hold, φ2 should hold at 〈pk−1, ωk−1〉

because the abstract-successor of 〈pk−1, ωk−1〉 on this abstract-path is ⊥.
To ensure this, we move 〈pk−1, ωk−1〉 to the trap configuration 〈p⊥, γ⊥〉
and add a loop here by the transition rule (α18). In addition, we don’t set
p⊥ as an element of the Büchi accepting condition set, which means that
〈pk−1, ωk−1〉 �λf

E[φ1U
aφ2] iff 〈pk−1, ωk−1〉 �λf

φ2 by the transition rules
in (α10). This ensures the liveness requirement φ2 in E[φ1U

aφ2] is eventually
satisfied.

16 Huu-Vu Nguyen1, Tayssir Touili2

– With regards to finite abstract paths 〈p0, ω0〉〈p1, ω1〉...〈pm, ωm〉 where 〈pm, ωm〉
=⇒P 〈pm+1, ωm+1〉 corresponds to a call statement but this call never reaches
its corresponding return-point, the fact that the liveness requirement φ2 in
E[φ1U

gφ2] is eventually satisfied in P is ensured by the fact that p /∈ F .
Look at Figure 4 where the procedure proc never terminates. In this figure,
for every 0 ≤ u ≤ i, the abstract path starting from 〈pu, ωu〉 is finite. Sup-
pose that we want to check whether 〈pi, ωi〉 �λf

E[φ1U
aφ2], then, we get

that 〈pi, ωi〉 �λf
E[φ1U

aφ2] iff 〈pi, ωi〉 �λf
φ2 or there exists an abstract-

successor 〈p′, ω′〉 s.t. (〈pi, ωi〉 �λf
φ1 and 〈p′, ω′〉 �λf

E[φ1U
aφ2]). Since

φ2 should eventually hold, φ2 should hold at 〈pi, ωi〉 because the abstract-
successor of 〈pi, ωi〉 on this abstract-path is⊥. As explained above, at 〈pi, ωi〉,
we will encode the formula E[φ1U

aφ2] into the stack and mimic the run of
P on BPϕ until it reaches the corresponding return-point of the call. In
other words, if the call is never reached, the run of BPϕ will infinitely visit
the control locations of P . To ensure this path unaccepted, we don’t set
p ∈ P as an element of the Büchi accepting condition set, which means that
〈pi, ωi〉 �λf

E[φ1U
aφ2] iff 〈pi, ωi〉 �λf

φ2 by the transition rules in (α10).
This ensures the liveness requirement φ2 in E[φ1U

aφ2] is eventually satisfied.

Thus, we can show that:

Theorem 2. Given a PDS P = (P, Γ,∆, ♯), a set of atomic propositions AP , a
labelling function f : AP → 2P and a BCARET formula ϕ, we can compute an
ABPDS BPϕ such that for every configuration 〈p, ω〉, 〈p, ω〉 �λf

ϕ iff BPϕ has
an accepting run from the configuration 〈Lp, ϕM, ω〉

The number of control locations of BPϕ is at most O(|P ||ϕ|), the number of
stack symbols is at most O(|Γ ||ϕ|) and the number of transitions is at most
O(|P ||Γ ||∆||ϕ|). Therefore, we get from Theorems 1 and 2:

Theorem 3. Given a PDS P = (P, Γ,∆, ♯), a set of atomic propositions AP ,
a labelling function f : AP → 2P and a BCARET formula ϕ, for every config-
uration 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 satisfies ϕ can be solved in time
O(|P |2|ϕ|3.|Γ |(|P ||Γ ||∆|.|ϕ|.25|P ||ϕ| + 2|P ||ϕ|.|ω|))

6 BCARET model-checking for PDSs with regular

valuations

Up to now, we have considered the standard model-checking problem for BCARET,
where the validity of an atomic proposition depends only on the control state,
not on the stack. In this section, we go further and consider model-checking with
regular valuations where the set of configurations in which an atomic proposition
holds is a regular set of configurations (see Section 3 for a formal definition of
regular valuations).

Branching Temporal Logic of Calls and Returns for Pushdown Systems 17

6.1 From BCARET model checking of PDSs with regular valuations
to the membership problem in ABPDSs

Given a pushdown system P = (P, Γ,∆, ♯), and a set of atomic propositions AP ,
let ϕ be a BCARET formula over AP , λ : AP → 2P×Γ∗

be a labelling function
s.t. for every e ∈ AP , λ(e) is a regular set of configurations. Given a configuration
c0, we propose in this section an algorithm to check whether c0 �λ ϕ. Intuitively,
we compute an ABPDS BP ′

ϕ s.t. BP′
ϕ recognizes a configuration c of P iff c �λ ϕ.

Then, to check if c0 satisfies ϕ, we will check whether BP ′
ϕ recognizes c0.

For every e ∈ AP , since λ(e) is a regular set of configurations, let Me =
(Qe, Γ, δe, Ie, Fe) be a multi-automaton s.t. L(Me) = λ(e),M¬e = (Q¬e, Γ, δ¬e, I¬e, F¬e)
be a multi-automaton s.t. L(M¬e) = P ×Γ ∗ \λ(e), which means M¬e will recog-
nize the complement of λ(e) that is the set of configurations in which e doesn’t
hold. Note that for every e ∈ AP , the initial states of Me and M¬e are the con-
trol locations p ∈ P . Thus, to distinguish between the initial states of these two
automata, we will denote the initial state corresponding to the control location
p in Me (resp. M¬e) by pe (resp. p¬e). Let AP

+(ϕ) = {e ∈ AP | e ∈ Cl(ϕ)} and
AP−(ϕ) = {e ∈ AP | ¬e ∈ Cl(ϕ)}.

Let BP ′
ϕ = (P ′′, Γ ′′, ∆′′, F ′) be the ABPDS defined as follows:

– P ′′ = P ∪ P × Cl(ϕ) ∪ {p⊥} ∪
⋃

e∈AP+(ϕ)Qe ∪
⋃

e∈AP−(ϕ)Q¬e

– Γ ′′ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ⊥}
– F ′ = F1 ∪ F2 ∪ F3 where

• F1 =
⋃

e∈AP+(ϕ) Fe

• F2 =
⋃

e∈AP−(ϕ) F¬e

• F3 = {P ×ClR(ϕ)} where ClR(ϕ) is the set of formulas of Cl(ϕ) in the
form E[ϕ1R

bϕ2] or A[ϕ1R
bϕ2] (b ∈ {g, a})

The transition relation ∆′′ is the smallest set of transition rules defined as
follows: ∆ ⊆ ∆′′, ∆′

0 ⊆ ∆′′ where ∆′
0 is the transitions of ∆′ that are created by

the rules from (α3) to (α18) and such that:

(β1) for every p ∈ P , e ∈ AP+(ϕ), γ ∈ Γ : 〈Lp, eM, γ〉 → 〈pe, γ〉 ∈ ∆′′

(β2) for every p ∈ P , e ∈ AP−(ϕ), γ ∈ Γ : 〈Lp,¬eM, γ〉 → 〈p¬e, γ〉 ∈ ∆′′

(β3) for very (q1, γ, q2) ∈ (
⋃

e∈AP+(ϕ) δe)∪(
⋃

e∈AP−(ϕ) δ¬e): 〈q1, γ〉 → 〈q2, ǫ〉 ∈ ∆′′

(β4) for very q ∈ (
⋃

e∈AP+(ϕ) Fe) ∪ (
⋃

e∈AP−(ϕ) F¬e): 〈q, ♯〉 → 〈q, ♯〉 ∈ ∆′′

Intuitively, we compute the ABPDS BP ′
ϕ such that BP ′

ϕ has an accepting
run from 〈Lp, φM, ω〉 iff the configuration 〈p, ω〉 satisfies φ according to the regular
labellings Me for every e ∈ AP . The only difference with the previous case
of standard valuations, where an atomic proposition holds at a configuration
depends only on the control location of that configuration, not on its stack, comes
from the interpretation of the atomic proposition e. This is why ∆′′ contains
∆ and ∆′

0 (which are the transitions of BPϕ that don’t consider the atomic
propositions). Here the rules (β1) − (β4) deal with the cases e, ¬e (e ∈ AP).
Given p ∈ P , φ = e ∈ AP , ω ∈ Γ ∗, we get that the ABPDS BP ′

ϕ should accept

18 Huu-Vu Nguyen1, Tayssir Touili2

〈Lp, eM, ω〉 iff 〈p, ω〉 ∈ L(Me). To check whether 〈p, ω〉 ∈ L(Me), we let BP ′
ϕ go

to state pe, the initial state corresponding to p in Me by adding rules in (β1);
and then, from this state, we will check whether ω is accepted by Me. This is
ensured by the transition rules in (β3) and (β4). (β3) lets BP ′

ϕ mimic a run

of Me on ω, i.e., if BP ′
ϕ is in a state q1 with γ on the top of the stack, and

if (q1, γ, q2) is a transition rule in Me, then, BP
′
ϕ will move to state q2 and

pop γ from its stack. Note that popping γ allows us to check the rest of the
word. In Me, a configuration is accepted if the run with the word ω reaches the
final state in Fe; i.e., if BP

′
ϕ reaches a state q ∈ Fe with an empty stack, i.e.,

with a stack containing the bottom stack symbol ♯. Thus, we add Fe as a set
of accepting control locations in BP ′

ϕ. Since BP ′
ϕ only recognizes infinite paths,

(β4) adds a loop on every configuration 〈q, ♯〉 where q ∈ Fe. The intuition behind
the transition rules in (β2) is similar to that of (β1). They correspond to the
case where φ = ¬e.

Theorem 4. Given a PDS P = (P, Γ,∆, ♯), a set of atomic propositions AP , a
regular labelling function λ : AP → 2P×Γ∗

and a BCARET formula ϕ, we can
compute an ABPDS BP ′

ϕ such that for every configuration 〈p, ω〉, 〈p, ω〉 �λ ϕ

iff BP ′
ϕ has an accepting run from the configuration 〈Lp, ϕM, ω〉

The number of control locations of BP ′
ϕ is at most O(|P ||ϕ| + k) where k =

∑

e∈AP+(ϕ) |Qe| +
∑

e∈AP−(ϕ) |Q¬e|, the number of stack symbols is at most

O(|Γ ||ϕ|) and the number of transitions is at most O(|P ||Γ ||∆||ϕ| + d) where
d =

∑

e∈AP+(ϕ) |δe|+
∑

e∈AP−(ϕ) |δ¬e|. Therefore, we get from Theorems 1 and
4:

Theorem 5. Given a PDS P = (P, Γ,∆, ♯), a set of atomic propositions AP , a
regular labelling function λ : AP → 2P×Γ∗

and a BCARET formula ϕ, for every
configuration 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 satisfies ϕ can be solved in
time O((|P ||ϕ| + k)2.|Γ ||ϕ|((|P ||Γ ||∆||ϕ| + d).25(|P ||ϕ|+k) + 2|P ||ϕ|+k.|ω|))

7 Conclusion

In this paper, we introduce the Branching temporal logic of CAlls and RETurns
BCARET and show how it can be used to describe malicious behaviors that
CARET and other specification formalisms cannot. We present an algorithm for
”standard” BCARET model checking for PDSs where whether a configuration
of a PDS satisfies an atomic proposition or not depends only on the control loca-
tion of that configuration. Moreover, we consider BCARET model-checking for
PDSs with regular valuations where the set of configurations on which an atomic
proposition holds is a regular language. Our approach is based on reducing these
problems to the emptiness problem of Alternating Büchi Pushdown Systems.

Branching Temporal Logic of Calls and Returns for Pushdown Systems 19

References

1. Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas W.
Reps, and Mihalis Yannakakis. Analysis of recursive state machines. ACM Trans.

Program. Lang. Syst., 2005.
2. Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. A fixpoint calculus for local

and global program flows. In POPL 2006.
3. Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Languages of nested trees.

In CAV 2006.
4. Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Software model checking

using languages of nested trees. ACM Trans. Program. Lang. Syst., 2011.
5. Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested

calls and returns. In TACAS 2004.
6. Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of push-

down automata: Application to model-checking. In CONCUR ’97.
7. Laura Bozzelli. Complexity results on branching-time pushdown model checking.

In VMCAI 2006.
8. Olaf Burkart and Bernhard Steffen. Model checking the full modal mu-calculus for

infinite sequential processes. In ICALP’97.
9. Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient

algorithms for model checking pushdown systems. In CAV 2000.
10. Javier Esparza, Antońın Kucera, and Stefan Schwoon. Model checking LTL with

regular valuations for pushdown systems. Inf. Comput., 2003.
11. Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic approach to

model checking pushdown systems. Electr. Notes Theor. Comput. Sci., 1997.
12. Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. An automata-theoretic

approach to infinite-state systems. In Time for Verification, Essays in Memory of

Amir Pnueli 2010.
13. Huu-VuNguyen and Tayssir Touili. CARETmodel checking for pushdown systems.

In SAC 2017.
14. Stefan Schwoon. Model-Checking Pushdown Systems. Dissertation, Technische

Universität München, München, 2002.
15. Fu Song and Tayssir Touili. Efficient CTL model-checking for pushdown systems.

In CONCUR 2011.
16. Fu Song and Tayssir Touili. Efficient malware detection using model-checking. In

FM 2012.
17. Fu Song and Tayssir Touili. LTL model-checking for malware detection. In TACAS

2013.
18. Igor Walukiewicz. Pushdown processes: Games and model checking. In CAV 1996.

	Branching Temporal Logic of Calls and Returns for Pushdown Systems
	1 Introduction
	2 Pushdown Systems: A model for sequential programs
	2.1 Global and abstract successors
	2.2 Multi Automata

	3 Branching Temporal Logic of Calls and Returns - BCARET
	4 Application
	5 BCARET Model-Checking for Pushdown Systems
	5.1 Alternating Büchi Pushdown Systems (ABPDSs).
	5.2 From BCARET model checking of PDSs to the membership problem in ABPDSs

	6 BCARET model-checking for PDSs with regular valuations
	6.1 From BCARET model checking of PDSs with regular valuations to the membership problem in ABPDSs

	7 Conclusion

