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Abstract. We present an improved constant-round secure two-party
protocol for integer comparison functionality, which is one of the most
fundamental building blocks in secure computation.

Our protocol is in the so-called client-server model, which is utilized
in real-world MPC products such as Sharemind, where any number of
clients can create shares of their input and distribute to the servers who
then jointly compute over the shares and return the shares of result to
the client. In the client-aided client-server model, as mentioned briefly by
Mohassel and Zhang (S&P’17), a client further generates and distributes
some necessary correlated randomness to servers. Such correlated ran-
domness admits efficient protocols since otherwise servers have to jointly
generate randomness by themselves, which can be inefficient.

In this paper, we improve the state-of-the-art constant-round com-
parison protocols by Damgard et al. (TCC’06) and Nishide and Ohta
(PKC’07) in the client-aided model. Our techniques include identifying
correlated randomness in these comparison protocols. Along the way, we
also use tree-based techniques for a building block, which deviate from
the above two works. Our proposed protocol requires only 5 communica-
tion rounds, regardless of the bit length of inputs. This is at least 5 times
fewer rounds than existing protocols. We implement our secure compar-
ison protocol in C++. Our experimental results show that this low-round
complexity benefits in low-latency networks such as WAN.

Keywords: Multi-party computation * Client-server model
Client-aided method - Less-than comparison - Constant rounds
GMW secret sharing

1 Introduction

Multi-party computation (MPC) is a powerful cryptographic tool often used
to achieve privacy-preserving applications such as secure data mining. In gen-
eral, MPC enables a set of N parties to jointly compute a function, say f, of
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their private inputs. More precisely, the N parties, each holding private input z;
(for i =1,...,N), are able to compute the output F = f(x1,...,zy) without
having to reveal their private inputs z;. The security of MPC guarantees that a
party ¢ will learn nothing about the others’ inputs, namely, x; for all j not equal
to i, except the information that can be derived from the output F and his/her
own input z;.

In this paper, we focus on secret-sharing based MPC [13], as opposed to
other approaches such as garbled-circuit [24] or (fully) homomorphic encryp-
tion. Comparing among these, secret-sharing based MPC normally admits low
computational cost and low bandwidth, while it generally requires more round
communications. Constructing round-efficient protocols is thus one of the main
goals for secret-sharing based MPC.

Secure Comparison Protocols. In this paper, we study integer comparison
functionality, which has been considered one of the most fundamental building
blocks for MPC since a seminal paper by Yao [24] introduced the Millionaires’
problem, which itself is the starting point for researches on MPC. It has many
applications that include auctions, machine learning, data clustering, statistical
analysis, applications involving sorting, finding minimum/maximum, to name
just a few. Secure comparison protocols have many variants (cf. [2]); in order
to be able to flexibly use them as building blocks in larger applications, it is
imperative to consider the variant with shared inputs and shared output. More
precisely, the inputs to the protocol are shares of x and shares of y, while the
output comprises shares of bit b which indicates the result of comparing z < y
(note that it is sufficient w.l.o.g. to consider less-than functionality). Throughout
the paper, we consider this variant unless stated otherwise.

Despite being such a central functionality, inefficiency of comparison pro-
tocols is often a bottleneck for the applications listed above. Such inefficiency
inherently stems from the fact that on one hand, applications are arithmetic
computations; while, on the other hand, computing integer comparison is a bit
string operation by nature, and protocols that compute such bit decompositions
often require logn rounds, where n is the bit length of inputs.

A breakthrough result was proposed by Damgérd et al. [7], who came up
with the first secret-sharing based comparison protocol that admits constant
rounds. Their protocol can be based on any linear secret-sharing based MPC that
has multiplication protocol, and require 44 rounds of multiplication protocols
(as counted in [15]). When including overall communication such as sharing or
revealing phases (see more discussion on this in Sect.4), in this paper, it can
be counted to 79 overall rounds. Nishide and Ohta [15] proposed an improved
protocol that has 15 rounds of multiplication protocols, and as counted in this
paper, has 28 overall rounds. In this paper, we will improve these constants albeit
working in the client-aided client-server model.

MPC in the Client-Server Model. In pushing MPC towards real-world
usages, the setting of so-called client-server model for MPC has recently been
largely motivated not only by recent researches including Araki et al. [1] but also
by commercial-grade MPC products such as Sharemind system by Cybernetica.
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Table 1. Comparison of LessThan protocols in the number of rounds, total communi-
cation, and estimated total online execution time

Secure LessThan Round | Total communication™ Total online
(number of field elements) | time' (ms)

Damgard et al. [7] 79 176nlogn + 5688
80n loglogn + 70n

Nishide-Ohta [15] 28 96n + 120logn + 4 2016

Damgérd et al. 4+ Client-aided | 70 144nlogn + 5040
64nloglogn + 52n

Nishide-Ohta + Client-aided | 14 36n + 48logn + 7 1008

Ours 6 12n® + 25 432

Ours (round reduced) 5 12n? + 301 360

*For total communication of Damgérd et al. [7] and its client-aided version, only dom-
inant terms are shown here (for simplicity). More details can be found in Appendix B.
TTotal time is estimated in a WAN setting where the network delay is 72 ms.

In such a model, there are N servers and an unbounded number of clients, say t.
Each client provides his input x; by secret-sharing it to the N servers, who will
then jointly compute in secure manner over these input shares and return the
output f(z1,...,7;) to clients.® This setting is suitable in real-world business
innovation as the MPC engine run by servers can be thought of “as a service”. In
particular, each client only participates at the input phase and simply waits for
the output. A program for client can thus contain only a simple and lightweight
computation, namely, the secret sharing procedure, and hence makes it possible
to be easily employed (e.g., as a tiny script program in web browsers).

Client-Aided Client-Server Model. In the client-aided client-server model,
as mentioned briefly by Mohassel and Zhang [14], a client, who distributes shares
of its input to servers, further generates and distributes some necessary correlated
randomness to servers. Such correlated randomness will be used by the N servers
for running a protocol among them. This is for the purpose of better efficiency,
since otherwise servers would have to jointly generate randomness by themselves,
which can be inefficient. The only downside for this model is the restriction that
any server is assumed to not collude with the client who generates such correlated
randomness; doing so would break security. But this restriction seems reasonable
already in the client-server business model, as a server would normally have no
incentive to collude to a client.?

1 As a side note, this setting can be considered as (N + t)-party MPC, where the N
parties have no input.

2 This, however, depends on applications. Nevertheless, in most cases, a company (a
server) might have to be worried more about losing its credit if the fact that it
colludes with a client to obtain other client’s secret is somehow exposed.
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1.1 Owur Contribution

Our main contribution is an efficient secure comparison (LessThan) protocol in
the client-aided client-server model with two servers (and with an unbounded
number of clients). It improves upon the state-of-the-art secure comparison pro-
tocols that achieve a constant round complexity. We show a comparison for the
number of communication rounds in Table 1, which also shows the total commu-
nication and an estimated total time for executing a protocol in a WAN setting
(see below). The number of overall rounds for our protocol is 5, which is con-
siderably much lower than the previous schemes (at least 5 times fewer rounds
than Nishide-Ohta [15], which requires 28 overall rounds). We also implement
our secure comparison protocol in C++. Our experimental results show that this
low-round complexity benefits in low-latency networks such as WAN (also see
below).

Our Techniques. Our protocol is based loosely on the previous protocols of [15],
which is, in turn, based on [7]. Our techniques for reducing rounds consist of the
following strategies (described only in a high-level overview):

— We first note that [15] uses the LSB (least significant bit) protocol as a build-
ing block. While [7,15] can use any linear secret sharing with multiplication
protocol, we use a specific secret-sharing scheme, namely, the 2-out-of-2 shar-
ing scheme. Note that such a secret scheme is the base for the original MPC
by Goldreich et al. [13], which we denote the GMW scheme. This enables us to
construct the LSB protocol based on a comparison protocol with plain inputs
and shared output, called PlainLessThan protocol.

— We then construct a protocol for PlainLessThan by using a tree-based struc-
ture called dyadic range, similarly to [2]. This has two advantages. First, such
a structure admits parallel computations (hence, is suitable for constant-
round protocols). Second, each computation is multi-fan-in AND, which we
can construct a constant-round protocol.

— We finally construct a constant-round multi-fan-in AND protocol using the
protocol proposed also in [7]. This is the point where we utilize the client-
aided setting so that the correlated randomness generation phase is entirely
computed by a client. We identify the necessary correlated randomness by
removing redundancy in [7]. Our client-aided protocol is more sophisticated
than the one in [14], which considers correlated randomness for only a sim-
ple multiplication protocol (such randomness is called Beaver multiplication
triple [3] in the literature); ours is for the whole multi-fan-in AND protocol.

More details for intuition on our building blocks can be found in Sect. 3.

Better Total-Time Efficiency in WAN. While achieving less rounds, our
protocol requires larger asymptotic complexity in total communication: ours is
O(n?), versus O(nlogn) and O(n) in [7,15], resp., as shown in Table 1. However,
when considering concrete real-world parameters and large-delay networks like
WAN (Wide Area Network), this does not matter since the total time for trans-
mitting data of any amount up to its capacity will be roughly the same. More
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precisely, in WAN, we can set the transmission bandwidth to 9MB/s and the
network delay to 72 ms, as done in [14]. Hence, in one round, we can transmit any
amount of data up to 9 MB/s x 72 ms =648 KB, in roughly the same amount of
time (72 ms). For our protocol, when considering n = 32 bits, the total transmit-
ted data has about 12n? + 301 = 12589 field elements; each element has 32 bits,
hence the total data has only 402848 bits (50 KB), which is already less than
the capacity of 648 KB. Moreover, the local computation time would contribute
only negligible time compared to the network delay (see Sect.5). Therefore, the
total (online) time to run the protocol is indeed simply about the one-round
time (72ms) times the number of rounds, as shown in Table1l. We note also
that, thanks to the client-aided method, the offline time is kept small compared
to the online time (see Table 2). More details can also be found in Appendix B.

1.2 Related Work

Secure comparison protocols have been widely studied since Yao [24] introduced
the Millionaire’s protocol. Research on secure comparison protocols have a vast
literature, e.g., [4-9,11,15,21,22,24], and we would like to point the reader to
an excellent survey published relatively recently in 2015 by Veugen et al. [23] for
a detailed overview, while we briefly mention some more related ones here. As
Veugen et al. [23] pointed out, secret sharing based secure comparisons [6,11,15]
have an advantage in online phase in comparison with garbled circuit based
protocols and homomorphic encryption based protocols. Attrapadung et al. [2]
categorized various secure comparison protocols regarding their input/output
forms. Damgéard et al. [7] proposed a constant-round secure comparison scheme
and Nishide-Ohta [15] developed the idea to construct fewer rounds secure com-
parison protocol, on which our protocol is based. We note that, in this paper, we
count the round complexity in a strict sense: the communication rounds of reveal-
ing or sharing are also included (while, in most of previous papers, only those of
multiplication protocols are counted). See more in Sect. 4. This somewhat leads
to more round complexities than those in original papers. In subsequent works
to [15], some other optimizations have been introduced based on the assumption
that the compared values are restricted to be less than 25+ [16-18]. (To free up
this restriction, the number of rounds would increase.) Reistad [16] claims that
the online round complexity is 2; however, the actual round complexity (in our
strict counting) seems to be much greater since similar sub-protocols to those
in [15] are used. Their main advantage is, nevertheless, the total linear commu-
nication. While our focus is on reducing communication rounds to sufficiently
small constant, there exist also logarithmic-round secure comparison protocols
in literature (e.g., [10,20]); our sub-protocols in Sect.3 might be applicable to
reduce the communication rounds in these cases too.

2 Preliminaries and Settings

In this section, we introduce notation and terminology. The general notion for a
multi-party protocol to compute a function f and to privately compute a func-
tion f in the semi-honest model follows from the standard definition (e.g., [12]).
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As a basic terminology throughout the paper, we let p be an odd prime
and n be the bit length of p. We represent elements in the prime field F,, as

{0,...,p—1}.

Syntax for Secret Sharing. An N-out-of-N secret sharing scheme over F,
consists of two algorithms: Share and Reveal. Share takes as input z € F,, and
outputs ([z]1,...,[z]n) € F), where the bracket notation [z]; denotes the
share of the i-th party. We denote [z] = ([«]1,...,[z]~) as their shorthand.

Reveal takes as input [z], and outputs x.

Client-Server Model. We describe the setting for secret-sharing based MPC
in the client-server model (similarly to e.g., [1]) as follows. We assume that there
exists IV servers and an unbounded number of clients, say t. We assume that
there exists a secure channel between any client and any server, and among any
two servers (Note that a secure channel among clients are not needed).

Let S be an N-out-of-N secret sharing scheme over F,,. We say that a protocol
IT computes a function f : A* — B in the client-server model with a secret
sharing scheme S if I proceeds as follows.

1. In the first pass, each client j (for j € [1,¢]) creates shares of its input a; € A
as [a;] = ([a;l1,-..,[a;]ln) < Share(a;). It then distributes [a;]; to the
server i (for ¢ € [1, N]).

2. All the N servers jointly compute f over their shares. More precisely, in
this joint protocol, the input from the server i is ([a1];,- .., [a:]:). Let b =
f(a1,...,a¢). The output for the server ¢ in this joint protocol is the share
[b]:. We abuse the notation of f and write this protocol as

[o] < f(laa],- -, [a:])-

3. In the final pass, each server ¢ (for i € [1, N]) returns [b]; to all the clients.
Each client can recover b by Reveal([b]).

Note that such a protocol setting is a specific case of (N + t)-party protocols,
where N parties among these do not have input, and ¢ parties among these
participate only the first pass (for sending) and the final pass (for receiving).
Therefore, the security notion in the semi-honest model follows from the standard
notion of private computation (e.g., [12]).

Client-Aided Client-Server Model. The client-aided setting (similarly
o [14]) further specializes the above setting by allowing the following:

— A fixed client, w.l.0.g. say client number 1 (but could be any), will additionally
send an auxiliary input aux; to the server ¢ (for all ¢ € [1, N]). The distribution
of auxiliary inputs can be done offline or at the same time as the first pass in
the client-server model described above. We denote aux = (auxy, ..., auxy).

— In the joint computation for f, each server ¢ can input its auxiliary input
aux;. We write this protocol as [b] < f([a1],...,[at];aux), where we also
often omit explicitly writing aux when the context is clear.
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We assume that the client that generates auxiliary inputs is honest and does
not collude with any servers. As a remark, this setting can be considered as the
trusted initializer model [19] where the “trusted initializer” in our case is one of
the ¢ clients.

Our Setting: Two-Server GMW Scheme. In this paper, we consider two
servers, that is, N = 2. Hence, in particular, we only allow the adversary to
corrupt only one server. We use the standard 2-out-of-2 secret sharing scheme
defined by

— Share(z): randomly choose r € F,, and let [z], =7 and [z]2 =z — 7.
— Reveal([z]1, [%]2): output [z]1 + [x]s2.

We note that this is the secret sharing scheme used in the original MPC by
Goldreich, Micali, and Widgerson [13], hence we often call it the GMW-style two-
party secret sharing scheme. In this scheme, we have protocols for fundamental
operations: ADD(z,y) := x + y and MULT(x, y) := xy as follows:

— [2] < ADD([z], [y]) can be done locally by simply adding its own share on
z and on y.

— [w] < MULT([z], [y]) can be done in various ways. We will use the standard
method based on Beaver multiplication triples [3]. Such a triple consists of
aux; = (a1,by, c1) and auxg = (az, ba, ¢2) such that (a1 +a2)(b1+b2) = ¢1+co.
In particular, we can use the client-aided method to let a client generate and
distribute aux; and auxs to the two servers, respectively.

We abuse notations and write the ADD protocol simply as [z] « [z] + [y],
and MULT protocols simply as [w] < [z] - [y]. Note that multiplication with
constant ¢ can use the ADD protocol, and we write c[z].

3 Owur Secure Comparison Protocol

In this section, we present our protocol for computing the less-than comparison
functionality, LessThan. It consists of various sub-protocols, which might be of
independent interest in their own right, that we also present in this section.
These consist of the following.

— MULT™: multi-input multiplication functionality.

— AND*: multi-fan-in AND functionality.

— PlainEqual: equality test functionality with plain inputs.

— PlainLessThan: less-than comparison functionality with plain inputs.

— WrapAround: a functionality for testing if the addition of the two shares (in
the integers, without modulo p) is more than p or not (wrapping around p or
not).

— LSB: least-significant-bit functionality.

— HalfTest: a functionality for testing if a (shared) input is less than p/2 or not.



402 H. Morita et al.

We remark that all of these functionality except two have shared inputs and
shared output. (Definitions for each functionality will be provided below.) The
only two exceptions are PlainEqual and PlainLessThan, where inputs consist of
plain values that are private to each party.

Outline of Our Protocol for LessThan. We will use the functionality for
HalfTest to construct LessThan, and LSB to construct HalfTest in exactly the
same manner as in [15]. To construct a protocol for LSB, we will use WrapAround,
which is then constructed based on PlainLessThan. This is different to the con-
struction of LSB in [15]. Our protocol for PlainLessThan is based on binary tree
structure, which admits parallel computation (and hence use small constant
rounds of communication). This is somewhat related to the protocol in [2], with
the difference that here our protocol uses secret sharing, while [2] uses homomor-
phic encryption. PlainLessThan uses PlainEqual as a subroutine. PlainEqual then
uses the multi-fan-in AND, namely, AND*, as a subroutine. AND* is then based
on the multi-input multiplication, namely, MULT", in a similar manner to [7].
Finally, MULT™ is constructed based on using correlated randomness produced
by the aiding party.

3.1 Multi-input Multiplication Protocol (MULT™)

We first describe the smallest building block (besides ADD, MULT), namely, the
multi-input multiplication functionality, MULT™. Its definition is the computa-
tion protocol as follows.

([ea]s [e2ls - - -5 [ee]) < MULT*([z1], - - -, [ze]),

where we define ¢; :== x125 -+ - z; for all i € [1,4].

Intuition/Approach. Our protocol follows the basic mechanism of the proto-
col for MULT" in [7]. The protocol of [7] lets parties collaborate and produce
shares of random elements, say ¢;, and its inverse, namely, t;l. Such procedures
are somewhat costly. Our idea is to gather and optimize all these correlated ran-
domness elements in one place and let it be generated by an aiding party. For
example, the “chaining” like ¢; := tj_ltj_l will be pre-computed. Moreover, the
protocol of [7] can be used for any linear secret sharing scheme with MULT proto-
col. When using a MULT protocol that uses multiplication triples, the correlated
randomness for MULT will become redundant with those ¢, t;l. We eliminate
these redundancy by generating multiplication triples directly over ¢; defined as
above, and not an independent randomness.

Correlated Randomness for MULT*. The aiding party locally pre-computes
the following:

1. For all j € [0, 4], pick t; < IF¥, and also compute its inverse, tj_l.

2. For all j € [1,/], define ¢, := tj_ltj_l, zj 1=ty 't;, and also pick a; € F.

3. Set the correlated randomness for P; and P, to be the following random

shares:
CRy := ([[aj]], [[Qj]], [[anj]]v [[Zj]])ie[l,f] : (1)
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Our Protocol for MULT*. We show our protocol for MULT* in Algorithm 1.

Algorithm 1. MULT* Protocol
Functionality: ([ci], [cz2],- .., [ce]) < MULT*([z1], ..., [ze])-
Input: Arithmetic shared values [z1], ..., [z¢] over F, and an integer £.
Auxiliary Input: CR, in Eq. (1).
Output: ([ei], [e2],-- -, [ce]) over Fp.
1: For all j € [1,4], in parallel, compute and reveal

[;] — [a;].

Hence, each party learns z; — a;.
2: For all j € [1,4], in parallel, compute and reveal

[d;] < (= — a;) - [g;] + [a;q5]-

Hence, each party learns d; := (z; — a;j)q; + a;q; = z;q;.
3: For all j € [2,4], (locally) compute

lej] « di---dj - [2]. (2)

Correctness/Security. The protocol correctness can be shown by verifying
Eq. (2), which is indeed correct since dy ---d; - z; = (v1q1) -~ (zjq;) - tg't; =
xy g (totyh) - (g ) - (tj_ltj_l) ty'tjzy - x; = cj. We sketch an argu-
ment for security as follows. We observe that the only points where potential
information leak may occur are the revealing of x; — a; and of x;q;. However,
a; and g; are used only once, and hence they act as one-time pad to z; (addi-
tively and multiplicatively, respectively). More precisely, in x;¢;, the value z;
is multiplicatively blinded by tj_l. Note also that a; and g; are available to the
parties as shares, hence no information on a; and ¢; leaks either. To prove more
formally from this argument in the standard simulator-based notion (e.g., [12]),
we just define a simulator that simply simulates the view in the step 1 and 2 of
the protocol by random elements. This simulated view is indistinguishable from
the real protocol view exactly by the one-time use of a; and g;.

A Special Case: Power. For further use, we also define a special case of
MULT™ where all the inputs x; are the same, say z. It thus computes powers of
an element z. For formality, we write ([x], [z2%],.. ., [z*]) « Power([z],¢).

3.2  Multi-fan-in AND (AND*)

We next describe the multi-fan-in AND functionality and a protocol for it below.
This is defined by [y1 A -+ Aym] — AND*([y1],- -, [ym])-

Intuition/Approach. We construct this protocol based on MULT* (or more
precisely, Power) using exactly the approach for symmetric function evaluation
in [7]. In such a function, the output depends only on the number of 1’s in
its input. Hence, it can be interpreted as a function with input Z;“:l y;. (To
exclude it being 0 which is problematic, we will add 1 to it, similarly to [7,15].)
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This function can be constructed via Lagrange interpolation. In the case of the
multi-fan-in AND functionality, its corresponding interpolated function (with
coefficient ¢ € F)) is defined by

m

Pm(x) = % H(x —j) mod p =: chxk, (3)

J k=0

Our Protocol for AND*. We show our protocol for AND* in Algorithm 2.

Algorithm 2. AND* Protocol
Functionality: [yi1 A--- Aym] < AND*([y1], .-, [ym])-
Input: Arithmetic shared values [y1], ..., [ym] over F, where y; € {0,1} for
all j € [1,m].
Auxiliary Input: CR,,.
Output: [yi A+ Aym] over Fp.
1: Compute (locally) for [z] « 1+ > [y;].
2: Compute ([z], [z?],..., [z™]) < Power([z], m).
3: Compute (locally) and output [v] « co + > pv, cx[2z"], where the coeffi-
cients ¢;’s are as in Eq.(3).

Correctness/Security. We can verify that v = y; A -+ A yp,, as follows: First,
the AND function is a symmetric function and thus the output depends only on
m

the value x :=1+ ijl y;. In particular, we have that

Ao — 0 ifxzell,m)
n Ym = 1 fz=m+1"
The Lagrange interpolation of the polynomial defined on these m + 1 points are
indeed the polynomial in Eq. (3). That is, y1 A+ AYm = Yo ck2”, and hence
v =19Y; A AYm, as required. As for security, it holds straightforwardly since
we only call Power as a subroutine.

3.3 Equality Test with Plain Inputs (PlainEqual)

We next describe the equality test functionality with plain inputs (and shared
output). This is defined by [§] <« PlainEqual(x,y) where 6 = 1 if = y, and
0 = 0 otherwise.

Intuition/Approach. We construct this protocol in straightforward way. To
confirm equality of x and y, we check if the i-th bit of x, namely z;, equals the
i-th bit of y, namely y;. Instead of sharing each bit, we let the share of the other
party be 0 so as to save communication.?

3 This does not leak any private information as long as addition (or subtraction) of
shared values is executed soon afterward as in Step 3 of Algorithm 3, where subtrac-
tion 1 — [as] — [yi] is computed first and then its squared value is computed.
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Our Protocol for PlainEqual. We show our protocol for PlainEqual in Algo-
rithm 3.

Algorithm 3. PlainEqual Protocol

Functionality: [§] < PlainEqual(z,y), where § = 1 if x = y; § = 0, otherwise.
Input: Cleartexts z,y € F,

Output: Arithmetic shared value [J]

1: Parse ¢ = zp—1 || zn—2] --.. || Zo.

2: Parse y = Yn—1 || Yn—21 --- || yo.

3: Py sets [z;]1 < x; and [ys]1 < 0 for ¢ € [0,n — 1].
4: P, sets [zi]2 < 0 and [y;]2 < y; for i € [0,n —1].
5: Compute [v:] « (1 — [z:] — [5:])? for i € [0,n — 1].
6: Compute [6] — AND*([vo], [v1],- .. [vn-1]).

7: return [0].

Correctness/Security. If @ = y, the i-th bit of z matches the i-th bit of
y, that is, ; = y; for ¢ € [0,n — 1], where ¢ = 2,1 ||zp—2] ... ||zo and

Y = Yoot |Yn—2 || --- [yo for z;,y; € Zo. We set [v;] — (1 — [2;] — [v:])? for
i € [0,n — 1]. This value is 1 if ; = y1, and 0 otherwise. Now, we obtain that
x =y if and only if v; =1 for all ¢ € [0,n — 1].

0 if Y Ovz [0,n —1]
1 szOvz—n

As for security, it holds straightforwardly since we only call AND* as a subrou-
tine.

AND*([vo], [v1]; - - -, [vn-1]) = {

3.4 Less-Than Comparison with Plain Inputs (PlainLessThan)

We describe the less-than comparison with plain inputs and a protocol for it
below. This is defined by [§] < PlainLessThan(z,y) where the inputs are x,y €
[0,p — 1], and the output bit is 6 = (v < y).*

Algorithm 4. PlainLessThan Protocol

Functionality: [§] < PlainLessThan(z,y), such that § = (z < y)
Input: Cleartext z € [0,p — 1] from P1, y € [0,p — 1] from P>
Output: Arithmetic shared value [0] over F,

1: Py sets R=[z+1,2" —1].

2: Py computes {(i,a;)} < rangeEnc(R); Wgr « {i|Ja s.t. (i,a) € rangeEnc(R)}.
3: Py setsa; =2" —1forall j €[0,n] s.t. j & Wk.

4: P, computes {(4,b;)} < pointEnc(y).

5: Compute [d;] = PlainEqual(as, b;) for all ¢ € [0, n].

6: [0] — Y1o[di]-

7: return [4].

Intuition/Approach. We construct a protocol for PlainLessThan based on
binary-tree-based approach called dyadic range in a similar manner to [2]. The

* For a statement C, we denote (C) = 1 if C is true, and 0 otherwise;.



406 H. Morita et al.

Fig.1. Example of point encoding Fig.2. Example of range encoding

for = 5. Here, pointEnc(5) = for x = 2, which defines the range

{(0,5),(1,2),(2,1),(3,0)}. R = [3,7]. Here, rangeEnc([3,7]) =
{(0,3), (2, )}

main idea of this tree-based approach is that when the inputs are plain, we can
directly “encode” them to a data structure that is suitable for comparison in
parallel. This encoding method is called range and point encoding in [2]. At the
core of this approach is the equality test functionality over plain inputs. For this
equality test, [2] uses additive homomorphic encryption. On the other hand, we
construct this functionality by secret sharing, which is more computationally
efficient; this is the main difference to [2]. As described above, our equality test
essentially uses multi-fan-in AND as a building block.

Range/Point Encoding. We use a similar terminology from [2], which we
recall here. Recall first that n is the bit length of p, that is, n = [log, p|. Hence,
in particular, z,y < p—1 < 2" — 1. Let Ten be a complete binary tree whose
leaves correspond to integers from 0 to 2" — 1. Let Son be the set of all nodes
in the tree To» and a node w; ; represents a pair of its layer and its index: (i, j)
for i € [0,n] and j € [0,2"7¢ — 1]. We identify a value x € Z, with a node (0, z).
Consider a range R = [u,v] for 0 < u < v < 2" — 1. For any range R, a node
w; ; € Sy» is called a cover node of R if all the descendant leaves of w; ; are in R.
We write the set of such nodes as cover(R). For w; ; € Son with (4, 5) # (n,0),
let parent(w; ;) be the parent node of w; ;. The range and point encodings are
then defined as follows. For a range R = [u,v] with 0 <u < v < 2" — 1, we let

rangeEnc(R) := {(4,a;) € Saon | (i,a;) € cover(R), parent(i,a;) & cover(R)}.

For a point z € [0,p — 1], we let pointEnc(z) be the set of all ancestors of a node
(0,z) in Ton including the node (0, z) itself. An example for point and range
encoding is illustrated in Figs.1 and 2, respectively. The main property is as
follows: if for any range R, and any point = € [0,p — 1], we have |rangeEnc(R) N
pointEnc(x)| equals to 1 if € R, and equals to 0 if x ¢ R.

Note that we set the range R to reach the furthest to the right, i.e., v = 2" —1,
in our setting, which leads that rangeEnc(R) has no more than one node in each
layer.

Our Protocol for PlainLessThan. We show our protocol for PlainLessThan in
Algorithm 4.
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Correctness/Security. Suppose x < y. Hence, we have y € R = [z +1,2" —1].
Therefore, by the property of encodings, we have that exactly one element in
pointEnc(y) equals to an element in rangeEnc(y). To perform OR over these
equality tests for each layer, we simply sum their results up (as in Step 6). Note
that, similarly to [2], Step 3 is for creating a dummy for all layers that are
not contained in the range encoding of R. We can use the unused value 2" — 1
since x,y < 2™ — 1. Consequently, the equality tests corresponding to these
layers always return false; we need them so that the number of layers to perform
equality test will always be the same, namely, n + 1 layers (so as to ensure that
there will be no additional information on the range R). As for security, it holds
straightforwardly since we only call PlainEqual as a subroutine protocol (and
note that rangeEnc and pointEnc are local algorithms).

3.5 WrapAround

We now describe a functionality that represents whether a reconstructed share
wrap-arounds p. Its definition is as follows:

[y] < WrapAround([z]1, [«]2),

where y = 1 if [z]1 + [z]2 > p computed over Z, and y = 0 otherwise.

Intuition/Approach. In this protocol, P, inputs [z]; € {0,1,...,p—1}, while
P, inputs [z]2 € {0,1,...,p — 1}, and the output is a share [y] where

)0 if [z]y + [z =2
1 iffz]li+[z]le=2+p
where the sum is over the integers (i.e., not modulo p).

Our Protocol for WrapAround. A protocol for the wrap-around functionality
can be done by simply computing [y] < 1 — PlainLessThan([z]1,p — [z]2).

Correctness/Security. The correctness holds since y = 1 <= [z]1 > p—[z]2.
As for security, it holds straightforwardly since we only call PlainLessThan as a
subroutine.

3.6 Least Significant Bit

We describe the least significant bit functionality. This is defined by [(z)o] «—
LSB([=]) where (x)¢ := 2 mod 2 is the LSB of z.

Intuition/Approach. The least significant bit can be evaluated by using LSB
of shares and a flag representing a bit flip.
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Our Protocol for LSB. Algorithm 5 presents our LSB protocol.

Algorithm 5. LSB Protocol

Functionality: [(z)o] < LSB([z])

Input: Arithmetic shared value [z] over F,.

Output: [(z)o] over F, where (x)o = 2 mod 2.

1: Py locally extracts by := [z]1 mod 2 and shares [b1]. At the same time,
P, locally computes by := [z]2 mod 2 and shares [bs].

2: Compute [w] «— XOR([b1], [b2]) = [b1] + [b2] — 2[b1] - [b2]-

3: Compute [v] < WrapAround([z]1, [z]2).

4: Output [t] <« XOR([w], [v]) = [w] + [v] — 2[w] - [v]-

Correctness/Security. We can verify that

(£)o = {([[x]h)o o (lal)o it [oly+[o]2 = o
([z]1)o @ ([x]2)o ® 1 if [2]1 + [z]2 =2 +p

= ([z]1)o0 @ ([x]2)0 ® WrapAround([z]1, [x]2).

As for security, it holds straightforwardly since we only call WrapAround and
XOR as subroutines.

Note that this protocol can be run in 4 rounds. Step 1-2 takes 2 rounds, and
can be run in parallel with Step 3 (3 rounds). Step 4 takes 1 round. Thus, it is
4 rounds in total, and its total communication is 4n? + 5.

3.7 HalfTest

We describe a functionality that checks if the input is less than half of p as
in [15]. This is defined by [z] « HalfTest([x]) where z = (z < £).

Our Protocol for HalfTest. As in Nishide-Ohta [15], this can be done by
[2] < 1 —LSB([2z]). (4)

Correctness/Security. Security holds straightforwardly since we only call LSB
as a subroutine.

3.8 Less-Than Comparison

Finally, we describe our less-than comparison functionality and a protocol for it.
This is defined by [z] <« LessThan([z], [y]) where z = (z < y).

Intuition/Approach. As shown in [15], we construct the LessThan protocol
using HalfTest as a subroutine.

Our Protocol for LessThan. As shown in Nishide-Ohta [15], when we set
he == (x < %), hy == (y < §) and h := (z — y mod p < §), the required output
can be computed as in the following equality relation:

z=hy(1—hy)+ (1 —hy)(1—hy)(1 —h)+ hyh,(1—h). (5)
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For formality, we capture this protocol in Algorithm 6.

Algorithm 6. LessThan Protocol

Functionality: [z] < LessThan([z], [y])

Input: Arithmetic shared values [z] and [y] over Fp.

Output: Arithmetic shared value [z] over F, where z = (z < y).

: Compute [hy] «— HalfTest([z]).

. Compute [hy] < HalfTest([y]).

: Compute [h] « HalfTest([z — y])-

: Compute [s] — [he] - (1 — [hy]) + (1= [he]) - (1 = [Ay]) - (1 = [BD) + [ha] - Tyl - (1 — [AD).
: Return [z].

U W N~

Correctness/Security. As for security, it holds straightforwardly since we only
call HalfTest as a subroutine.

4 Theoretical Efficiency

The efficiency of our protocol is measured in two aspects: round complexity
and total communications. In literature, the round complexity is examined by
the chain of multiplication protocols, and the total communication is examined
by total invocations of multiplication protocols. However, any procedure that
needs communication with other parties are crucial for execution time. There-
fore, we count any communication such as “reveal”, “send”, or “share” as one
round, which have been ignored in previous work. Thus, our rigid measurement
counts up more rounds than that of previous work. In Table 1, we analyze pre-
vious constant-rounds secure comparison protocols from Damgard et al. [7] and
Nishide-Ohta [15]. Moreover, we reconsider their protocols in the client-aided
model and show that the rounds will be fewer in the model. We also show the
result of our 6 rounds secure comparison protocol and its reduced round version.

Damgard et al.’s original secure comparison protocol [7] needs 79 rounds
and total communication of 272nlogn + 138n + 22logn + 24(logn)? +
24nloglogn + 12 field elements, since the protocol consists of two BITS pro-
tocols (69 rounds and 136n logn + 56n + 8logn + 12(logn)? + 12nloglogn + 6
total communications per BITS) and BIT-LT protocol (13 rounds including 3
rounds for random generation and 26n + 6logn total communications). Simi-
larly, Nishide-Ohta’s original secure comparison protocol [15] needs 28 rounds
and total communication of 168n + 36 log n + 16, since the protocol consists of 3
LSB protocols (in parallel) and 2 MULT protocols, where LSB is 26 rounds and
32n + 40logn total communications and MULT is 1 round and 2 total commu-
nications.

In the client-aided model, we can omit procedures of generating ran-
domness so that BiTs will be 60 rounds and total communications will be
52nlogn + 16n + 5logn + 10(logn)? + 10nloglogn, while BIT-LT will be 10
rounds and 12n + 5logn total communications. This let Damgard et al.’s proto-
col be 70 rounds and 144nlogn + 52n + 64 logn + 64(logn)? + 64nloglogn — 6
total communications. Similarly, LSB will be 12 rounds and 12n + 5logn + 3
total communications in the client-aided model, which makes Nishide-Ohta’s
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Table 2. Execution times of protocols

Operations Round | Offline [ms] | Online Estimated | Estimated
comp. [us] online online
comm. [ms] total [ms]
ADD 0 - 0.000,10 - -
MULT pub 0 - 0.000,20 | -
MULT priv 1 0.001,355 0.000,10 72 72
MULT* (¢ = 32) | 2 0.059,558 0.681,70 | 144 144
Power (¢ =32) |2 0.059,558 0.667,20 144 144
AND* (m = 32) |2 0.059,558 1.044 144 144
PlainEqual 3 0.100,386 2.461 216 216
PlainLessThan |3 1.823 63.783 216 216
WrapAround 3 1.823 63.416 216 216
LSB 4 1.821 76.028 288 288
HalfTest 4 1.821 76.424 288 288
LessThan 6 5.574 273.600 432 432

secure comparison protocol 14 rounds and 36n + 15logn + 13 total communica-
tions.

Our secure comparison protocol LessThan consists of three HalfTest (more
precisely, LSB that is 4 rounds and 4n? 4+ 5 total communications as explained
in Sect. 3.6) protocols and a degree-3 polynomial (more precisely, 5 MULT, which
has 10 total communications). Naively computing the polynomial (without merg-
ing the same computations), our protocol has 6 rounds and at most 12n? + 25
total communications.

Further Reducing Rounds. We can combine the step 4 of the LSB protocol
and Egs. (4) to (5) to a degree-6 polynomial. Since each variable is 0 or 1 shared
in Z,, multiplications can be done by AND* protocol in 2 rounds. This results in
a LessThan protocol with 5 rounds. The maximum transmitting data amount in
one round is within the limitation assumed in our WAN setting. See Appendix A
for more details.

5 Experimental Efficiency

In this section, we give performance evaluation of our secure comparison pro-
tocol LessThan based on our experiments. For the evaluation, we implement
the protocol in C++ programming language using a desktop PC (Xeon E5-2699
v4, 2.20 GHz), Linux Ubuntu 16.04.3 LTS, and a compiler GCC version 5.4.0.
Throughout the experiments, we set the prime number p = 4294967291 = 232 —5.
Note that our proposed algorithms are independent from the choice of the prime
number. Also note that the architecture we used supports 64 bits instruction
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set, and as shown above, the bit length of p is 32; thus it is unnecessary to
use multi-precision arithmetic. To implement our protocol, we do not use assem-
bler, any optimization technique by hand, and any optimized arithmetic software
library. We use a special file “/dev/urandom” to implement cryptographically
secure pseudorandom number generator, and optimizations by the compiler with
an option “-03.” From this implementation, we evaluate computational time of
our protocols, the number of communication rounds, and communication sizes.
Based on them, we further estimate the total execution time assuming that the
two servers are connected via Wide Area Network (WAN) whose bandwidth and
network delay are the same as those in [14] (Namely, we set the bandwidth to
be 9 MB/s and the network delay to be 72ms).

Table 2 shows the execution times of our LessThan protocol and its subrou-
tines. The column of “Offline” represents time for a client to generate multi-
plication triples and correlated randomness, and the column “Online Comp.”
represents the computation time of each protocol without communication. The
column “Estimated Online Comm.” represents the estimated communication
time of each protocol by using the assumption described above. Namely, it takes
72ms per a round. The column “Estimated Online Total” represents the esti-
mated total execution time which is the sum of “Online Comp.” and “Estimated
Online Comm”. For taking the execution times, we set the numbers of inputs of
protocols MULT*, Power, and AND* as 32 (i.e., in Algorithm 1, ¢ = 32, and in
Algorithm 2, m = 32). We note that in the total execution time, network delay
is the dominant factor, and compared to this, influence of computational time
and communication size is almost ignorable. Therefore, it is important that the
number of communication rounds should be reduced as much as possible when
combining a secure comparison protocol to construct concrete applications. For
reducing the round complexity, our proposed algorithms can be adopted to the
vectorization (i.e., operating on vectors) same as in [14] and batch execution
techniques.

Acknowledgement. This work was supported by JST CREST JPMJCR1688.

A Further Round-Reduced LessThan Protocol

As we mentioned in Sect. 4, our LessThan protocol can be executed in 5 rounds
as follows: We can combine the step 4 of the LSB protocol and Egs. (4) to (5) to
a degree-6 polynomial. In particular, this technique breaks down our LessThan
to three LSBish protocols (3 rounds and 4n? + 3 total communications) and a
degree-6 polynomial F' defined below: F' = w+v — W, W — WV — WUy — Vp U+ Wy —
Wy W — WyV — WaWy — WyVg + Vy — WUy — VyU — WUy — Vg Uy + 2(—wv —+ wwv +
Wy WU + Wa Wy W + W Wy U + Wy Wz + Wy Vg U + WUV + Wa WV + W Vg U+ Wy Wy Uy +
WUV + Wa WUy + WUy U + WU Vy F Vg UyV + Wy Vg Uy — Wy Uy + WyWVy + Wy Uy ¥ +
WaWy Uy + Wy Vg Uy ) + 4(—WaWVpt — W Wy WV — Wy WUZU — WyWy Wy — WeWy Uyl —
WUZVyV — WpWVgVy — WUz Uyl — WyWVyV — WeWyWly — WyVgpUyV — WyWVgpVy —
W WyVyV — WgWyUg Uy — Uywzwv) + 8(w$wywvwv + W WV VyV + W WyWVyv +
Wy WUV U + WaWy W5 Vy + WyWyUgUyV) — L6Wg Wy W40y v.
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The function F' contains 13 degree-2, 26 degree-3, 15 degree-4, 6 degree-
5, and 1 degree-6 terms, which can be computed in 2 rounds and 292 total
communications. Since each variable is 0 or 1 shared in Z,, multiplications of the
function I can be done by AND* protocol in 2 rounds. This results in a LessThan
protocol with 5 rounds and the total communication is 3(4n? + 3) + 292 =
12n? + 301.

Algorithm 7. LSBish Protocol

Functionality: ([w], [v]) <« LSBish([z])

Input: Arithmetic shared value [z] over F,.

Output: [(z)o] over F, where (z)o = = mod 2.

1: Pp locally extracts b1 := [z]1 mod 2 and shares [bi]. At the same time, P»
locally computes b2 := [z]2 mod 2 and shares [b2].

2: Compute [w] «— XOR([b1], [b2]) = [b1] + [b2] — 2[b1]]02]-

3: Compute [v] < WrapAround([z]1, [z]2).

4: Output ([w], [v])-

Algorithm 8. LessThan Protocol (described explicitly)

Functionality: [z] < LessThan([z], [¥])
Input: Arithmetic shared values [z] and [y] over Fp.
Output: Arithmetic shared value [z] over F, where z = (z < y).
1: Compute (Jwe], [ve]) < LSBish([z]).

2: Compute (Jwy], [vy]) < LSBish([y]).

3: Compute ([w], [v]) < LSBish([z — y]).

4

5

: Compute F' by using AND, addition, and multiplication with public value.
: Return [z].

B Round Complexity and Communication Complexity

In Table 3, we put round complexity and total communications of each protocol
from [7,15]. In Table4, we show round complexity and total communication of
our LessThan protocol and its subroutines. These are used for calculating rounds
and total communication in Table 1. We note that a more detailed value for total
communication of the Damgard et al. [7] protocol is 176n logn+ 70n+84logn +
80(logn)? + 80n loglogn — 6 (which is reduced to 144nlogn + 52n + 64logn +
64(logn)? + 64nloglogn — 6 for the client-aided version).
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Table 3. Number of rounds and total communication of each protocol from [7,15]

Protocol Round | Total comm. (elements)

Unbounded-fan-in OR 5 106 — 2

with £ inputs

Prefix OR 11 10n + 20logn — 2

RAN, 3 4

SOLVED-BITS 14 18n 4+ 20logn — 1

Brr-LT 13 14n + 20logx — 2

Bir-ADD 25 44nlog n—2n—4log n+20(logn)?+20n loglog n

CARRIES 25 44nlogn—2n—4logn-+20(logn)?+20nloglogn

PRE, 24 44nlogn—4n—4logn-+20(log n)?+20nloglogn

BITS 69 88nlogn + 28n + 32logn + 40(logn)? +
40nloglogn — 2

LessThan of [7] 79 176nlogn 4 70n 4 84logn + 80(log n)? +
80nloglogn — 6

LSB 26 32n+40logn

LessThan of [15] 28 96n + 120logn + 4

Table 4. Number of rounds and total communication of our LessThan protocol and its
subroutines

Protocol Round | Total comm. (elements)
MULT priv 1 2

MULT™, Power, AND* (¢ inputs) |2 2/

PlainEqual 3 an

PlainLessThan, WrapAround 3 4n?

LSB, HalfTest 4 an? +5

LessThan (Implemented in Sect.5) | 6 12n% + 25

LessThan (1 round reduced) 5 12n? + 301

One might wonder if the amount of transmitting field elements during any
round exceeds the limitation, i.e., 9 MB/s x 72ms =648 KB. If the amount of
transmitting data (elements of F,,) exceeded the limitation, the protocol would
need extra rounds to send all the data. In our LessThan protocol, a larger amount
of data is needed during executing PlainLessThan protocol, more specifically n
PlainEqual protocols in parallel. This protocol sends at most 2n? field elements
at one round. This leads to that our LessThan sends at most 6n2 field elements,
since it run three HalfTest (constructed by WrapAround that has PlainLessThan as
subroutine) protocols at once. When p is 32-bit prime, i.e., n = 32, our LessThan
protocol sends at most 6144 = 6 x 32? field elements (196608 bits) in one round,
which is less than the limitation; 648 KB.
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