Skip to main content

Aquarium Family Fish Species Identification System Using Deep Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 845))

Abstract

In this paper, a system for aquarium family fish species identification is proposed. It identifies eight family fish species along with 191 sub-species. The proposed system is built using deep convolutional neural networks (CNN). It consists of four layers, two convolutional and two fully connected layers. A comparative result is presented against other CNN architectures such as AlexNet and VggNet according to four parameters (number of convolution and fully connected layers, the number of epochs in training phase to achieve 100% accuracy, validation accuracy, and testing accuracy). Through the paper, it is proven that the proposed system has competitive results against the other architectures. It achieved 85.59% testing accuracy while AlexNet achieves 85.41% over untrained benchmark dataset. Moreover, the proposed system has less trained images, less memory, less computational complexity in training, validation, and testing phases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fouad, M.M.M., Zawbaa, H.M., El-Bendary, N., Hassanien, A.E.: Automatic Nile Tilapia fish classification approach using machine learning techniques. In: 13th International Conference on Hybrid Intelligent Systems, HIS 2013, pp. 173–178. IEEE (2013)

    Google Scholar 

  2. Fouad, M.M., Zawbaa, H.M., Gaber, T., Snasel, V., Hassanien, A.E.: A fish detection approach based on BAT algorithm. In: The 1st International Conference on Advanced Intelligent System and Informatics, AISI 2015, pp. 273–283. Springer, Beni Suef (2016)

    Google Scholar 

  3. Dominguez, A.: A history of the convolution operation [Retrospectroscope]. IEEE Pulse 6, 38–49 (2015). https://doi.org/10.1109/MPUL.2014.2366903

    Article  Google Scholar 

  4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  6. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  7. Jiang, H., Learned-Miller, E.: Face detection with the faster R-CNN. In: 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017, pp. 650–657. IEEE (2017)

    Google Scholar 

  8. Strachan, N., Kell, L.: A potential method for the differentiation between haddock fish stocks by computer vision using canonical discriminant analysis. ICES J. Mar. Sci. 52, 145–149 (1995). https://doi.org/10.1016/1054-3139(95)80023-9

    Article  Google Scholar 

  9. Rova, A., Rova, A., Mori, G., Dill, L.M.: One fish, two fish, butterfish, trumpeter: recognizing fish in underwater video. In: IAPR Conference on Machine Vision Applications, Tokyo, Japan, pp. 404–407 (2007)

    Google Scholar 

  10. Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y.-H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams—ARTEMIS 2010, p. 45. ACM Press, New York (2010)

    Google Scholar 

  11. Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., Selim, I.M.: Deep galaxy: classification of galaxies based on deep convolutional neural networks (2017). arXiv preprint arXiv:1709.02245

  12. Sainath, T.N., Kingsbury, B., Mohamed, A., Ramabhadran, B.: Learning filter banks within a deep neural network framework. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 297–302. IEEE (2013)

    Google Scholar 

  13. Khalifa, N.E., Taha, M.H., Hassanien, A.E., Selim, I.: Deep Galaxy V2: robust deep convolutional neural networks for galaxy morphology classifications. In: 2018 IEEE International Conference on Computing Sciences and Engineering, ICCSE, pp. 122–127. IEEE (2018)

    Google Scholar 

  14. Bui, H.M., Lech, M., Cheng, E., Neville, K., Burnett, I.S.: Object recognition using deep convolutional features transformed by a recursive network structure. IEEE Access 4, 10059–10066 (2017). https://doi.org/10.1109/ACCESS.2016.2639543

    Article  Google Scholar 

  15. Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A., Davis, C.H.: Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017). https://doi.org/10.1109/LGRS.2017.2657778

    Article  Google Scholar 

  16. Lima, E., Sun, X., Dong, J., Wang, H., Yang, Y., Liu, L.: Learning and transferring convolutional neural network knowledge to ocean front recognition. IEEE Geosci. Remote Sens. Lett. 14, 354–358 (2017). https://doi.org/10.1109/LGRS.2016.2643000

    Article  Google Scholar 

  17. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 2377–2385 (2015)

    Google Scholar 

  18. Anantharajah, K., ZongYuan Ge, McCool, C., Denman, S., Fookes, C., Corke, P., Tjondronegoro, D., Sridharan, S.: Local inter-session variability modelling for object classification. In: IEEE Winter Conference on Applications of Computer Vision, pp. 309–316. IEEE (2014)

    Google Scholar 

  19. Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.-P., Planqué, R., Rauber, A., Palazzo, S., Fisher, B., Müller, H.: LifeCLEF 2015: multimedia life species identification challenges. In: Mothe, J., Savoy, J., Kamps, J., Pinel-Sauvagnat, K., Jones, G., San Juan, E., Capellato, L., Ferro, N. (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer Science. Springer, Cham (2015)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Eldeen M. Khalifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E. (2019). Aquarium Family Fish Species Identification System Using Deep Neural Networks. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and Computing, vol 845. Springer, Cham. https://doi.org/10.1007/978-3-319-99010-1_32

Download citation

Publish with us

Policies and ethics