Skip to main content

Abstract

Nowadays, large amounts of high resolution remote-sensing images are acquired daily. However, the satellite image classification is requested for many applications such as modern city planning, agriculture and environmental monitoring. Many researchers introduce and discuss this domain but still, the sufficient and optimum degree has not been reached yet. Hence, this article focuses on evaluating the available and public remote-sensing datasets and common different techniques used for satellite image classification. The existing remote-sensing classification methods are categorized into four main categories according to the features they use: manually feature-based methods, unsupervised feature learning methods, supervised feature learning methods, and object-based methods. In recent years, there has been an extensive popularity of supervised deep learning methods in various remote-sensing applications, such as geospatial object detection and land use scene classification. Thus, the experiments, in this article, carried out on one of the popular deep learning models, Convolution Neural Networks (CNNs), precisely AlexNet architecture on a standard sounded dataset, UC-Merceed Land Use. Finally, a comparison with other different techniques is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NASA: What Is a Satellite? NASA Knows! (Grades 5–8) series (2014)

    Google Scholar 

  2. Zhang, L., Xia, G., Wu, T., Lin, L., Tai, X.: Deep learning for remote sensing image understanding. J. Sens. 2016, 1–2 (2016)

    Google Scholar 

  3. Marmanisad, D., Wegnera, J., Gallianib, S., Schindlerb, K., Datcuc, M., Stillad, U.: Semantic segmentation of aerial images with an ensemble of CNNs. ICWG 3(4), 1–8 (2016)

    Google Scholar 

  4. AID Dataset. http://www.lmars.whu.edu.cn/xia/AID-project.html. Accessed 16 Feb 2018

  5. PatternNet Dataset. https://sites.google.com/view/zhouwx/dataset?authuser=0. Accessed 16 Feb 2018

  6. RSI Dataset. https://github.com/lehaifeng/RSI-CB. Accessed 16 Feb 2018

  7. SAT_4 & SAT_6. http://csc.lsu.edu/~saikat/deepsat/. Accessed 16 Feb 2018

  8. UC-Merceed Land Use Dataset. http://weegee.vision.ucmerced.edu/datasets/landuse.html. Accessed 16 Feb 2018

  9. WHU-RS19 Dataset. https://www.google.com/url?q=http%3A%2F%2Fwww.xinhua-fluid.com%2Fpeople%2Fyangwen%2FWHU-RS19.html&sa=D&sntz=1&usg=AFQjCNFzrOnViW6TWOoFbN1IaIMfyLdJhQ. Accessed 16 Feb 2018

  10. SIRI-WHU Dataset. http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html. Accessed 16 Feb 2018

  11. RSSCN7 Dataset. https://www.dropbox.com/s/j80iv1a0mvhonsa/RSSCN7.zip?dl=0. Accessed 16 Feb 2018

  12. RSC11 Dataset. https://www.yeastgenome.org/locus/ARP7. Accessed 16 Feb 2018

  13. Brazilian Coffee Dataset. http://www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/. Accessed 16 Feb 2018

  14. NWPU-RESISC45 Dataset. https://www.google.com/url?q=http%3A%2F%2Fwww.escience.cn%2Fpeople%2FJunweiHan%2FNWPU-RESISC45.html&sa=D&sntz=1&usg=AFQjCNGs2uMeX7KT2QvEMzcD5uF4-aQChw. Accessed 16 Feb 2018

  15. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1–17 (2017)

    Article  Google Scholar 

  16. Thomas, M., Farid, M., Yakoub, B., Naif, A.: A fast object detector based on high-order gradients and Gaussian process regression for UAV images. Int. J. Remote Sens. 36(10), 2713–2733 (2015)

    Google Scholar 

  17. Aptoula, E.: Remote sensing image retrieval with global morphological texture descriptors. IEEE Trans. Geosci. Remote Sens. 52(5), 3023–3034 (2014)

    Article  Google Scholar 

  18. Mekhalfi, M., Melgani, F., Bazi, Y., Alajlan, N.: Land-use classification with compressive sensing multifeature fusion. IEEE Geosci. Remote Sens. 12(10), 2155–2159 (2015)

    Article  Google Scholar 

  19. Cheriyadat, A.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451 (2014)

    Article  Google Scholar 

  20. Jolliffe, I.: Principal component analysis. Springer, New York (2002)

    MATH  Google Scholar 

  21. Zhao, B., Zhong, Y., Zhang, L.: A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. Remote Sens. 116, 73–85 (2016)

    Google Scholar 

  22. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  23. Sheng, G., Yang, W., Xu, T., Sun, H.: High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 33(8), 2395–2412 (2012)

    Article  Google Scholar 

  24. Hu, F., Xia, G., Wang, Z., Huang, X., Zhang, L., Sun, H.: Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 8(5), 2015–2030 (2015)

    Article  Google Scholar 

  25. Daoyu, L., Kun, F., Yang, W., Guangluan, X., and Xian, S.: MARTA GANs: unsupervised representation learning for remote sensing image classification. National Natural Science Foundation of China (2017)

    Google Scholar 

  26. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  27. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  28. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  Google Scholar 

  29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the International Conference on Learning Representations, pp. 1–16 (2014)

    Google Scholar 

  31. Simonyan K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations, pp. 1–13 (2015)

    Google Scholar 

  32. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  33. Luus, F., Salmon, B., Van Den Bergh, F., Maharaj, B.: Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2448–2452 (2015)

    Article  Google Scholar 

  34. Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. Cornell University, Ithaca (2015)

    Google Scholar 

  35. Zhong, Y., Fei, F., Zhang, L.: Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Appl. Remote Sens. 10(2), 025006–025006 (2016)

    Google Scholar 

  36. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci. Remote Sens. Lett. 13(1), 105–109 (2015)

    Article  Google Scholar 

  37. Jingbo, C., Chengyi, W., Zhong, M., Jiansheng, C., Dongxu, H., Stephen, A.: Remote sensing scene classification based on convolutional neural networks pre-trained using attention-guided sparse filters. Remote Sens. 10(290), 1–16 (2018)

    Google Scholar 

  38. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)

    Article  Google Scholar 

  39. GIS Geography. http://gisgeography.com/image-classification-techniques-remote-sensing/. Accessed Feb 16 2018

  40. Tahoun, M., Nagaty, K., El-Arief, T., A-Megeed, M.: A robust content-based image retrieval system using multiple features representations. In: Proceedings of IEEE Networking, Sensing and Control, pp. 116–122 (2005)

    Google Scholar 

  41. Mohammed, A-M.: Multiresolution Image Segmentation. Ph.D. Thesis, Department of Computer Science, Humboldt-Universitaet zu Berlin, Germany (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayar A. Shafaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shafaey, M.A., Salem, M.AM., Ebied, H.M., Al-Berry, M.N., Tolba, M.F. (2019). Deep Learning for Satellite Image Classification. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. AISI 2018. Advances in Intelligent Systems and Computing, vol 845. Springer, Cham. https://doi.org/10.1007/978-3-319-99010-1_35

Download citation

Publish with us

Policies and ethics