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Abstract. Anonymous Single-Sign-On authentication schemes have been proposed to allow
users to access a service protected by a verifier without revealing their identity which has
become more important due to the introduction of strong privacy regulations. In this pa-
per we describe a new approach whereby anonymous authentication to different verifiers is
achieved via authorisation tags and pseudonyms. The particular innovation of our scheme is
authentication can only occur between a user and its designated verifier for a service, and
the verification cannot be performed by any other verifier. The benefit of this authentication
approach is that it prevents information leakage of a user’s service access information, even if
the verifiers for these services collude which each other. Our scheme also supports a trusted
third party who is authorised to de-anonymise the user and reveal her whole services access
information if required. Furthermore, our scheme is lightweight because it does not rely on at-
tribute or policy-based signature schemes to enable access to multiple services. The scheme’s
security model is given together with a security proof, an implementation and a performance
evaluation.
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1 Introduction

Single-sign-on (SSO) systems are a user-friendly way of allowing users access to multiple services
without requiring them to have different usernames or passwords for each service. SSO solutions
(e.g. OpenID 2.0 [33] by the OpenID foundation or Massachusetts Institute of Technology (MIT)’s
Kerberos [31]) are designed to make the users’ identities and possibly additional personal identifiable
information (PII) available to the verifiers of the services which they wish to access. However, for
some services, a verifier may not require the user’s identity (nor any associated PII), just that
the user is authorised to access the desired service. Moreover, the introduction of more stringent
obligations with regards to the handling of PII in various jurisdictions (e.g. GDPR in Europe[19]),
requires service providers to minimise the use of PII.

Anonymous single-sign-on schemes[18,24,36,27] exist which can protect a user’s identity, but
may not do so for all entities within a scheme. Moreover, a user’s service request can be verified by
all verifiers of a system rather than the one it is intended for which may pose a potential privacy
risk to both the user and that verifier.

Our proposed scheme addresses these issues and provides the following features: (1) only one
authentication ticket is issued to a user, even if she wants to access multiple distinct services; (2)
a user can obtain a ticket from a ticket issuer anonymously without releasing anything about her
personal identifiable information — in particular, the ticket issuer cannot determine whether two
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ticket requests are for the same user or two different users; (3) a designated verifier can determine
whether a user is authorised to access its service but cannot link different service requests made
by the same user nor collude with other verifiers to link a user’s service requests; (4) designated
verifiers can detect and prevent a user making multiple authentication requests using the same
authentication tag (“double spend”) but cannot de-anonymise the user as a result; (5) tickets
cannot be forged; and (6) given a user’s ticket, a central verifier is authorised to recover a user’s
identity as well as the identities of the verifiers for the requested services in the user’s ticket.

Our contributions are: a novel, anonymous single-sign-on scheme providing the above features;
its associated security model and security definitions; a corresponding formal proof of its security
as well as an empirical performance analysis based on a Java-based implementation of our scheme.

1.1 Related Work

We now look at previous research which is most closely related to our scheme in the areas of:
i) Anonymous Single-Sign-On protocols, ii) anonymous authentication schemes, iii) multi-coupon
schemes and iv) designated verifiers signature schemes.

Anonymous Single-Sign-On schemes

One of the earliest anonymous single-sign-on system was proposed by Elmufti et al.[18] for
the Global System for Mobile communication (GSM). In their system, a user generates a different
one-time identity each time they would like to access a service and, having authenticated the
user, a trusted third party will then authenticate this one-time identity to the service provider.
Consequently, the user is anonymous to the service provider but, unlike in our scheme, not the
trusted third party who authenticated the one-time identity.

In 2010, Han et al. [24] proposed a novel dynamic SSO system which uses a digital signature
to guarantee both the unforgeability and the public verification of a user’s credential. In order
to protect the user’s privacy, their scheme uses broadcast encryption which means that only the
designated service providers can check the validity of the user’s credential. Moreover, zero-knowledge
proofs are used to show that the user is the owner of those valid credentials to prevent impersonation
attacks. However, again unlike our scheme, the user is still known to the trusted third party which
issued the credentials.

Wang et al. [36], on the other hand, propose an anonymous SSO based on group signatures [3].
In order to access a service, the user generates a different signature-based pseudonyms from her
credentials and sends the signature to the service provider. If the signature is valid, the service
provider grants the user access to the service to the user; otherwise, the service request is denied.
The real identities of users can be identified by using the opening technique in [3]. While the user
remains anonymous, their scheme (unlike ours) does not, however, provide designated verifiers, i.e.
all verifiers can validate a user’s request.

Lastly, Lee[27] proposed an efficient anonymous SSO based on Chebyshev Chaotic Maps. In
this scheme, an issuer, the “smart card processing center”, issues secret keys to users and service
providers when they join in the system and to access a service, a user and service provider establish
a session key with their respective secret keys. If the session key is generated correctly, the service
request is granted; otherwise, it is denied. However, unlike our scheme, each service provider knows
the identity of the user accessing their service.

While in [24], [36] and [27], a user can access any service in the system by using her credentials,
in our scheme, a user can only access the services which she selects when obtaining a ticket but can
do so while remaining completely anonymous to both issuer and service provider.
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Anonymous authentication schemes

With respect to anonymous authentication solutions, we consider schemes whose primary feature
is to support multiple anonymous authentication. As in our scheme, anonymous authentication
enables users to convince verifiers that they are authorised users without releasing their exact
identities.

Teranishi et al. [35] proposed a k-times anonymous authentication (k-TAA) scheme where the
verifiers determine the number of anonymous authentication that can be performed. The k-TAA
scheme provides the following two features: (1) no party can identify users who have been authenti-
cated within k times; (2) any party can trace users who have been authenticated more than k times.
The verifier generates k tags and for each authentication, a user selects a fresh tag. Nguyen et al.
[32] proposed a similar dynamic k-TAA scheme to restrict access to services not only the number
of times but also other factors such as expiry date.

Camenisch et al. [9] proposed a periodic k-TAA scheme which enables users to authenticate
themselves to the verifiers no more than k times in a given time period but supports reuse of the
k times authentication once the period is up. In this scheme, the issuer decides the number of
anonymous authentication request a user can make in a given time period. When a user makes an
anonymous authentication request, he proves to a verifier that he has obtained a valid CL signature
from the issuer.

Note, however, that our scheme also prevents a verifier from establishing whether a user has
used any of the other services thereby also guaranteeing verifier anonymity.

Furthermore, in all of these k-TAA schemes [35,32,9], authentication is not bound to a particular
verifier, whereas in our scheme authentication tags are bound to specific verifiers. Moreover, k-TAA
schemes allow verifiers to determine a user’s identity who has authenticated more than k times
while in our scheme multiple authentications to a single verifier is considered ”double spending”
which a verifier can detect but which does not lead to the de-anonymisation of a user.

However, to prevent users from potentially abusing the system, our scheme allows for a central
verifier who, given a user’s ticket, can extract from it both the user’s and verifiers’ public keys using
the authentication tags contained within it and thus establish the identities of both the user and
her associated verifiers.

Lastly, Camenisch et al. in [12] and the IBM identity mixer description of its features in [37]
define a scheme that has similar properties to ours including that of a central verifier (called “in-
spector”) trusted to reveal a user’s identity. The scheme is based on users obtaining a list of certified
attributes from an issuer and the users using a subset of their attributes to authenticate to verifiers.
The distinguishing difference between their scheme and ours is that their verification of anonymous
credentials is not bound to a designated verifier whereas our is.

Multi-coupon schemes

There is some degree of similarity between our scheme and a number of multi-coupon schemes.
Armknecht et al. [1] proposed a multi-coupon scheme for federated environments where multiple
vendors exist. In [1], a user can redeem multiple coupons anonymously with different vendors in an
arbitrary order. To prevent double-spending of a coupon, a central database is required to record
the transaction of each multi-coupon. The main difference to our scheme is that each coupon can
be redeemed against any service provider while our authentication tags can only be validated by
its designated verifier. Moreover, our “double-spend” detection is done by the verifier and does not
require a central database.
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Similarly, the schemes propose by Liu et al. [29] which provides strong user privacy and where a
user can use an e-coupon anonymously no more than k times before his identity can be recovered.
However, the user’s coupons can be redeemed against any service rather than a designated verifier
as our scheme provides.

Designated Verifiers

Jakobsson in [25] introduced the concept of a designated verifier which means that in a proof
we ascertain that nobody but this verifier can be convinced by that proof while the authors in [20]
present an anonymous attribute based scheme using designated-verifiers. In their work they focus
on identifying multiple designated verifiers This is achieved through using the verifier’s private key
in the verification so that no other third party can validate the designated verifier signature. We
adopt the high level concept of a designated verifier in our approach, i.e. given a valid authentication
tag for service A, only service A’s verifier can establish its validity. As this property is conceptually
similar to the designated signatures described in [25,20], our verifiers are called designated verifiers.
However, this is where the similarity ends with Jakobsson’s designated verifiers. Notably, in [26],
a verifier cannot convince others that the signature is from the signer because the verifier can
generate the signature by himself. In our scheme, everyone can check that the authentication tags
are signatures generated by the ticket issuer.

In summary, while a number of previous authentication schemes address the anonymity of the
user and multiple authentications, the novelty of our work is that we ensure no information leakage
across verifiers, since authentication can only occur between a user and its designated verifier
while also providing a central verifier who can de-anonymise the user and reveal the identity of
the verifiers in case of a misbehaving user. To the best of our knowledge, our anonymous single-
sign-on scheme using designated verifiers is the first which has been formally presented in term
of definitions, security models and proven to be secure under various cryptographic complexity
assumptions together with an empirical performance evaluation.

1.2 Paper Organisation

This paper is organised as follows: Section ?? provides a high-level overview of the scheme and its
claimed security properties; Section 3 outlines the applicable security model; Section 4 introduces
the mathematical concepts and notation used throughout this paper; Section 5 describes the math-
ematical construction of our while Section 6 presents the theorems for its security proof; Section 7
provides a performance evaluation of our scheme; and Section 8 concludes the paper with directions
for future work.

2 Scheme overview and security properties

Entities in our proposed scheme

Before providing a high-level overview of our anonymous single-sign-on scheme, we first introduce
the various entities in the scheme as shown in Figure 1, and define their purpose and roles:

– Central Authority (CA): The CA is a trusted third party responsible for establishing the
cryptographic keys and parameters used in the scheme and signing the public keys of the other
entities in the scheme;
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⋯
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4. Tag Validation:

4. Tag 
Validation:

5. Ticket
Trace:

V1

V𝑁

V𝑖(V∈ 𝐽𝑈)

Fig. 1. Interaction of the various entities in our scheme

– User (U): Someone who wishes to access some distinct services anonymously;
– Ticket Issuer (I): This entity issues tickets to registered, yet anonymous users for the re-

quested services;
– Designated Verifier (V): The V is a verifier for a specific service that a user might want to

access;
– Central Verifier (CV): CV is another trusted third party which is allowed to retrieve the

identities of the user, U , and the verifiers, Vs, from the authentication tags present in a user’s
ticket, TU .

– Authentication Tag (TagV ): This tag is both tied to a user, U , and a designated verifier, V
and is used to prove to the designated verifier that the user is a valid user and allowed to access
the associated service;

– Ticket (TU): A ticket which contains the authentication tags for the services a user, U , has
requested;

Overview of proposed scheme

Figure 1 illustrates at a high-level how our scheme works. For the detailed mathematical con-
struction of our scheme, please refer to Section 5. Conceptually, our scheme operates as follows:

– Registration: The issuer, verifiers, central verifier and users all register with the CA.
– Ticket Issuing: A user decides which services(and thus which verifiers) she wants to access

and requests an appropriate ticket from the issuer.
– Tag Validation: To access a service, the user presents the appropriate authentication tag to

the service. The validity period and any other restrictions of the tag can be captured in the free
text part of the tag or be a default set by the verifier. If a user’s tag is valid then the user is
logged in to the service. Note that, unlike some other Single-Sign-On systems, the issuer does
not need to be on-line for the tag validation to succeed.

– “Double-Spend” detection: Should the user present the same tag twice then the verifier can
warn the user that she is already logged in and should resume the already existing session or
offer to terminate the previous session and continue with a fresh one.
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– Ticket trace: If a user is seen to abuse the service (e.g. violate the terms and conditions), the
central verifier might be called upon to de-anonymise the user and determine any other services
she has used.

Security properties in our proposed scheme

Having defined the different entities and described how they interact, we now list the security
properties of our scheme:

– User Anonymity: In our scheme, users use pseudonyms whenever they interact with the issuer
or a verifier. As such, the issuer cannot link a user across different ticket requests. Similarly, a
user’s identity is also hidden from a designated verifier.

– Authentication Tag Unlinkability: Apart from the central verifier and the issuer, no set of
colluding verifiers can establish whether two or more different authentication tags came from
the same anonymous user.

– Verifier Anonymity: The verifier’s identify is protected from other users and verifiers, i.e.
given an authentication tag, only the designated verifier can validate it and no other verifier
(apart from the central verifier and the issuer) can determine for whom it is.

– Designated Verifiability: Given an authentication tag, TagV for verifier, V, only V can
validate it.

– “Double-spend” detection: Any verifier, V, can detect when a user attempts to re-use an
authentication tag but cannot de-anonymise the user.

– Unforgeability: Neither tickets nor individual authentication tags can be forged by any col-
luding users or verifiers.

– Traceability: There exists a trusted third party, a central verifier, who can, given a user’s ticket,
TU , retrieve the user’s and the verifiers’ public keys (and hence their respective identities) from
the authentication tags contained within TU .

In the next section, we provide the security models in which these properties hold while Section 6
contains the associated theorems which are used to prove those models.

3 Security Model Overview

We now present a high-level overview of the security models which are used to prove the security
of our scheme. The models are defined by the following games executed between a challenger and
an adversary.

Unlinkability Game:

This game covers the security properties of user anonymity, authentication tag unlinkability, verifier
anonymity, designated verifiability and “double spend” detection. In this game verifiers and other
users can collude but cannot profile a user’s whole service information. In other words, no party can
link different tags to the same user and determine a verifier’s identity included in an authentication
tag (thus proving verifier anonymity) except for the designated verifier, the ticket issuer or the
central verifier. Moreover, for each authentication tag, the adversary can query its validity once,
which in the context of this game addresses the properties of designated verifiability and “double
spending”.

This game is formally defined in Appendix B.1.
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Table 1. Syntax Summary

Syntax Explanations Syntax Explanations

1` A security parameter Vi The i-th ticket verifier
CA Central authority JU The service set of U consisting of the identities
I Ticket issuer of ticket verifiers & IDCV
V Ticket verifier PP Public parameters
U User PsU A set of pseudonyms of U
CV Central verifier PsV The pseudonym generated for the verifier V
IDI The identity of I TagV An authentication tag for the verifier V
IDV The identity of V TagCV An authentication tag for CV
IDU The identity of U TU A ticket issued to U
IDCV The identity of CV |X| The cardinality of the set X

ε(`) A negligible function in ` x
R← X x is randomly selected from the set X

σI The credential of I A(x)→ y y is computed by running the algorithm A(·)
σV The credential of V with input x

σU The credential of U KG(1`) A secret-public key pair generation algorithm

σCV The credential of CV BG(1`) A bilinear group generation algorithm
MSK Master Secret Key p, q prime numbers
H1, H2 cryptographic hash functions

Unforgeability Game:

This game focuses on proving the unforgeability property of our scheme. Users, verifiers and the
central verifier can collude but cannot forge a ticket on behalf of the ticket issuer.

This game is formally defined in Appendix B.2.

Traceability Game:

This game focuses on the traceability property of our scheme. It shows that even if users, verifiers
and the central verifier collude, they cannot generate a ticket which is linked to a user who has
never obtained a ticket or a user who is not the real owner of the ticket.

This game is formally defined in Appendix B.3.

4 Preliminaries

In this section, we introduce the mathematical concepts used by our scheme including bilinear
groups, the BBS+ signature scheme, zero knowledge proofs and various complexity assumptions
needed to ensure its security. The mathematical notation and symbols used throughout this paper
are summarised in Table 1.

4.1 Bilinear Groups and pairings

In our scheme, bilinear groups are used to support the BBS+ signature scheme (defined in Sec-
tion 4.2 below).

Let G1, G2 and Gτ be three cyclic groups with prime order p. A pairing is defined to be a
bilinear, non-degenerative and computable map e : G1 ×G2 → Gτ [7]. Given a security parameter,
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1`, we define BG(1`) → (e, p,G1,G2,Gτ ) to be a bilinear group generation algorithm. Note that
Galbraith, Paterson and Smart [21] classified parings into three basic types and our scheme is
based on the Type-III pairing where the elements on G1 are short (≈ 160 bits). This was chosen
because for all g ∈ G1 and g ∈ G2, there exists an polynomial-time efficient algorithm to compute
e(g, g) ∈ Gτ resulting in an more efficient algorithm.

4.2 BBS+ Signature

Based on the group signature scheme [6], Au, Susilo and Mu [2] proposed the BBS+ signature. This
signature scheme works as follows:

– Setup: Let BG(1`)→ (e, p,G1,G2,Gτ ), h be a generator of G1 and g, g0, g1, · · · , gn be generators
of G2.

– KeyGen: The signer selects x
R← Zp and computes Y = hx. The secret-public key pair is (x, Y ).

– Signing: To sign a block message (m1,m2, · · · ,mn) ∈ Znp , the signer selects w, e
R← Zp, and

computes σ = (g0g
w
∏n
i=1 g

mi
i )

1
x+e . This signature on (m1,m2, · · · ,mn) is (w, e, σ).

– Verification: Given a signature (w, e, σ) and (m1,m2, · · · ,mn), the verifier checks e(Y he, σ)
?
=

e(h, g0g
w
∏n
i=1 g

mi
i ). If so, the signature is valid; otherwise, it is invalid.

Au, Susilo and Mu [2] reduced the security of the above signature to the q-SDH assumption (see
Definition 2 below) in Type-II paring. Recently, Camenisch, Drijvers and Lehmann [8] reduced its
security to the JOC-version-q-SDH assumption (see Definition 3 below) for Type-III pairing.

4.3 Zero-Knowledge Proof

In our scheme, zero-knowledge proof of knowledge protocols are used to prove knowledge and state-
ments about various discrete logarithms including: (1) proof of knowledge of a discrete logarithm
modulo a prime number [34]; (2) proof of knowledge of equality of representation [14]; (3) proof of
knowledge of a commitment related to the product of two other commitments [11]. We follow the
definition introduced by Camenish and Stadler in [13] which was formalised by Camenish, Kiayias
and Yung in [10]. By PoK:{(α, β, γ) : Υ = gαhβ ∧ Υ̃ = g̃αh̃γ}, proof on knowledge of integers α β
and γ such that Υ = gαhβ and Υ̃ = g̃αh̃β hold on the groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉,
respectively. The convention is that the letters in the parenthesis (α, β, γ) represent the knowledge
which is being proven by using the other values which the verifier can have access to.

4.4 Complexity Assumptions

The security of our scheme relies on a number of complexity assumptions defined in this subsection.

Definition 1. (Discrete Logarithm (DL) Assumption [23]) Let G be a cyclic group with prime order
p and g be a generator of G. Given Y ∈ G, we say that the discrete logarithm (DL) assumption
holds on G if for all adversary can output a number x ∈ Zp such that Y = gx with a negligible
advantage, namely

AdvDLA = Pr [Y = gx|A(p, g,G, Y )→ x] ≤ ε(`).

The DL assumption is used in the proof of the traceability property of our scheme.
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Definition 2. (q-Strong Diffie-Hellman (q-SDH ) Assumption [4]) Let BG(1`) → (e, p,G1,G2,Gτ ).

Suppose that g and g are generators of G1 and G2, respectively. Given a (q + 2)-tuple (g, gx, gx
2

,
· · · , gxq , g) ∈ Gq+1

1 ×G2, we say that q-strong Diffie-Hellman assumption holds on (e, p,G1,G2,Gτ )

if for all probabilistic polynomial-time (PPT) adversary A can output (c, g
1
x+c ) ∈ Zp × G1 with a

negligible advantage, namely

Advq−SDHA = Pr
[
A(g, g, gx, gx

2

, · · · , gx
q

)→ (c, g
1
x+c )

]
≤ ε(`),

where c ∈ Zp − {−x}.

Definition 3. ((JOC Version) q-Strong Diffie-Hellman (JOC-q-SDH) Assumption [5]) Let BG(1`)→
(e, p,G1,G2, Gτ ). Given a (q+ 3)-tuple (g, gx, · · · , gxq , g, gx) ∈ Gq+1

1 ×G2
2, we say that the JOC- q-

strong Diffie-Hellman assumption holds on the bilinear group (e, p,G1,G2,Gτ ) if for all probabilistic

polynomial-time (PPT) adversaries A can outputs (c, g
1
x+c ) ∈ Zp ×G1 with a negligible advantage,

namely

AdvJOC−q−SDHA = Pr
[
(c, g

1
x+c )← A(g, gx, · · · , gx

q

, g, gx)
]
< ε(`),

where c ∈ Zp − {−x}.

The security of the BBS+ signature used in our scheme relies on both the (q-SDH ) and JOC-
q-SDH) assumptions.

Definition 4. (Decisional Diffie-Hellman (DDH) Assumption [17]) Let BG(1`) → (e, p,G1,G2, Gτ ).
Give a 3-tuple (ξ, ξα, ξβ , T ) ∈ G3

1, we say that the decisional Deffie-Hellman assumption holds
on (e, p,G1,G2,Gτ ) if for all probabilistic polynomial-time (PPT) adversaries A can distinguish
T = ξαβ or T = M with negligible advantage, namely

AdvDDHA = |Pr[A(ξ, ξα, ξβ , T = ξαβ) = 1]− Pr[A(ξ, ξα, ξβ , T = M) = 1]| < ε(`)

where M
R← G1.

Note that the DDH assumption is believed to be hard in both G1 and G2 for the Type-III
pairing [22] used in our scheme which means that we actually makes use of the following stronger
complexity assumption.

Definition 5. (Symmetric External Diffie-Hellman (SXDH) Assumption [22]) Let BG(1`)→ (e, p,G1,
G2,Gτ ). We say that the symmetric external Diffie-Hellman assumption holds on (e, p,G1,G2, Gτ )
if the decisional Diffie-Hellman (DDH) assumption holds on both G1 and G2.

5 Scheme construction

In this section, we present a more detailed description of the interactions (cf. Fig. 1) between
the entities of our scheme. These interactions are: (i) System Initialisation, (ii) Registration, (iii)
Ticket Issuing, (iv) Tag Verification and (v) Ticket Tracing. Moreover, we provide details of the
mathematical constructs used in these interactions. Formal definitions of the algorithms presented
in this section can be found in Appendix A.
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System Set-up:CA runs BG(1`)→ (e, p,G1,G2,Gτ ) with e : G1×G2 → Gτ . Let g, h, ξ, h̃ be generators
of the group G1 and g be generators of G2. Suppose thatH1 : {0, 1}∗ → Zp andH2 : {0, 1}∗ → Zp are

two cryptographic hash functions. CA selects xa
R← Zp and computes YA = gxa . The master secret

key is MSK = xa and the public parameters are PP = (e, p,G1,G2,Gτ , g, h, ξ, h̃, g, YA, H1, H2).

Fig. 2. System Set-up Algorithm

5.1 System Initialisation

Fig. 2 shows the details of the system initialisation in which the central authority CA generates a
master secret key, MSK, and the required public parameters, PP .

Note: Once the system has been set up, all communication between the different entities in our
scheme is assumed to be over secure, encrypted channels which can be established by the various
entities using standard Public Key Infrastructure. This ensures that our scheme is not susceptible
to simple Man-In-The-Middle attacks.

5.2 Registration

Fig. 3 depicts the registration processes. When registering with the CA, I, V, U and CV use the PP
and generate their own secret-public key pairs. They then send their identities and associated public
keys to CA which, after receiving a registration request from an entity, uses MSK to generate the
corresponding credential for them. Note that only the ticket issuer has two public keys, YI and ỸI .
The first one is used to sign the tickets while the second one is used to validate the ticket.

5.3 Ticket Issuing

During the ticket issuing process (shown in Fig. 4), the user U defines JU to be the set containing
the identities of the ticket verifiers whose services she wants to access as well as the identity of the
central verifier. In order to request a ticket from I, U creates pseudonyms, PV and QV , for each
IDV ∈ JU by using her secret key to protect the anonymity of the verifiers. She also produces
a proof of knowledge of her credentials and submits this proof together with the set JU and the
pseudonyms to I to convince him that she is a registered user and created the pseudonyms. Once
I has received this information and verified the proof of knowledge, he generates an authentication
tag TagV for each IDV ∈ JU as well as an overall TagCV for CV in case the ticket needs to be
traced. Note that these tags are constructed using the public keys of the respective verifiers and
thus can only be validated by the corresponding V or the central verifier, CV. The ticket is formed
from these individual tags. Note that each tag and the overall ticket are signed by the issuer using
his private key while the integrity of the tags and the overall ticket is assured using hashes of their
respective content. The ticket is sent back to U who verifies the integrity of each tag and the overall
ticket using the supplied hash values as well as that each tag and the overall ticket have been signed
by the issuer.

5.4 Tag Verification

The tag verification process is shown in Fig. 5. When the user U wants to access a service, the tag
verifier V send his identity information to the user which U uses to look up the corresponding tag,
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Ticket-Issuer-Registration

Ticket Issuer: I Central Authority: CA
Selects xi

R← Zp, and computes YI = ξxi

and ỸI = gxi

The secret-public key pair is (xi, YI , ỸI).
IDI ,YI ,ỸI−−−−−−−→ Select ei, ri

R← Zp and computes

Verifies: e(σI , YAg
ei)

?
= e(ghriYI , g)

σI ,ri,ei←−−−−− σI = (ghriYI)
1

xa+ei

Keeps the credential as CredI = (ei, ri, σI) Stores (IDI , YI , ỸI , (ri, ei, σI))

Ticket-Verifier-Registration

Ticket-Verifier: V Central Authority: CA
Selects xv

R← Zp and computes YV = ξxv

The secret-public key pair is (xv, YV )
IDV ,YV−−−−−→ Selects λv, rv

R← Zp and computes

Verifies: e(σV , YAg
ev )

?
= e(ghrvYV , g)

σV ,rv,λv←−−−−−− σV = (ghrvYV )
1

xa+λv

Keep the credential as CredV = (λv, rv, σV ) Stores (IDV , YV , (rv, λv, σV ))

User-Registration

User: U Central Authority: CA
Selects xu

R← Zp, and computes YU = ξxu

This secret-public key pair is (xu, YU )
IDU ,YU−−−−−→ Select eu, ru

R← Zp and computes

Verifies: e(σU , YAg
eu)

?
= e(ghruYU , g)

σU ,eu,ru←−−−−−− σU = (ghruYU )
1

xa+eu

Keep the credential as CredU = (eu, ru, σU ). Stores (IDU , YU , (ru, euσU ))

Central-Verifier-Registration

Central Verifier: CV Central Authority: CA
Selects xcv

R← Zp, and computes YCV = ξxcv

The secret-public key pair is (xcv, YCV )
IDCV ,YCV−−−−−−−→ Select λcv, rcv

R← Zp and computes

Verifies: e(σcv, YAg
λcv )

?
= e(ghrcvYCV , g)

σCV ,λcv,rcv←−−−−−−−− σCV = (ghrcvYCV )
1

xa+λcv

Keep the credential as CredCV = (λcv, rcv, σCV ) Stores (IDCV , YCV , (rcv, λcv, σCV ))

Fig. 3. Registration Algorithm

TagV . In order to access the service, U must submit a proof of knowledge of her secret key alongside
the relevant authentication tag TagV to prevent users from sharing authentication tags. V checks
his table of previously received tags to ensure that the tag has not already been used previously
(double-spend detection), before verifying the user’s proof of knowledge in Step 1. Step 2 checks
the integrity of the tag using a hash function while Step 4 verifies that it has been issued by the
ticket issuer, I. Step 3 can only be verified by V as it requires the private key of the verifier. Only
if V can complete all steps successfully, is the user granted access.

11



Ticket-Issuing

Let JU is U ’s list of the identities of verifiers which U wants to access as well as IDCV

User: U Ticket Issuer: I
Computes BU = ghruYU

Select v1, v2, zu
R← Zp and

computes v3 = 1
v1

, σ̄U = σv1U ,

v = ru − v2v3, B̄U = Bv1U h
−v2 ,

σ̃U = σ̄−euU Bv1U (= σ̄xaU ), (zv =
H1(zu||IDV ), PV = YUY

zv
P ,

QV = ξzv )IDV ∈JU

Computes the proof
∏1
U :

σ̄U ,σ̃U ,B̄U ,JU ,
∏1
U−−−−−−−−−−−−−→

((PV ,QV )IDV ∈JU )
Verifies

∏1
U and e(σ̄U , Y )

?
= e(σ̃U , g).

PoK{(xu, ru, eu, σU , v1, v2, v3, v, Selects tu
R← Zp, and computes CU = ξtu .

(zv)IDV ∈JU ) : σ̃U
B̄U

= σ̄−euU hv2 For IDV ∈ JU , selects dv, wv, ev
R← Zp

∧ g−1 = B̄−v3U ξxuhv ∧ (PV = and computes DV = H2(CU ||IDV ),

ξxuY zvP ∧QV = ξzv )V ∈JU } EV = ξdv , FV = Y dvV , KV = YV Y
dv
P ,

sv = H1(PV ||QV ||EV ||FV ||KV ||Texta)

and ZV = (ghwv h̃sv )
1

xi+ev

Let TagV = (PV , QV , EV , FV ,KV , T ext,
sv, wv, ev, ZV )

For the central verifier IDCV , selects

wcv, ecv
R← Zp and computes

scv = H1(s1||s2|| · · · ||s|JU |) and

ZCV = (ghwcv h̃scv )
1

xi+ecv

a) For IDV ∈ JU , verify
CU ,TU←−−−− The ticket is: TU =

{
(DV , TagV )|V ∈ JU

}
DV

?
= H2(CU ||IDV ), ∪

{
scv, wcv, ecv, ZCV

}
sv

?
= H1(PV ||QV ||EV ||FV ||KV ||Text) where sv and scv are the serial numbers

and e(ZV , ỸIg
ev )

?
= e(ghwv h̃sv , g). of TagV and TU , respectively

b) Verify scv
?
= H1(s1||s2|| · · · ||s|JU |)

and e(ZCV , ỸIg
ecv ) = e(ghwcv h̃scv , g)

c) Keep (zu, CU ) secret

a Text consists of the system version information and all other information which can be used by
verifiers to validate the tag, e.g. valid period, tag type, etc.

Fig. 4. Ticket Issuing Algorithm

5.5 Ticket Tracing

Lastly, in the case that a user U ’s whole service information JU needs to be traced, the central
verifier, CV, sends its identity to U who is then required to submit the information needed by the
Ticket Validation algorithm as well as her overall ticket. Note that, provided a single tag is known,
the whole ticket information could also be obtained directly from the issuer, I, in case the user is
not co-operating.

12



Tag-Verification

User: U Tag verifier: V (IDV ∈ JU )

Computes DV = H2(CU ||IDV )
IDV←−−− Initialize a table TV if none exists already.

and searches (DV , TagV ).
Computes zv = H1(zu||IDV )

and the proof:
∏2
U :

PoK{(xu, zv) : PV = ξxuY zvP ∧
∏2
U ,TagV−−−−−−→ If (ev, wv, sv, ZV ) ∈ TV , aborts; otherwise, adds

QV = ξzv}. (ev, wv, sv, ZV ) in TV and checks:

(1) The correctness of
∏2
U ;

(2) sv
?
= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?
= ExvV ;

(4) e(ZV , YSg
ev )

?
= e(ghwv h̃sv , g).

If (1), (2), (3) and (4) hold, the tag is valid;
otherwise, it is invalid.

Fig. 5. Tag Verification Algorithm

On receipt of this information, the central verifier first validates that the submitted tag TagCV
passes the standard verification process (see Section5.4) as the central verifier’s IDCV is always
included in JU . As discussed previously, this steps ensures that U is a valid user and that the tag
belongs to her. Once this steps has passed, the central verifier can then validate the integrity of
the ticket and that the previously presented authentication tag is indeed part of the ticket which
establishes that the ticket does indeed belong to user who presented it. Using his private key, the
central verifier can now compute the user U ’s public key as well as the public keys of all the verifiers
contained within the authentication tags and thus determine the user’s identity and her service
information JU .

6 Security Analysis

In this section we present the theorems which establish the security of our scheme.

Theorem 1 (Unlinkability). An anonymous Single-Sign-On for n designated services with trace-
ability scheme in Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 is (ρ1, ρ2, ρ3, ε

′(`))-selectively un-
linkable if the DDH assumption holds on the bilinear group (e, p,G1,G2,Gτ ) with the advantage
at most ε(`), and H1, H2 are secure cryptographic hash functions, where %1 is the total number
of verifiers selected by A to query tickets, %2 is the number of ticket validation queries, %3 is the

number of ticket trace queries, ε(`) = ε′(`)
2 .

The proof of Theorem 1 follows from the unlinkability game in Appendix B.1 and is formally
proved in Appendix F.

Theorem 2 (Unforgeability). An anonymous Single-Sign-On for n designated services with
traceability scheme in Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 is (%, ε′(`))-unforgeable if the
JOC-version-q-SDH assumption holds on the bilinear group (e, p,G1,G2,Gτ ) with the advantage

13



Ticket-Trace

User: U Central Verifier: CV
Computes DV = H2(CU ||IDCV )

IDCV←−−−−
and searches (DV , TagCV ).
Computes zv = H1(zu||IDCV )

and the proof:
∏2
U :

PoK{(xu, zv) : PV = ξxuY zvCV ∧
∏2
U ,TagCV ,TU−−−−−−−−−−→ Firstly, verify TagCV is contained in TU ;

QV = ξzv}. abort if this check fails
Secondly, verify that the tag is valid by:

(1) The correctness of
∏2
U ;

(2) sv
?
= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?
= ExvV ;

(4) e(ZV , YSg
ev )

?
= e(ghwv h̃sv , g).

If (1), (2), (3) and (4) hold, the tag is valid;
otherwise abort as it is invalid.
Finally, de-anonymise the user and
her services by:
(5) Let ΩU = {}. For each TagV in TU

(i) Compute: YU = PV
Q
xp
V

and YV = KV
E
xp
V

.

(ii) Look up IDV for YV ’s. Check:

(iiia) sv
?
= H1(PV ||QV ||EV ||KV ||Text);

(iiib) e(ZV , YSg
wv )

?
= e(ghwv h̃sv , g);

(iv) If (c1) and (c2) hold, set
ΩU = ΩU ∪ {IDV }; otherwise abort

(v) verify YU remains the same for all tags

(6) scv
?
= H1(s1||s2|| · · · ||s|ΩU |);

(7) e(ZCV , ỸSg
wcv )

?
= e(ghwcv h̃scv , g).

Provided (5), (6) and (7) can be computed,
CV can determine that the service
information of U with public key YU is:
JU = ΩU ; otherwise, the trace has failed.

Fig. 6. Ticket Trace Algorithm

at most ε(`), and H1, H2 are secure cryptographic hash functions, where % is the total number of
verifiers selected by A to query tickets, % ≤ q, ε(`) = (p−qp + 1

p + p−1
p3 )ε′(`).

Theorem 2 is demonstrated by the unforgeability game in Appendix B.2 and it is formally proved
in Appendix G.

Theorem 3 (Traceability). An anonymous Single-Sign-On for n designated services with trace-
ability scheme in Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 is (ρ, ε(`))-traceable if the q-SDH
assumption holds on the bilinear group (e, p,G1,G2,Gτ ) with the advantage at most ε1(`), the DL
assumption holds on the group G1 with the advantage at most ε2(`), and H1, H2 are secure cryp-
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tographic hash functions, where ε(`) = max
{
ε1(`)

2 (p−qp + 1
p + p−1

p3 ), ε2(`)
2

}
, % is the total number of

ticket issuing queries made by A and % < q.

Theorem 3 follows from the traceability game in Appendix B.3 and its formal proof is given in
Appendix H.

7 Benchmarking results

Our proposed scheme has been implemented ([16]) on a Dell Inspiron Latitude E5270 laptop with
an Intel Core i7-6600U CPU, 1TB SSD and 16GB of RAM running Fedora 27.

The implementation makes use of bilinear pairings using elliptic curves as well as other crypto-
graphic primitives. As such the implementation of the scheme relies on the JPBC library ([15]) for
the bilinear pairings and uses the cryptographic functions provided by bouncycastle ([28]).

7.1 Timings

Table 2 shows the results of the computational time spent in the various phases of our proposed
scheme which required more complex computations (i.e. some form of verification or generation of
proofs) . Note that the Java based implementation of the JPBC API ([15]) was used throughout.

The bilinear mapping used in the protocol implementations was a Type F elliptic curve where G
is the group of points of the elliptic curve and |G| = p is its prime order whose binary representation
requires r-bits.

The creation of credentials by the CA for the issuer, user and the (central) verifiers during the
registration phase of the protocol is on average around 12ms for r = 160 bits and 30ms for r = 320
bits while the verification of those credentials by the various parties takes about 300ms and 650ms
for 160 bits and 320 bits respectively.

It can be seen from Table 2 that the current implementation of the our scheme is reasonably
fast for elliptic curves where r = 160 (e.g. ≈ 1.5s and ≈ 250ms for ticket issuing and verification
respectively) and still acceptable for r = 320 bits (≈ 4s and ≈ 600ms for the same steps).

Moreover, it should be possible to improve the performance of the code by switching from the
current Java-based version to using a Java-wrapper to the C-based implementation of the pbc
libraries ([30]), instead.

8 Conclusion and Future Work

Previous Anonymous Single-Sign-On schemes usually protect the user’s identity from other veri-
fiers but not always the issuer nor the verifier to whom the user needs to authenticate. However,
previously, the identity of these verifiers has not been considered extensively and neither has the
need to ensure that only a designated verifier can validate a given access request. In this paper
we proposed an Anonymous Single-Sign-On scheme which enables users and verifiers to remain
anonymous throughout while protecting the system from misbehaving users through a central ver-
ifier who can, if required, trace the identities of a user and her associated verifiers. Moreover, we
provided a formal security model and proofs for the security properties of our scheme as well as an
implementation demonstrating the feasibility of deployment.
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Table 2. Benchmark results (in ms)

Protocol phase Entity (r,V), r=#bits; V=#verifiers

(160, 2) (160, 3) (320, 2) (320, 3)

System Initialisation - Central Authority (CA)

initialise the system CA 1398 3385

Registration - Issuer (I)

generate I credentials CA 12 45

verify I credentials I 641 979

Registration - User (U)

generate user credentials CA 12 20

verify user credentials User 301 498

Registration - Central Verifier (CV)

generate CV credentials CA 9 23

verify CV credentials CV 269 497

Registration - Verifier (V)

generate V credentials CA 10 23

verify V credentials V 290 623

Issuing phase

generate Π1
U & ticket request User 93 101 280 309

verify Π1
U , generate ticket Issuer 481 515 916 1044

verify ticket User 764 960 1960 2567

Tag Verification - Verifier (V)

retrieve TagV & generate Π2
U User 13 34

verify Π2
U & TagV V 225 575

Ticket Tracing - Central Verifier (CV)

retrieve ticket TU & TagCV ; generate Π2
U User 8 9 33 37

verify Π2
U , TagCV ; trace TU CV 983 1146 2575 3182

In our scheme, a user can currently only authenticate to a verifier once as there is only one
authentication tag for each verifier in a user’s ticket. If the user needs to authenticate herself to a
verifier, V, multiple times, she must request additional tickets with the required authentication tag
for V from the issuer. Our scheme could alternatively be amended to allow multiple authentication
tags per verifier in each ticket. In this case the scheme’s security model and proofs would need to
be amended to support this.

Anonymous Single-Sign-On was the main motivational use case for our scheme, but there are
other scenarios to which the could be applied, e.g. the purchase of tickets for tourist attractions,
where being able to issue a ticket through an Android implementation would be appropriate. Initial
results however demonstrate that the timings on an Android client are significantly slower, for
example ticket validation can take ≈ 200 times longer than on the laptop. Future work will focus
on improving the scheme’s performance further (especially on the Android platform) by moving
from a pure Java-based implementation to a C-based version.
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Lastly, extending our scheme with an option for users to enable the controlled release of personal
information to a given verifier, e.g. by letting a user control which verifier is allowed to deanonymise
her authentication tag, is another area of future research.
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prove the Customer Experience”, EP/N028295/1.
The authors would also like to thank Dr François Dupressoir for his valuable feedback on an early
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A Formal Definition

The definition of our scheme is formalised by the following five algorithms:

1. Setup (1`) → (MSK,PP ) . CA inputs a security parameter 1`, and outputs the master secret
key MSK and the public parameters PP .

2. Registration: This algorithm consists of the following four sub-algorithms:

– Ticket-Issuer-Registration (I(IDI , SKI , PKI , PP ) ↔ CA(MSK,PKI , PP )) → (σI , (IDI ,
PKI)). This is an interactive algorithm executed between CA and I. I runs the secret-public
key pair generation algorithm KG(1`)→ (SKI , PKI), inputs its identity IDI , secret-public
key pair (SKI , PKI) and the public parameters PP , and outputs a credential σI . CA inputs
the master secret key MSK, I’s public key PKI and the public parameters PP , and outputs
the identity IDI and the public key PKI .

– Ticket-Verifier-Registration (V(IDV , SKV , PKV , PP )↔ CA(MSK,PKV , PP ))→ (σV ,
(IDV , PKV )). This is an interactive algorithm executed between CA and V. V runsKG(1`)→
(SKV , PKV ), inputs its identity IDV , secret-public key pair (SKV , PKV ) and the public
parameters PP , and outputs a credential σV . CA inputs the master secret key MSK, V’s
public key PKV and the public parameters PP , and outputs the identity IDV and the
public key PKV .

– User-Registration (U(IDU , SKU , PKU , PP )↔ CA(MSK,PKU , PP ))→ (σU , (IDU , PKU )).
This is an interactive algorithm executed between CA and U . U runsKG(1`)→ (SKU , PKU ),
inputs its identity IDU , secret-public key pair (SKU , PKU ) and the public parameters PP ,
and outputs a credential σU . CA inputs the master secret key MSK, U ’s public key PKU

and the public parameters PP , and outputs the identity IDU and the public key PKU .

– Central-Verifier-Registration (P(IDCV , SKCV , PKCV , PP ) ↔ CA(MSK,PKCV , PP )) →
(σCV , (IDCV , PKCV )). This is an interactive algorithm executed between CA and CV. CV
runs KG(1`) → (SKCV , PKCV ), inputs its identity IDCV , secret-public key pair (SKCV ,
PKCV ) and the public parameters PP , and outputs a credential σCV . CA inputs the master
secret key MSK, CV’s public key PKCV and the public parameters PP , and outputs the
identity IDCV and the public key PKCV .

3. Ticket-Issuing (U(SKU , PKU , JU , σU , PP )↔ I(SKI , PKI , PP )) → (TU , JU ). This is an in-
teractive algorithm executed between U and I. U takes as input his secret-public key pair
(SKU , PKU ), his service information JU consisting of the identities of ticket verifiers, his cre-
dential σU and the public parameters PP , and outputs a ticket TU = TagCV ∪{TagV |V ∈ JU}
where the authentication tags TagV and TagCV can only be validated by the verifier V with
V ∈ JU and the central verifier CV, respectively. I takes as input his secret-public key pair
(SKI , PKI) and the public parameters PP , and outputs the service information JU .

4. Ticket-Validation (U(SKU , PKU , TagV , PP ) ↔ V((SKV , PKV ), PKI , PP )) → (⊥, (1, TagV )
/(0, TagV )). This is an interactive algorithm executed between U and V with V ∈ JU . U takes
as input his secret-public key pair (SKU , PKU ), the authentication tag TagV and the public
parameters PP , and outputs ⊥. V takes input his secret-public key pair (SKV , PKV ), I’s
public key PKS and the public parameters PP , and outputs (1, TagV ) if V ∈ JU and the
authentication tag TagV is valid; otherwise, it outputs (0, TagV ) to indicate an invalid tag.
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5. Ticket-Trace (SKCV , PKCV , TagCV , TU , PP )) → (U , JU ). CV takes as inputs his secret-public
key pair (SKCV , PKCV ), the authentication token TagCV , the ticket TU and the public pa-
rameters PP , and outputs U and U ’s whole service set JU .

Definition 6. An anonymous single-sign-on for n designated services with traceability is correct if

Pr



Setup(1`)→ (MSK,PP ) ;
Ticket-Issuer-Registration(S(IDI , SKI , PKI , PP )↔
CA(MSK,PKI , PP ))→ (σI , (IDI , PKI));
Ticket-Verifier-Registration(V(IDV , SKV , PKV , PP )↔

Ticket-Validation(U(SKU , CA(MSK,PKV , PP ))→ (σV , (IDV , PKV ));
PKU , TagV , PP )↔ User-Registration(U(IDU , SKU , PKU , PP )↔ CA(MSK,
V((SKV , PKV ), PKI , PKU , PP ))→ (σU , (IDU , PKU ));
PP ))→ (⊥, (1, TagV )) Central-Verifier-Registration(S(IDCV , SKCV , PKCV , PP )

↔ CA(MSK,PKCV , PP ))→ (σP , (IDCV , PKCV ));
Ticket-Issuing(U(SKU , PKU , JU , σU , PP )↔ I(SKI ,
PKI , PP ))→ (TU , JU );
V ∈ JU



= 1

and

Pr



Setup(1`)→ (MSK,PP ) ;
Ticket-Seller-Registration(I(IDI , SKI , PKI , PP )↔
CA(MSK,PKS , PP ))→ (σI , (IDI , PKI));
Ticket-Verifier-Registration(V(IDV , SKV , PKV , PP )↔

Ticket-Trace(SKCV , PKCV , CA(MSK,PKV , PP ))→ (σV , (IDV , PKV ));
TagCV , TU , PP )→ (U , JU ) User-Registration(U(IDU , SKU , PKU , PP )↔ CA(MSK,

PKU , PP ))→ (σU , (IDU , PKU ));
Central-Verifier-Registration(S(IDCV , SKCV , PKCV , PP )
↔ CA(MSK,PKCV , PP ))→ (σP , (IDCV , PKCV ));
Ticket-Issuing(U(SKU , PKU , JU , σU , PP )↔ I(SKI ,
PKI , PP ))→ (TU , JU ).


= 1.

B Security Model

The security model of our scheme is defined by the following three games executed between an
adversary A and a challenger C.

B.1 Unlinkability Game

This game is used to define the unlinkability, i.e. even if some ticket verifiers collude with potential
users, they cannot profile the whole service information of other users. We assume that S and P
cannot be compromised because they can know a user’s whole service information by themselves.
This game is formalized as follows:
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Setup. C runs Setup(1`)→ (MSK,PP ) and sends PP to A.

Phase 1. A can make the following queries.

Registration Query. A adaptively makes the following registration queries.

1. Ticket Issuer Registration Query. C runs KG(1`) → (SKI , PKI) and Ticket-Issuer-Registration
(I(IDI , SKI , PKI , PP ) ↔ CA(MSK,PKS , PP )) → (σI , (IDI , PKI)), and sends (PKI , σI)
to A.

2. Ticket Verifier Registration Query. Let CorruptV be the set consisting of the identities of verifiers
corrupted byA.A can adaptively submit a verifier’ identity IDV : (1) if IDV ∈ CorruptV ,A first
runsKG(1`)→ (SKV , PKV ), and then runs Ticket-Verifier-Registration(V(IDV , SKV , PKV , PP )
↔ CA(MSK,PKV , PP )) → (σV , (IDV , PKV )) with C; (2) if IDV /∈ CorruptV , C runs
KG(1`)→ (SKV , PKV ), and Ticket-Verifier-Registration(V(IDV , SKV , PKV , PP )↔ CA(MSK,
PKV , PP ))→ (σV , (IDV , PKV )), and sends (PKV , σV ) to A.

3. User Registration Query. A can adaptively submit a user’s identity IDU and runs KG(1`) →
(SKU , PKU ).A and C run User-Registration(U(IDU , SKU , PKU , PP )↔ CA(MSK,PKU , PP ))
→ (σS , (IDU , PKU )). C sends σU to A.

4. Central Verifier Registration Query. C runsKG → (SKCV , PKCV ) and Central-Verifier-Registration
(CV(IDCV , SKCV , PKCV , PP )↔ CA(MSK,PKCV , PP ))→ (σCV , (IDCV , PKCV )). C sends
(PKCV , σCV ) to A.

Ticket Issuing Query. A adaptively submits a set of service information JU to C. C runs Ticket-
Issuing(U(SKU , PKU , JU , σU , PP )↔ I(SKI , PKI , σI , PP ))→ (TU , JU ). Let QI be the set which
consists of the ticket information queried by A and initially empty. C adds (TU , JU ) into QI and
sends TU to A.

Ticket Validation Query. C initializes a table TV . A can adaptively submit an authentication tag
TagV to C. If TagV ∈ TV , C aborts; otherwise, C adds TagV into TV and works as follows. C
runs Ticket-Validating(U(SKU , PKU , TagV , PP ) ↔ V(SKV , PKV , PKI , PP )) → (⊥, (1, TagV )/
(0, TagV )) and returns (1, TagV ) to A if TagV is valid and V ∈ JU ; otherwise, (0, TagV ) is returned
to indicate V /∈ JU . Let QV be the set which consists of the ticket validation queried by A and
initially empty. C adds (TU , JU ) into QV .

Ticket Trace Query. A can adaptively submit a ticket TU . C runs Ticket-Trace(U(TU )↔ CV(SKCV ,
PKCV , TU , PP ))→ (⊥, JU ), and returns JU to A if TU ∈ QI. Let QT be the set which consists of
the ticket trace information queried by A and initially empty. C adds (TU , JU ) into QT .

Challenge. A submits two verifiers V ∗0 and V ∗1 with the limitation that IDV ∗0
, IDV ∗1

/∈ CorruptV .
C flips an unbiased coin with {0, 1} and obtains a bit b ∈ {0, 1}. C sets JU∗ = {V ∗b } and runs
Ticket-Issuing(U(SKU∗ , PKU∗ , JU∗ , σU∗ , PP )↔ I(SKI , PKI , σI , PP ))→ (TU∗ , JU∗) where TU∗ =
(Tag∗Vb , TagCV ) and Tag∗Vb /∈ TU for all (TU , JU ) ∈ QI, (TU , JU ) ∈ QV and (TU , JU ) ∈ QT . C sends
TU∗ to A.

Phase 2. It is the same as in Phase 1.

Output. A outputs his guess b′ on b. A wins the game if b′ = b.
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Definition 7. An anonymous single-sign-on for n designated services with traceability scheme is
(%1, %2, %3, ε(`)) user secure if for all probabilistic polynomial-time (PPT) adversary A making at
moset %1 ticket issuing queries, %2 ticket validation queries and %3 ticket trace queries can win the
above game with negligible advantage, namely AdvA =

∣∣Pr [b′ = b]− 1
2

∣∣ ≤ ε(`).
We say that a scheme is selectively unlinkable if an initialization phase Initialization is added

before the the Setup phase.

B.2 Unforgeability Game

This game is used to define the unforgeability of tickets, namely even if users, verifiers and the
central verifier collude, they cannot forge a valid ticket. This game is formalized as follows:

Setup. C runs Setup(1`)→ (MSK,PP ) and sends PP to A.

Registration Query. A can make the following queries.

1. Ticket Seller Registration Query. C runs KG(1`) → (SKI , PKI) and Ticket-Seller-Registration
(I(IDI , SKI , PKI , PP ) ↔ CA(MSK,PKI , PP )) → (σI , (IDI , PKI)), and sends (PKI , σI)
to A.

2. Ticket Verifier Registration Query. A submits an identity IDV and runs KG(1`)→ (SKV , PKV ).
A and C run Ticket-Verifier-Registration (V(IDV , SKV , PKV , PP )↔ CA(MSK,PKV , PP ))→
(σV , (IDV , PKV )). C returns σV to V;

3. User Registration Query. A submits an identity IDU and runs KG(1`)→ (SKU , PKU ). A and C
run User-Registration(U(IDU , SKU , PKU , PP )↔ CA(MSK,PKU , PP ))→ (σS , (IDU , PKU )).
C returns σU .

4. Central Verifier Registration Query.A submits a central verifier’s identity IDCV and runsKG(1`)→
(SKCV , PKCV ). A and C run Central-Verifier-Registration (CV(IDCV , SKCV , PKCV , PP ) ↔
CA(MSK, PKCV , PP ))→ (σCV , (IDCV , PKCV )). C sends σCV to A

Ticket Issuing Query. A adaptively submits a set of service information JU . C runs Ticket-Issuing
(
U

(SKU , PKU , JU , σU , PP )↔ I(SKI , PKI , σI , PP )
)
→ (TU , JU ) and sends TU to A. Let QI be the

set which consists of the ticket information queried by A and initially empty. C adds (TU , JU ) into
QI.

Output. A outputs a ticket TU∗ = {TagV ∗ |V ∗ ∈ JU∗}∪ {TagCV } for a user U∗ with a set of service
information JU∗ . A wins the game if Ticket-Validating (U(SKU∗ , PKU∗ , TagV ∗ , PP ) ↔ V((SKV ∗ ,
PKV ∗), PKI , PP ))→ (⊥, (1, TagV ∗)) for all V ∗ ∈ JU∗ and (TU∗ , JU∗) /∈ QI.

Definition 8. An anonymous single-sign-on for n designated services with traceability is (%, ε(`))
ticket-seller secure if for all probabilistic polynomial-time (PPT) adversaries A who make % ticket
issuing queries can only win the above game with negligible advantage, namely

AdvA = Pr

[
Ticket-Validating(U(SKU∗ , PKU∗ , TagV ∗ , PP )↔
V((SKV ∗ , PKV ∗), PKI , PP ))→ (⊥, (1, TagV ∗))

]
≤ ε(`)

for all V ∗ ∈ JU∗ .
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B.3 Traceability Game

This game is used to formalize the traceability of tickets, namely even if a group of users collude,
they cannot generate a ticket which the Ticket Trace algorithm would not catch as belonging to
some member of the colluding group. We suppose that the ticket issuer is honest. This game is
formalized as follows.

Setup. C runs Setup(1`)→ (MSK,PP ) and sends PP to A.

Registration Query. A can make the following queries.

1. Ticket Issuer Registration Query. C runs KG(1`) → (SKS , PKS) and Ticket-Issuer-Registration
(I(IDI , SKI , PKI , PP ) ↔ CA(MSK,PKS , PP )) → (σI , (IDI , PKI)), and sends (PKI , σI)
to A.

2. Ticket Verifier Registration Query. A selects an verifier V and runs KG(1`) → (SKV , PKV ). A
and C runs Ticket-Verifier-Registration (V(IDV , SKV , PKV , PP ) ↔ CA(MSK,PKV , PP )) →
(σV , (IDV , PKV )). C sends σV to A.

3. User Registration Query. A selects an identity IDU and runs KG(1`) → (SKU , PKU ). A and C
runs User-Registration(U(IDU , SKU , PKU , PP )↔ CA(MSK,PKU , PP ))→ (σS , (IDU , PKU )).
C sends σU to A. Let QKU be the set which consists of the users’ identities selected by A to
make registration query and is initially empty.

4. Central Verifier Registration Query. C selects a central verifier’s identity IDCV , runs KG(1`) →
(SKCV , PKCV ) and Central-Verifier-Registration (CV(IDCV , SKCV , PKCV , PP )↔ CA(MSK,
PKCV , PP ))→ (σCV , (IDCV , PKCV )). C sends (PKCV , σCV ) to A.

Ticket Issuing Query. A adaptively submits a set of service information JU . C runs Ticket-Issuing
(
U

(SKU , PKU , JU , σU , PP )↔ I(SKI , PKI , σI , PP )
)
→ (TU , JU ) and sends TU to A. Let QI be the

set which consists of the ticket information queried by A and initially empty. C adds (TU , JU ) into
QI.

Output. A outputs a ticket TU∗ = {TagV ∗ |V ∗ ∈ JU∗}∪ {Tag∗CV } for a user U∗ with a set of service
information JU∗ . A wins the game if Ticket-Trace ((SKCV , PKCV , Tag

∗
CV , T

∗
U , PP )) → (Ũ , JŨ ))

with Ũ /∈ QKU or U∗ 6= Ũ ∈ QKU .

Definition 9. An anonymous single-sign-on for n designated services with traceability scheme is
(%, ε(`)) traceable if for all probabilistic polynomial-time (PPT) adversaries A who make % ticket
issuing queries can only win the above game with negligible advantage, namely

AdvA = Pr

[
Ũ /∈ QKU or Ticket-Trace(SKCV , PKCV ,

U∗ 6= Ũ ∈ QKU Tag∗CV , T
∗
U , PP )→ (U ′, JU ′)

]
≤ ε(`).

C The Detail of
∏1

U

An instantiation of the proof
∏1
U is as follows. U select v1, v2, zu, r

′
u, x
′
u, e
′
u, v
′
2, v
′
3, v
′, z′1, z

′
2, · · · , z′n

R←
Zp and computes v3 = 1

v1
, v = ru − v2v3, σ̄U = σv1U , σ̃U = σ̄−euU Bv1U (= σ̄xaU ), B̄U = Bv1U h

−v2 , W1 =
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σ̄
−e′u
U hv

′
2 , W2 = B̄

−v′3
U ξx

′
uhv

′
,
(
zv = H1(zu||IDV ), PV = YUY

zv
P , P ′v = ξxuY

z′v
P , QV = ξzv , Q′V =

ξz
′
v

)
IDV ∈JU

. U computes c = H1(σ̄U ||σ̃U ||B̄U ||W1||W2||P1||P ′1||Q1||Q′1|| P2||P ′2||Q2||Q′2|| · · · ||Pn||P ′n||
Qn||Q′n), êu = e′u − ceu, v̂2 = v′2 − cv2, v̂3 = v′3 − cv3, v̂ = v′ − cv, x̂u = x′u − cxu and
(ẑv = z′v − czv)IDV ∈JU . U sends (σ̄U , σ̃U , B̄U ,W1,W2, (PV , P

′
V , QV , Q

′
V )IDV ∈JU ) and (c, êu,

v̂2, v̂3, v̂, x̂u, ẑ1, ẑ2, · · · , ẑn) to S.

After receiving (σ̄U , σ̃U , B̄U ,W1,W2, (PV , P
′
V , QV , Q

′
V )IDV ∈JU ) and (c, êu, v̂2, v̂3, v̂, x̂u, ẑ1,

ẑ2, · · · , ẑn), S checks

c
?
= H1(σ̄U ||σ̃U ||B̄U ||W1||W2||P1||P ′1||Q1||Q′1||P2||P ′2||Q2||Q′2|| · · · ||Pn||P ′n||Qn||Q′n),

W1
?
= σ̄−êuU hv̂2(

σ̃U
B̄U

)c, W2
?
= B̄−v̂3U ξx̂uhv̂g−c, (P ′V

?
= ξx̂uY ẑvP P cV , Q

′
V

?
= ξẑvQcV )IDV ∈JU .

D The Detail of
∏2

U

An instantiation of the proof
∏2
U is as follows. U selects x′u, z

′
v
R← Zp, and computes P ′V =

ξx
′
uY

z′v
P , Q′V = ξz

′
v , cv = H1(PV ||P ′V ||QV ||Q′V ), x̂u = x′u − cvxu and ẑv = z′v − cvzv. U

sends (PV , P
′
V , QV , Q

′
V ) and (cv, x̂v, ẑv) to V.

After receiving (PV , P
′
V , QV , Q

′
V ) and (cv, x̂v, ẑv), V verifiers

cv
?
= H1(PV ||P ′V ||QV ||Q′V ), P ′V

?
= ξx̂uY ẑvP P cvV and Q′V

?
= ξẑvQcvV .

E Correctness

Our scheme is correct as the following equations hold.

e(σI , YAg
ei) = e((ghriYI)

1
xa+ei , gxa+ei) = e(ghriYI , g),

e(σV , YAg
ev ) = e((ghrvYV )

1
xa+ev , gxa+ev ) = e(ghrvYV , g),

e(σU , YAg
eu) = e((ghruYU )

1
xa+eu , gxa+eu) = e(ghruYU , g),

e(σCV , YAg
ecv ) = e((ghrcvYCV )

1
xa+ecv , gxa+ecv ) = e(ghrcvYCV , g),

σ̃U = σ̄U
−euBv1U = σ−euv1U Bv1U = B

−euv1
xa+eu

U Bv1U = B
−v1(eu+xa)+v1xa

xa+eu

U Bv1U =

B−v1U B
v1xa
xa+eu

U Bv1U = (B
1

xa+eu

U )v1xa = (σv1U )xa = σ̄xaU ,

σ̃U
B̄U

=
σ̄−euU Bv1U
Bv1U h

−v2
= σ̄−euU hv2 ,

B̄−v3U ξxuhv = (Bv1U h
−v2)−v3ξxuhv = ((ghruYU )v1h−v2)−v3ξxuhv =

(ghruYU )−1hv2v3ξxuhv = g−1h−ruY −1
U YUh

v2v3+v = g−1hv2v3−ru+v = g−1,
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e(σV , ỸIg
ev ) = e((ghwv h̃sv )

1
xi+ev , gxi+ev ) = e(ghwv h̃sv , g),

e(σCV , ỸIg
ecv ) = e((ghwcv h̃scv )

1
xi+ecv , gxi+ecv ) = e(ghwcv h̃scv , g),

ExvV = ξxvdv = Y dvV = FV ,

PV
QxcvV

=
YUY

zv
CV

ξxcvzv
=
YUY

zv
CV

Y zvCV
= YU ,

and

KV

ExcvV

=
YV Y

dv
CV

ξxcvdv
=
YV Y

dv
CV

Y dvCV
= YV .

F Proof of Theorem 1

Proof. If there exists an adversary A can (%1, %2, %3, ε
′(`)) break the selective unlinkability of our

scheme, we can construct an algorithm B which can use A as a subroutine to break the decisional
Diffie-Hellman (DDH) assumption as follows. Given (ξ, ξα, ξβ), C flips an unbiased coin with {0, 1},
and obtains a bit b ∈ {0, 1}. If b = 0, C sends T = ξαβ to B; If b = 1, C sends T = M to B, where

M
R← G2. B will output his guess b′ on b.

Initialisation. A submits two verifiers V ∗0 and V ∗1 . B flip an unbiased coin with {0, 1} and obtains a

bit µ ∈ {0, 1}. B sets YV ∗µ = ξα and YV ∗1−µ = ξγ where γ
R← Zp.

Setup. B selects xa
R← Zp, g, h, ξ, h̃,

R← G1 and g
R← G2. B computes YA = gxa , and selects H1 :

{0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp. B sends the public parameters PP = (e, p,G1,G2,Gτ , g, h, ξ,
h̃, g, YA, H1, H2) to A.

Phase 1. A can make the following queries.

Registration Query. A can make the following registration queries.

1. Ticket Issuer Registration Query. B selects xi, ei, ri
R← Zp, and computs YI = ξxi , ỸI = gxi and

σI = (ghriYI)
1

xa+ei . B sends (ri, ei, σI , YI , ỸI) to A.

2. Ticket Verifier Registration Query. Let CorruptV be the set consisting of the identities of verifiers
corrupted by A. A selects an identity IDV /∈ {IDV ∗0

, IDV ∗1
}: (1) if IDV ∈ CorruptV , A sends

(IDV , YV ) to B where YV is the public key of IDV . B selects λv, rv
R← Zp, and computes

σV = (ghrvYV )
1

xa+ev . B sends (λv, rv, σV ) to A; If IDV /∈ CorruptV , B selects xv, λv, rv
R← Zp

and computes YV = ξxv and σV = (ghrvYV )
1

xa+ev . B sends (YV , λv, rv, σV ) to A.

3. User Registration Query. Let RQU be the set consisting of the registration information of users.

A selects an identity IDU and sends (IDU , YU ) to B. B selects λu, ru
R← Zp, and computes

σU = (g0h
ruYU )

1
xa+λu . B sends (ru, λu, σU ) to A. B adds (IDU , YU , λu, ru, σU ) to QKU . A can

adaptively make this registration queries multiple times.

4. Central Verifier Registration Query. CV selects xcv, λcv, rcv
R← Zp and computes YCV = ξxcv and

σCV = (ghrcvYCV )
1

xa+λcv . B sends (YCV , rcv, λcv, σCV ) to A.
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Ticket Issuing Query. A submits an identity IDU ∈ QRU , a set of service information JU , a set of
pseudonym PsU = {(PV , QV )V ∈JU )}, and a proof PoK{(xu, ru, eu, σU , v1, v2, v3, (zv)V ∈JU ) : σ̃U

B̄U
=

σ̄−euU hv2 ∧ g−1
0 = B̄v3U g

xuhru−v2v3 ∧ (PV = ξxuY zvP ∧ QV = ξzv )V ∈JU }. If the proof is incorrect, B
aborts. Otherwise, B works as follows.

For V ∈ JU , B selects tu, dv, wv, ev
R← Zp and computes

CU = ξtu , DV = H2(CU ||IDV ), EV = ξdv , FV = Y dvV , KV = YV Y
dv
P ,

sv = H1(PV ||QV ||EV ||FV ||KV ||Text) and σV = (ghwv h̃sv )
1

xi+ev .

B select wcv, ecv
R← Zp, and computes scv = H1(s1||s2|| · · · ||s|JU |) and ZCV = (ghwcv h̃scv )

1
x+ecv .

The ticket is TU =
{

(DV , TagV )|V ∈ JU
}
∪
{
scv, wcv, ecv, ZCV

}
. B returns (CU , TU , T ext) to A. Let

QI be the set consisting of the tickets queried byA and is initially empty. B adds
{
PsU , JU , TU , tu

}
∪{

dv|V ∈ JU
}

into QI.

Ticket Validation Query. B initializes a table TV . A submits TagV = (PV , QV , EV , FV ,KV , sv, wv, ev,

σV , T ext) and a proof
∏2
U : PoK{(xu, zv) : PV = ξxuY zvP ∧ QV = ξzv}. If TagV ∈ TV , B aborts; oth-

erwise, B adds TagV into TV and works as follows. B checks whether (PV , QV , EV , FV ,KV , sv, wv,

σV , T ext) ∈ QI. If not, B aborts; otherwise, B computes YV = F
1
dv
j and checks DV

?
= H2(CU ||IDV ),

sv
?
= H1(||PV ||QV ||EV ||FV ||KV ||Text) and e(σV , YIg

ev )
?
= e(ghwv h̃sv , g). If the above equations

hold. B returns IDV to A; otherwise, ⊥ is returned to indicate failure. Let QV be the set con-
sisting of ticket validation queries made by A and initially empty. B adds (PV , QV , EV , FV ,KV ,
sv, wv, ev, σV ) into QV . A can adaptively make this query up to ρ2 times.

Ticket Trace Query. A submits a ticket TU . B works as follows. (1) Let ΩU = {}. For each
TagV in TU : a) Compute: YU = PV

QxcvV
and YV = KV

ExcvV
. b) Look up IDV for YV ’s. Check: (c1)

sv
?
= H1(PV ||QV ||EV ||KV ||Text); (c2) e(ZV , YIg

wv )
?
= e(ghwv h̃sv , g); (d) If (c1) and (c2) hold,

set ΩU = ΩU ∪ {V }; otherwise abort. (e) verify YU remains the same for all tags. (2) scv
?
=

H1(s1||s2|| · · · ||s|JU |); (3) e(ZCV , ỸIg
wcv )

?
= e(ghwcv h̃scv , g).

If (1), (2) and (3) hold, CV can determine that the service information of U with public key YU
is: JU = ΩU ; otherwise, the trace has failed. Let QT be a set consisting of the ticket trace queries
made by A. B adds TU into QT .

Challenge. B selects z∗µ, t
∗
µ, w

∗
µ, e
∗
µ, w

∗, e∗
R← Zp, and computes P ∗µ = YUY

z∗µ
CV , Q∗µ = ξz

∗
µ , C∗µ = ξt

∗
µ ,

D∗µ = H2(C∗U ||YV ∗µ ), E∗µ = ξβ , F ∗µ = T , K∗µ = (E∗µ)xcvYV ∗µ , s∗µ = H1(P ∗U ||Q∗U ||E∗µ||F ∗µ ||K∗µ|| Text),

σ∗µ = (ghw
∗
µ h̃s

∗
µ)

1
xi+e

∗
µ , s∗ = H1(s∗µ) and σ∗ = (ghw

∗
h̃s
∗
)

1
xi+e

∗ . B sends {P ∗µ , Q∗µ, E∗µ, F ∗µ ,K∗µ, s∗µ, w∗µ,
e∗µ, σ

∗
µ} ∪ {s∗, w∗, e∗, σ∗} to A.

Phase 2. It is the same as in Phase 1 with the limitations: (1) (E∗µ, F
∗
µ) /∈ QV ; (2) (E∗µ, F

∗
µ) /∈ QT ;

(3) A can adaptively make the ticket issuing query, ticket validation query and ticket trace query
at most %1, %2 and %3, respectively.

Output. A outputs his guess µ′ on µ. If µ′ = µ, B outputs b′ = 0; otherwise, B outputs b = 1.

Now, we compute the probability with which B can break the DDH assumption. If b = 0, T = ξαβ

and (D∗µ, P
∗
µ , Q

∗
µ, E

∗
µ, F

∗
µ ,K

∗
µ, w

∗
µ, e
∗
µ, σ
∗
µ) is a valid authentication tag. Hence, A can outputs µ′ = µ
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with Pr [µ′ = µ|b = 0] ≥ 1
2 + ε′(`). When µ′ = µ, B outputs b′ = 0. We have, Pr [b′ = b|b = 0] ≥

1
2 + ε(`). If b = 1, T = M and (D∗µ, P

∗
µ , Q

∗
µ, E

∗
µ, F

∗
µ ,K

∗
µ, w

∗
µ, e
∗
µ, σ
∗
µ) are random elements in G1.

Hence, A can output µ′ 6= µ with Pr [µ′ 6= µ|b = 1] = 1
2 . When µ′ 6= µ, B outputs b = 1. We have,

Pr [b′ = b|b = 1] = 1
2 .

Therefore, the advantage with which B can break the DDH assumption is

AdvDDHB =

∣∣∣∣12 × Pr [b′ = b|b = 0]− 1

2
× Pr [b′ = b|b = 1]

∣∣∣∣ ≥ 1

2
(
1

2
+ ε′(`))− 1

2
× 1

2
=
ε′(`)

2
.

G Proof of Theorem 2

Proof. If there exists an adversary A which can break the unforgeability of our scheme with the
advantage ε′(`), we can constructs an algorithm B which can use A as a subroutine to break
the JOC-q-SDH assumption as follows. Given a (q + 3)-tuple (g, gx, · · · , gxq , g, gx), B will output

(c, g
1
x+c ) where c ∈ Zp − {−x}.

Setup. B selects e1, e2, · · · , eq−1
R← Zp, and sets f(x) =

∏q−1
i=1 (x + ei) =

∑q−1
i=0 αix

i, fi(x) =
f(x)
x+ei

=
∑q−2
j=0 βijx

j , g̃ =
∏q−1
i=0 (gx

i

)αi = gf(x), ĝ =
∏q−1
i=0 (gx

i+1

)αi = g̃x. B selects e, a, k
R← Zp and

computs h = ((ĝg̃e)kg̃−1)
1
a = g̃

(x+e)k−1
a . B selects xa, γ, ϑ

R← Zp, and computes YA = gxa , ξ = g̃γ

and h̃ = hϑ. B selects four three functions H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp. B sends

(e, p,G1,G2,Gτ , g̃, h, ξ, h̃, g, YA, H1, H2) to A.

Registration Query. A can make the following queries.

1. Ticket Issuer Registration Query. B sets ỸI = gx, and computes YI = (ĝ)γ . B selects ei, ri
R← Zp

and computes σI = (g̃hriYI)
1

xa+ei . B sends (YI , ỸI , σI) to A.

2. Ticket Verifier Registration Query. A selects an identity IDV and sends (IDV , YV ) to B where

YV is the public key of IDV . B selects xv, ev, rv
R← Zp, and computes σV = (g̃hrvYV )

1
x+ev . B

sends (ev, rv, σV ) to A. A can adaptively make this registration queries multiple times.

3. User Registration Query. A selects an identity IDU and sends (IDU , YU ) to B where YU is

the public key of IDU . B selects λu, ru
R← Zp, and computes σU = (g̃hruYU )

1
x+λu . B sends

(λu, ru, σU ) to A. A can adaptively make this registration queries multiple times.

4. Central Verifier Registration Query. A selects an identity IDCV and sends (IDCV , YCV ) to

B where YCV is the public key of IDCV . B selects λcv, rcv
R← Zp and computes σCV =

(g̃hrcvYCV )
1

xa+λcv . B sends (λcv, rcv, σCV ) to A.

Ticket Issuing Query. A can adaptively submit a set of service information JU , a set of pseudonyms
PsU = {(PV , QV )IDV ∈JU } and a proof

∏1
U : PoK{(xu, ru, eu, σU , v1, v2, v3, (zv)V ∈JU ) : σ̃U

B̄U
=

σ̄−euU hv2 ∧g−1 = B̄v3U g
xuhru−v2v3 ∧ (PV = ξxuY zvP ∧QV = ξzv )V ∈JU }. B verifies

∏1
U and e(σ̄U , Y )

?
=

e(σ̃U , g). If the verification is unsuccessful, B aborts; otherwise, B works as follows.
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For V ∈ JU , let fv(x) = f(x)
x+ev

=
∑q−2
k=1 βvkx

k. B selects tu, dv, wv
R← Zp and computes CU = gtu ,

DV = H2(CU ||V ), EV = ξdv , FV = Y dvV , KV = YV Y
dv
P , sv = H1(PV ||QV ||EV ||FV ||KV || Text) and

ZV =

q−2∏
k=0

(gx
k

)βvk (1+
(ek−1)sv

a )

q−2∏
k=0

(gx
k+1

)
βvk

ksv

a .

We claim that (wv, ev, ZV ) is a valid signature on sv. We have

ZV =

q−2∏
k=0

(gx
k

)βvk (1+
(ek−1)(wv+ϑsv)

a )

q−2∏
k=0

(gx
k+1

)
βvk

k(wv+ϑsv)

a

=

q−2∏
k=0

(gβvkx
k

)(1+
(ek−1)(wv+ϑsv)

a )

q−2∏
k=0

(gβvkx
k

)
xk(wv+ϑsv)

a

= (g
∑q−2
k=0 βvkx

k

)(1+
(ek−1)(wv+ϑsv

a )(gx
∑q−2
k=0 βvkx

k

)
k(wv+ϑsv)

a

= (gfv(x))(1+
(ek−1)(wv+ϑsv)

a )(gxfv(x))
k(wv+ϑsv)

a

= (gf(x))(1+
(ek−1)(wv+ϑsv)

a ) 1
x+ev (gxf(x))

k(wv+ϑsv)
a(x+ev)

= g̃(1+
(ek−1)(wv+ϑsv)

a ) 1
x+ev g̃

xk(wv+ϑsv)
a(x+ev)

= (g̃(1+
(ek−1)(wv+ϑsv)

a )g̃
xk(wv+ϑsv)

a )
1

x+ev

= (g̃g̃
ekwv
a g̃

−wv
a g̃

ekϑsv
a g̃

−ϑsv
a g̃

xkwv
a g̃

xkϑsv
a )

1
x+ev

=
(
g̃g̃(

(k(e+x)−1)wv
a g̃(

(k(e+x)−1)ϑsv
a

) 1
x+ev

=
(

(g̃(g̃
k(e+x)−1

a )wv ((g̃
(k(e+x)−1

a )ϑ)sv
) 1
x+ev

= (g̃hwv h̃sv )
1

x+ev

(1)

Let fcv(x) = f(x)
x+ecv

=
∑q−2
k=0 βckx

k, where ecv ∈ {e1, e2, · · · , eq−1}. B selects wcv
R← Zp and com-

putes scv = H1(s1||s2|| · · · ||s|JU |) and ZCV =
∏q−2
k=0(gx

k

)βck (1+
(ek−1)(wcv+ϑscv

a )
∏q−2
k=0(gx

k+1

)
βck

k(wcv+ϑscv)

a .
According to Equation (1), (wcv, ecv, ZCV ) is a BBS+ signature on scv.
If the q-th signature is required, B computes wcv = a − ϑsu and ZCV = g̃k. We claim that

(wcv, e, ZCV ) is valid signature on scv. Because, we have

ZCV = g̃k = (g̃g̃
a(k(x+e)−1)

a )
1
x+e = (g̃g̃

(wcv+ϑscv)(k(x+e)−1)
a )

1
x+e = (g̃g̃

wcv(k(x+e)−1)
a g̃

ϑsp(k(x+e)−1)

a )
1
x+e

=
(
g̃(g̃

k(x+e)−1
a )wcv ((g̃

k(x+e)−1
a )ϑ)scv

) 1
x+e

= (g̃hwcv h̃scv )
1
x+e .

The ticket is TU =
{

(DV , TagV )|V ∈ JU
}
∪
{
scv, wcv, ecv, ZCV

}
. B sends (CU , TU , T ext) to A.

Let QT be the set consisting of the tickets queried by A and is initially empty. B adds (TU , CU )
into QT . A can make this query adaptively at most % ≤ q times.

Output: A outputs a ticket TU∗ =
{

(DV ∗ , PV ∗ , QV ∗ , EV ∗ , FV ∗ ,KV ∗ , sv∗ , wv∗ , ev∗ , ZV ∗ , T ext)|V ∗ ∈
JU∗

}
∪
{

(scv, wcv, ecv, ZCV )
}

. Let (s∗, w∗, e∗, Z∗) ∈
{

(sv∗ , wv∗ , ev∗ , ZV ∗ |V ∗ ∈ JU∗
}
∪
{

(scv, wcv, ecv,

ZCV )
}

be a forged authentication tag.
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We consider the following three cases.

– Case-I. e∗ /∈ {e1, e2, · · · , eq−1, e}. Let f∗1 (x) = f(x)
x+e∗ =

∑q−2
i=0 cix

i, f∗2 (x) = f(x)(e+x)
x+e∗ =

∑q−1
i=0 c̃ix

i

and f(x) = (x+ e∗)c(x) + θ0 where c(x) =
∑q−2
i=0 cix

i. Therefore,

σ∗ = (g̃hw
∗
h̃s
∗
)

1
x+e∗ = g̃

1
x+e∗ (hw

∗
h̃s
∗
)

1
x+e∗ .

We have

g̃
1

x+e∗ = σ∗ · (hw
∗
h̃s
∗
)
−1
x+e∗

= σ∗ · (g̃
w∗((e+x)−1)

a g̃
ϑs∗((e+x)−1)

a )
−1
x+e∗

= σ∗ · g̃
−(w∗+ϑs∗)(x+e)

a(x+e∗) · g̃
w∗+ϑs∗
a(x+e∗)

= σ∗ · g
−f(x)(w∗+ϑs∗)(x+e)

a(x+e∗) · g
f(x)(w∗+ϑs∗)

a(x+e∗)

= σ∗ · g
−(w∗+ϑs∗)f∗2 (x)

a · g
(w∗+ϑs∗)f∗1 (x)

a

= σ∗ ·
q−1∏
k=0

(gx
k

)
−c̃k(w∗+ϑs∗)

a ·
q−2∏
k=0

(gx
k

)
ci(w

∗+ϑs∗)
a .

Let Γ = σ∗ ·
∏q−1
k=0(gx

k

)
−c̃k(w∗+ϑs∗)

a · (gxi)
ck(w∗+ϑs∗)

a . We have

Γ = g̃
1

x+e∗ = g
f(x)
x+e∗ = g

c(x)(x+e∗)+θ
x+e∗ = gc(x)g

θ0
x+e∗ .

Hence,

g
1

x+e∗ = (Γ · g−c(x))
1
θ =

(
σ∗ ·

q−1∏
k=0

(gx
i

)
−c̃k(w∗+ϑs∗)

a ·
q−2∏
k=0

(gx
i

)
ck(w∗+ϑs∗)

a ·
q−2∏
k=0

(gx
k

)−ck

) 1
θ

.

– Case-II. e∗ ∈ {e1, e2, · · · , eq−1, e}. We have e∗ = e with the probability 1
q . Since e /∈ {e1, e2, · · · ,

eq−1}, B can output g
1
x+e using the same technique above.

– Case-III. e∗ = ev, σ
∗ = σV , but s∗ 6= sv. Since σ∗ = (g̃hw

∗
h̃s
∗
)

1
x+e∗ and σv = (g̃hwV h̃sv )

1
x+ev .

We have hw
∗
h̃s
∗

= hwv h̃sv , h̃ = h
w∗−wv
sv−s∗ and loghh̃ = w∗−wv

sv−s∗ . B can use A to break the discrete
logarithm assumption. Therefore B can use A to break the JOC-q-SDH assumption since JOC-
q-SDH assumption is included in discrete logarithm assumption.

Therefore, the advantage with which B can break the q-SDH assumption is

Advq−SDHB = Pr[Case− I] + Pr[Case− II] + Pr[Case− III]

≥ p− q
p

ε′(`) +
q

p
× 1

q
ε′(`) +

1

p
× 1

p
× p− 1

p
ε′(`)

= (
p− q
p

+
1

p
+
p− 1

p3
)ε′(`).
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H Proof of Theorem 3

Proof. If there exists an adversary A which can break the traceability of our scheme with the
advantage ε′(`), we can constructs an algorithm B which can use A as a subroutine to break
the JOC-q-SDH assumption as follows. Given a (q + 3)-tuple (g, gx, · · · , gxq , g, gx), B will output

(c, g
1
x+c ) where c ∈ Zp − {−x}.

Setup. B selects e1, e2, · · · , eq−1
R← Zp, and sets f(x) =

∏q−1
i=1 (x + ei) =

∑q−1
i=0 αix

i, fi(x) =
f(x)
x+ei

=
∑q−2
j=0 βijx

j , g̃ =
∏q−1
i=0 (gx

i

)αi = gf(x), ĝ =
∏q−1
i=0 (gx

i+1

)αi = g̃x. B selects e, a, k
R← Zp and

computs h = ((ĝg̃e)kg̃−1)
1
a = g̃

(x+e)k−1
a . B selects xa, γ, ϑ

R← Zp, and computes YA = gxa , ξ = g̃γ

and h̃ = hϑ. B selects four three functions H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp. B sends

(e, p,G1,G2,Gτ , g̃, h, ξ, h̃, g, YA, H1, H2) to A.

Registration Query. A can make the following queries.

1. Ticket Issuer Registration Query. B sets ỸI = gx, and computes YI = (ĝ)γ . B selects ei, ri
R← Zp

and computes σI = (g̃hriYI)
1

xa+ei . B sends (YI , ỸI , σI) to A.

2. Ticket Verifier Registration Query. A selects an identity IDV and sends (IDV , YV ) to B where

YV is the public key of IDV . B selects xv, ev, rv
R← Zp, and computes σV = (g̃hrvYV )

1
x+ev . B

sends (ev, rv, σV ) to A. A can adaptively make this registration queries multiple times.

3. User Registration Query. A selects an identity IDU and sends (IDU , YU ) to B where YU is

the public key of IDU . B selects λu, ru
R← Zp, and computes σU = (g̃hruYU )

1
x+λu . B sends

(λu, ru, σU ) to A. A can adaptively make this registration queries multiple times.

4. Central Verifier Registration Query. A selects an identity IDCV and sends (IDCV , YCV ) to

B where YCV is the public key of IDCV . B selects λcv, rcv
R← Zp and computes σCV =

(g̃hrcvYCV )
1

xa+λcv . B sends (λcv, rcv, σCV ) to A.

Ticket Issuing Query. A can adaptively submit a set of service information JU , a set of pseudonyms
PsU = {(PV , QV )IDV ∈JU } and a proof

∏1
U : PoK{(xu, ru, eu, σU , v1, v2, v3, (zv)V ∈JU ) : σ̃U

B̄U
=

σ̄−euU hv2 ∧g−1 = B̄v3U g
xuhru−v2v3 ∧ (PV = ξxuY zvP ∧QV = ξzv )V ∈JU }. B verifies

∏1
U and e(σ̄U , Y )

?
=

e(σ̃U , g). If the verification is unsuccessful, B aborts; otherwise, B generates a ticket TU =
{

(DV ,

TagV )|V ∈ JU
}
∪
{
scv, wcv, ecv, ZCV

}
by using the technique gaven in the proof of Theorem 1, and

sends TU to A. Let QT be the set consisting of the tickets queried by A and is initially empty. B
adds (TU , CU ) into QT . A can make this query adaptively at most % ≤ q times.

Output: A outputs a ticket TU∗ =
{

(DV ∗ , PV ∗ , QV ∗ , EV ∗ , FV ∗ ,KV ∗ , sv∗ , wv∗ , ev∗ , ZV ∗ , T ext)|V ∗ ∈
JU∗

}
∪
{

(scv, wcv, ecv, ZCV )
}

. If more than one users’ pubic keys are included in the ticket TU∗ ,
the ticket is not generated correctly and B aborts. If B does not abort, the following two types of
forgers are considered. Type-I forgers outputs a ticket T ∗U which includes at least a new pseudonym
(P ′V , Q

′
V ) which is not included in any ticket queried by A. Type-II forger outputs a ticket T ∗U which

includes the same pseudonyms included in a ticket TU ∈ QT queried by A, but can be trace to a
user U ′ whose secrete key x′ is not known by A. Let (x′, Y ′) be the secret-public key pair of U ′.
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– Type-I: If there is a pseudonym (P ′V , Q
′
V ) ⊂ Tag′V ∈ TU∗ and (P ′V , Q

′
V ) /∈ QT . Let Tag′V =

(P ′V , Q
′
V , E

′
V , F

′
V ,K

′
V , Z

′
V , s

′
v, w

′
v, e
′
v, T ext). A forged a signature (w′v, e

′
v, Z

′
V ) on s′v where s′v =

H1(P ′V ||Q′V ||E′V ||F ′V ||K ′V ||Text). Hence, B can use A to break the JOC-version-q-SDH assump-
tion by using the technique in the proof of Theorem 1.

– Type-II. If all pseudonyms (PV , QV ) ⊂ TagV ∈ TU∗ and (PV , QV ) ∈ QT . In T ∗U , there
is a pseudonym (PCV , QCV ) generated for the central verifier. If A can generate a proof
PoK{(x′, zcv) : PCV = ξx

′
Y zcvCV ∧ QV = ξzcv}, B can use the rewinding technique to ex-

tract the knowledge of (x′, zcv) from A, namely given (ξ, Y ′), B can output a x′ such that
Y ′ = ξx

′
. Hence, B can use A to break the discrete logarithm assumption.

Let Pr[Type-I] and Pr[Type-II] denote the probabilities with which A can success, respectively.
By Theorem 2, we have Pr[Type-I] = 1

2 × ε1(`)(p−qp + 1
p + p−1

p3 ). Hence, B can break the q-SDH

assumption with the advantage ε1(`)
2 (p−qp + 1

p+ p−1
p3 ) or break the DL assumption with the advantage

ε2(`)
2 . Therefore, ε(`) = max

{
ε1(`)

2 (p−qp + 1
p + p−1

p3 ), ε2(`)
2

}
.
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