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Abstract. This paper presents a preliminary validation of common tex-
tual information retrieval techniques for mapping unstructured software
vulnerability information to distinct software weaknesses. The validation
is carried out with a dataset compiled from four software repositories
tracked in the Snyk vulnerability database. According to the results,
the information retrieval techniques used perform unsatisfactorily com-
pared to regular expression searches. Although the results vary from a
repository to another, the preliminary validation presented indicates that
explicit referencing of vulnerability and weakness identifiers is preferable
for concrete vulnerability tracking. Such referencing allows the use of
keyword-based searches, which currently seem to yield more consistent
results compared to information retrieval techniques. Further validation
work is required for improving the precision of the techniques, however.
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1 Introduction

Software weaknesses—as cataloged in the so-called Common Weakness Enumer-
ation (CWE) framework—are abstractions for security-related mistakes made in
software development. Such weaknesses may lead to concrete software vulner-
abilities. The CWE framework covers numerous different weaknesses, ranging
from software design flaws to inadequate input validation, insecure maintaining
of time and state, and lack of encapsulation [34]. The richness of the framework
has ensured its usefulness for both research and practice. To name a few of the
application domains, the CWE framework has been used for security (compli-
ance) assessments [8, 9], risk analysis [1, 6], quantitative trend analysis [22], data
mining [13], static source code analysis [25], dissemination of fuzzing results [15],
and last but not least, education and security awareness [16]. Also text mining
applications have been common, although there are still gaps in the literature.

Many of the text mining applications have relied on the Open Web Ap-
plication Security Project (OWASP), which limits the generalizability of the
applications [21, 27]. Another gap relates to the common focus on CWE-based
ontologies. Although such ontologies are useful for understanding and cluster-
ing weaknesses [2, 10, 36], these have a limited appeal for vulnerability tracking.
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Here, the term vulnerability tracking refers to the concrete, largely manual soft-
ware engineering work required for archiving and documenting software vulner-
abilities. If this work does not explicitly cover weaknesses, an application of an
ontology-based technique must first solve the problem of extracting the CWEs
from the typically more or less unstructured textual vulnerability data. Limited
attention has also been given for the validity of the text mining applications.

To contribute toward sealing some of these gaps, this paper tentatively exam-
ines the validity of common textual information retrieval techniques for extract-
ing CWEs from vulnerability databases. The extraction itself has practical value
because many vulnerability databases do not catalog weaknesses, partially due
to the complexity of the CWE framework and the manual work required [35].
By superseding the manual assignment of security bug reports to CWEs [8],
automatic extraction can also facilitate empirical security research. It is impor-
tant to further emphasize that the task differs from conventional information
retrieval systems that can return multiple documents for a single query. In con-
trast, this paper adopts a much stricter constraint: each unique vulnerability
should map to a single unique CWE-identified weakness. As elaborated in the
opening Section 2, this constraint can be also used for comparing common tex-
tual information retrieval techniques against simple regular expression searches.
The comparative results are presented in Section 3 and discussed in Section 4.

2 Materials

The following will outline the data sources, the subset of data used for the
validation, the pre-processing routines, and the weights used for computation.

2.1 Data Sources

The dataset is compiled from three distinct but related sources. The first source
is the conventional National Vulnerability Database (NVD) maintained by the
National Institute of Standards and Technology (NIST) in cooperation with the
non-profit MITRE corporation. This database provides one-to-one mappings be-
tween abstract weaknesses identified with CWEs and concrete vulnerabilities
identified with Common Vulnerabilities and Exposures (CVEs). These map-
pings are based on expert opinion; during the archival of vulnerabilities to the
database, NVD’s maintainers derive the weaknesses from the concrete vulnera-
bilities archived. At the time of retrieving the database’s content [23], there were
102 unique CWEs in the database once rejected CVEs were excluded. (These in-
valid cases are marked with the string REJECTED in the summary field of a CVE.)
These CWEs were used for assembling the estimation subset soon discussed.

The second source is the CWE database maintained by MITRE in coopera-
tion with volunteers and governmental sponsors. In total, there were 730 docu-
mented weaknesses in the database at the time of retrieval [18]. These weaknesses
have been used to construct different ontologies [10, 27, 36], including the famous



“seven pernicious kingdoms” of security-related programming mistakes [34]. Re-
flecting such ontologies, MITRE provides also many predefined views to subsets
of the weaknesses archived. In the information retrieval context the relevant view
is the one pointing to the CWEs used by NVD. Due to recent changes made [19],
however, the predefined NVD-specific view is not suitable. Therefore, data is
used from the CWE database only for the 102 weaknesses that are present also
in NVD indirectly via CVE mappings. Although the present context is weak-
nesses, the idea here is similar to the enforcement of “one-to-one vulnerabilities”
between vulnerability databases [35]. In contrast to some previous studies [10],
all textual information is used for constructing the corpora. This information
contains also meta-data strings, but the results reported did not differ much
from those obtained by including only fields specific to natural language. The
pre-processing described later on also filters out much of the meta-data.

The third and final source is the so-called Snyk database used for tracking
security issues in open source software packages particularly in the web develop-
ment context [32]. In contrast to the primary package managers used in Linux
distributions, Snyk targets the secondary package managers and their reposito-
ries that are specific to programming languages. Although the Snyk database has
seldom been used for research purposes, the underlying repositories have been
studied extensively (see [20], [29], and [33], for instance). The following four
repositories are included in the dataset assembled: Maven (Java), pip (Python),
npm (JavaScript), and RubyGems (Ruby). In addition to the web development
context, these repositories were selected due to sufficient amounts of vulnerabil-
ities reported for the packages within the repositories. Therefore, the selection
used allows to check whether the results are specific only to some repositories.

As is typical in vulnerability tracking [4, 21, 30], the Snyk database contains
first-order and (online) second-order relations. As illustrated in Fig. 1, these
relations can be either direct or indirect with respect to CWE and CVE iden-
tifiers. For instance, the following vulnerability report (pymongo/40183) in the
Snyk database represents a second-order indirect relation because the CWE in
question can be mapped from the CVE visible in the link pointing to NVD:

## Overview

[‘pymongo‘](https://pypi.python.org/pypi/pymongo) is a Python driver for

MongoDB.

‘bson/_cbsonmodule.c‘ in the mongo-python-driver (aka. pymongo) before

2.5.2, as used in MongoDB, allows context-dependent attackers to cause a

denial of service (NULL pointer dereference and crash) via vectors related

to decoding of an "invalid DBRef."

## References

- [NVD](https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2132)

- [Github Commit](https://github.com/mongodb/mongo-python-driver/commit/

a060c15ef87e0f0e72974c7c0e57fe811bbd06a2)

The first-order relations refer to the primary textual content stored to the
database. As can be seen from the above excerpt, Snyk’s maintainers archive



each vulnerability with a brief textual description, which can be potentially
mapped to a CWE with different text mining techniques. When constructing
the corpora, all textual information is used except comment fields (lines starting
with a #) and links to further online material (lines starting with a dash). The
additional online material constitute the second-order relations. Most vulnera-
bilities archived to Snyk are accompanied with one or more links pointing to
security advisories, blogs, mailing lists, bug trackers, version control systems,
hosting services such as GitHub, and other vulnerability databases, including
NVD in particular. The content behind each of these links was downloaded, and
for each successful download, all textual information was further added to the
corpora sans the hypertext markup language elements. Given the terseness of the
primary (first-order) textual information in the Snyk database, the additional
(second-order) online material is beneficial for enlarging the corpora observed.

Vulnerability

CWE

Vulnerability

CVE

CWE

Vulnerability

Web page

CWE

Vulnerability

Web page

CVE

CWE

Direct,
first-order

Indirect,
first-order

Direct,
second-order

Indirect,
second-order

“Can be mapped from”

Fig. 1. An Example of Four Abstract Relations for Software Weaknesses

Thus, to summarize, the dataset contains textual information about software
weaknesses from the CWE database, and first-order textual information about
vulnerabilities from the Snyk database, as well as second-order textual informa-
tion from online sources referenced in the Snyk database. The goal is to validate
how well the vulnerabilities can be mapped to the CWEs. For this validation
task, empirical estimation is carried out in a specific subset of the dataset.

2.2 Estimation Subset

A basic difficulty in classifying text documents is the typical absence of a ground
truth against which text mining results can be compared. A typical way to tackle
the issue is to compare text mining results against labels made by human ex-
perts [3]. The same applies in the vulnerability context [4, 27]. However, the
approach adopted takes a different path: the text mining results are compared
against simple but relatively robust regular expression searches. For each vul-
nerability, the following two simple regular expressions were used to search for
direct CWE mappings and indirect “CWE-from-CVE-in-NVD” mappings:

(?:CWE)[-][0-9]{1,} and (?:CVE|CAN)[-][0-9]{4}-[0-9]{4,} . (1)



Only if a vulnerability matched only once from either one of the expressions,
it was qualified to the estimation subset alongside the corresponding CWE, pro-
vided that the CWE was present among the 102 weaknesses in NVD. Thus,
each vulnerability in the estimation subset can be mapped with regular expres-
sion searches to a single unique weakness. It can be further noted that techniques
such as majority-voting are unsuitable. The reason is simple. Many of the second-
order relations point to web pages that catalog all CVEs assigned for a given
package. By per-vulnerability voting based on the frequency of CVEs (or CWEs)
mentioned in such pages, the uniqueness condition would be lost. Such voting
would presumably also lead to haphazard mappings. Given these remarks,

n1 = 82 weaknesses and n2 = 585 vulnerabilities (2)

were qualified to the estimation subset. For comparing the regular expression
searches against information retrieval techniques, a common metric can be used:

Precision =
(# same CWE)

(# same CWE) + (# different CWE)
, (3)

where the numerator denotes the frequency of vulnerabilities that were assigned
to the same CWEs by both the regular expression and information retrieval
techniques. The second term in the denominator refers to the frequency of vul-
nerabilities assigned to different CWE identifiers by the two techniques. Due
to the described operationalization of the estimation subset, additional metrics
(such as recall and accuracy) are not meaningful—it cannot be deduced whether
the remaining vulnerabilities in the Snyk database are relevant or irrelevant with
respect to CWEs. That said, it would be possible to use more metrics by split-
ting the estimation subset further into training and test sets [22], but, as will
be seen, the estimation subset and the precision metric are alone sufficient for
summarizing the paper’s empirical validation results.

An important further remark should be made. Although the two distinct
terms in (3) connote with “true positives” and “false positives”, these terms do
not convey their usual meanings in the present context: it is impossible to say
with certainty which one of the two techniques is (in)valid. On one hand, the
whole vulnerability tracking infrastructure is based on the unique CVE identifiers
that are easy to search based on keywords [13, 31]. Therefore: if a vulnerability
archived to Snyk can be mapped with a regular expression search to a unique
CWE either directly or indirectly via a CVE identifier, there is a fairly good
chance that the vulnerability truly reflects the given software weakness. This ar-
gument is reinforced by the sample: many of the vulnerabilities archived to Snyk
are accompanied with CVE-specific links to NVD’s website, which, in turn, con-
tains also the CWEs assigned for the CVEs in question. On the other hand,
some vulnerabilities archived to the Snyk database contain explicit notes that
these particular vulnerabilities differ from those archived to NVD with some par-
ticular CVE identifiers. Such remarks cause some false positives for the regular
expression searches but not for the information retrieval techniques.



2.3 Pre-processing

The pre-processing routine is fairly typical. To begin with, all textual data was
transformed by removing hypertext markup language elements and then lower-
casing all letters. After the transformation, the data was tokenized according to
white space, punctuation characters, and other elements separating word bound-
aries. The resulting tokens were subsequently trimmed by excluding tokens con-
taining non-alphabetic characters, tokens that are common stop words, as well
as tokens with length less than three or more than twenty characters. The re-
maining tokens were finally stemmed with the Porter’s [28] classical algorithm.
The NLTK library [24] was used for the tokenization, stop words, and stemming.

The stemmed tokens were used for three types of “bag-of-words” matrices:

W(k), where k ∈ {1, 2, 3}. (4)

An element w(k)ij in a W(k) denotes the weight given for the j:th tokenization-
based k-gram (i.e., a unigram, a bigram, or a trigram) in the i:th document (i.e.,
either a given CWE or a given vulnerability). The number of rows remains con-
stant in each matrix: i = 1, . . . , n1 + n2, where n1 and n2 are defined in (2).
Given that the use of bigrams and trigrams substantially enlarges the amount of
data, the number columns varies: j = 1, . . . ,mk, where mk denotes the number
of unique k-grams observed. It should be also noted that before assigning the ac-
tual weights, the underlying abstract data structures were pruned by excluding
those k-grams that were present in a given corpus only twice or less.

2.4 Weights

Five different weights are used for the empirical validation. The term frequency
(that is, in the present context, k-gram frequency) provides the starting point:

TF : w(k)ij = f(k)ij , w(k)ij ∈W(k), (5)

where f(k)ij denotes the number of occurrences of the j:th k-gram in the docu-
ment i. In addition, two simple TF-derivatives are empirically explored:

TF-LOG : w(k)ij = log(f(k)ij + 1) and (6)

TF-BOOLEAN : w(k)ij =

{
0 if f(k)ij = 0,

1 if f(k)ij > 0.
(7)

Although there is no particular prior reason to expect that the results would
differ with respect to these three simple weighting schemes, the usual rationale
for TF-LOG, for instance, is based on the reasoning that the importance of a
term is unlikely to grow linearly as implied by the TF weights [26]. The same
rationale works also behind the current de facto weighting scheme, the so-called
term-frequency-inverse-document-frequency (TF-IDF). Despite of the scheme’s
complex name, the actual weighting is simple:

TF-IDF : w(k)ij = f(k)ij × ω(k)j , where (8)

ω(k)j = log([n1 + n2 + 1] / [ñ(k)j + 1]) + 1



and ñ(k)j denotes the number of documents containing the j:th term (that is,
k-gram). The IDF term, ω(k)j , used in (8) is one of the many smoothed variants
of the standard IDF formula. With smoothing or no smoothing, the rationale
behind the IDF term is to penalize the occurrence of common terms. Even though
the TF-IDF weights perform well in many applied problems, the same rationale
has been used to define also many other more or less analogous weights [14, 26].
To empirically explore one of these IDF-based derivatives, the so-called (pivoted)
document length normalization (DLM) is as a good choice as any. It is given by

DLM-IDF : w(k)ij =

[
1 + log(f(k)ij + 1)

(1− β) + β(L(k)i/L(k))

]
ω(k)j , (9)

where β is fixed to a scalar 0.2, L(k)i denotes the length of the i:th document

(defined as the sum of all term frequencies), and L(k) refers to the average
document length in a whole corpus [12]. The five different weights enumerated are
used for disseminating the subsequently discussed empirical validation results.

3 Results

The five different weights from (5) to (9) were assigned to each of the matrix
types noted in (4). This assignment resulted in fifteen weight matrices that es-
tablish the basis for the empirical results. For computing the similarities between
the CWEs and vulnerabilities observed, the standard cosine similarity is used
for each of the matrices. If C̃ denotes a document-by-document matrix of co-
sine similarities, a n2 × n1 vulnerability-by-weakness matrix C can be obtained
by deleting n1 rows from C̃ that refer to CWEs, and carrying out an analo-
gous operation for the columns. Then, each vulnerability (row) is mapped to the
corresponding maximum row value in C. If ties are present (meaning that a vul-
nerability has the same maximum cosine similarity with two or more CWEs), the
vulnerability is mapped to the CWE picked by the regular expression searches,
provided that any of the maximum values map to this particular CWE identifier.

The so-called latent semantic analysis (LSA) was also briefly examined as
an additional validation check. Although the usefulness for applied problems
has been debated [7], LSA builds on the rationale that a rank-reduced similar-
ity matrix based on linear combinations may better reveal the underlying latent
structure of a corpus. Computation is simple but expensive: LSA is a straightfor-
ward application of the fundamental singular value decomposition, C̃ = USVT .
Without delving into the linear algebra details, the actual reduction is also sim-
ple: a predefined number of the descending singular values in the diagonal matrix
S is restricted to zero, after which C̃ is reconstructed by using the manipulated
diagonal matrix [3, 11]. A simple heuristic was used for the manipulation: all
singular values less than or equal to one were set to zero. For each of the fifteen
matrices, roughly about a quarter of the singular values satisfied this heuristic.

Given these computational remarks, the results indicate only modest simi-
larities between the CWEs and the vulnerabilities archived to Snyk. To illus-
trate this observation, Fig. 2 displays the maximum cosine similarities with four
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weights. Unigrams perform much better than bigrams or trigrams regardless of
the weights used. The likely explanation relates to the numbers in Table 1, which
shows the number of columns in W(k) and the average document lengths used
for the DLM-IDF weights in (9). That is: even after the pruning of the weight
matrices, many of the bigrams and trigrams appear only in few documents. The
TF and TF-LOG weights also attain higher maximum similarities than the two
IDF-based weights shown in the two plots on the bottom row in Fig. 2. On av-
erage, however, the clear majority of the cosine similarities are well below 0.5
for all weights used. These low similarity values translate into poor precision.
As illustrated in Fig. 3, the maximum precision is as low as 0.22. The TF-IDF
weights perform the best in this regard. LSA does not improve the precision.

Table 1. Descriptive Statistics

Unigrams Bigrams Trigrams

Unique k-grams (mk) 8435 32166 31745

Average document length (L(k)) 1095 935 839

• Average CWE length 424 357 252
• Average vulnerability length 1175 1016 921

Table 2. Average per-Repository Precision (TF-IDF)

Maven pip npm RubyGems

Unigrams 0.17 0.34 0.55 0.25
Bigrams 0.16 0.31 0.09 0.62
Trigrams 0.10 0.12 < 0.01 0.50

All in all, the validity of common textual information retrieval techniques
seems questionable for software weaknesses. That said, the results diverge con-
siderably between the four repositories (see Table 2). While the results are consis-
tently poor particularly for Maven and to a lesser extent pip, an average precision
of 0.55 is obtained for npm. Interestingly, the use of bigrams raises the average
precision to 0.62 for RubyGems. Thus, it can be also concluded that the poor
precision cannot be generalized to all repositories or programming languages.

4 Discussion

This paper presented a preliminary validation of common textual information
retrieval techniques for mapping vulnerabilities to weaknesses. When compared



to basic regular expression searches, the techniques seem to perform poorly ac-
cording to the results based on four repositories tracked in the Snyk vulnerabil-
ity database. For searching specific vulnerabilities or weaknesses from software
repositories, simple keyword searches based on CVE and CWE identifiers seem
more robust. These commonly used [4, 13, 31] domain-specific searches could be
augmented by the information retrieval techniques [5], however. In other words:
it might be possible to prefer the regular expression searches as a primary re-
trieval technique and use the information retrieval techniques as a secondary
method for retrieving additional content not captured by the keyword-based
searches. It is also important to stress that the results vary across repositories.
This observation hints that the choice over particular security-related corpora
has likely a strong effect upon the vulnerability-CWE mappings.
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Fig. 4. Similarities Between Weaknesses (TF-IDF, unigrams)

Three points can be noted about limitations and directions for further re-
search. First, as CWE is a hierarchical classification system, it might be argued
that larger ontology-based weakness groups should be used. However, all of the
individual CWEs observed in this paper have been tracked in NVD, which un-
dermines the rationale for using such CWE groups in the present context. The
construct validity is also undermined by the illustration in Fig. 4, which shows
that the CWEs observed are not very similar with respect to each other.

Second, many computational checks could be done to further validate the
vulnerability-CWE mappings. For instance, the cosine similarity used could be
verified against other commonly used similarity metrics. (It can be noted that
the so-called Jaccard similarity performs even worse, however.) Further examples
include the calibration of the LSA’s reduction step, the use of a more aggressive
stemming algorithm, and the examination of part-of-speech tagging.

Third, it seems reasonable to try to either enlarge or enrich the datasets used
for validation. The textual information stored to Snyk, CWE, OWASP, and re-



lated databases is terse in terms of natural language and prose, but there are
technical terms that should be specifically weighted. If the small excerpt shown
in Subsection 2.1 is taken as an example, the trigrams denial of service and
NULL pointer dereference should attain higher weights than any of the other
k-grams. Such domain-specific weights entail the construction of a reference cor-
pus. Given the generally poor precision reported and the variance across reposito-
ries, it may also be that neither CWE nor OWASP are ideal for a construction of
a reference corpus. Instead, language-specific guides for secure programming [17]
may be more suitable, among other potential sources related to software weak-
nesses and vulnerabilities. As an alternative to enrichment, big data analysis
is also plausible. Due to the central role of CVE identifiers (cf. Fig. 1), web
crawling could be used to gather a truly massive dataset for text mining. Recent
work [4] shows also some promise for web crawling approaches. But the larger
the datasets, the coarser the mappings, and the bigger the validity concerns.
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