Skip to main content

A Simple Algorithm for Estimating Distribution Parameters from \(n\)-Dimensional Randomized Binary Responses

  • Conference paper
  • First Online:
Book cover Information Security (ISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11060))

Included in the following conference series:

Abstract

Randomized response is attractive for privacy preserving data collection because the provided privacy can be quantified by means such as differential privacy. However, recovering and analyzing statistics involving multiple dependent randomized binary attributes can be difficult, posing a significant barrier to use. In this work, we address this problem by identifying and analyzing a family of response randomizers that change each binary attribute independently with the same probability. Modes of Google’s Rappor randomizer as well as applications of two well-known classical randomized response methods, Warner’s original method and Simmons’ unrelated question method, belong to this family. We show that randomizers in this family transform multinomial distribution parameters by an iterated Kronecker product of an invertible and bisymmetric \(2\times 2\) matrix. This allows us to present a simple and efficient algorithm for obtaining unbiased maximum likelihood parameter estimates for \(k\)-way marginals from randomized responses and provide theoretical bounds on the statistical efficiency achieved. We also describe the efficiency – differential privacy tradeoff. Importantly, both randomization of responses and the estimation algorithm are simple to implement, an aspect critical to technologies for privacy protection and security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Distributed as the flat Dirichlet distribution of order \(2^n\).

References

  1. Abul-Ela, A.L.A., Greenberg, B.G., Horvitz, D.G.: A multi-proportions randomized response model. J. Am. Stat. Assoc. 62(319), 990–1008 (1967). https://doi.org/10.2307/2283687

    Article  MathSciNet  Google Scholar 

  2. Apple: Learning with Privacy at Scale - Apple. December 2017. https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

  3. Barabesi, L., Franceschi, S., Marcheselli, M.: A randomized response procedure for multiple-sensitive questions. Stat. Papers 53(3), 703–718 (2012). https://doi.org/10.1007/s00362-011-0374-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Blair, G., Imai, K., Zhou, Y.Y.: Design and analysis of the randomized response technique. J. Am. Stat. Assoc. 110(511), 1304–1319 (2015). https://doi.org/10.1080/01621459.2015.1050028

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourke, P.D.: Randomized response multivariate designs for categorical data. Commun. Stat. Theory Methods 11(25), 2889–2901 (1982). https://doi.org/10.1080/03610928208828430

    Article  MATH  Google Scholar 

  6. Casella, G., Berger, R.L.: Statistical Inference. Duxbury/Thomson Learning, Australia; Pacific Grove, CA (2002)

    MATH  Google Scholar 

  7. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistisk Tidskrift 15(429–444), 2–1 (1977)

    Google Scholar 

  8. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1592–1592, October 2013. https://doi.org/10.1109/Allerton.2013.6736718

  9. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Proceedings of the Conference on Theory of Cryptography (2006). https://doi.org/10.1007/11681878%5F14

  10. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: Randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067. CCS 2014, ACM, New York (2014). https://doi.org/10.1145/2660267.2660348

  11. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a RAPPOR with the unknown: privacy-preserving learning of associations and data dictionaries. arXiv:1503.01214 [cs], March 2015. http://arxiv.org/abs/1503.01214

  12. Folsom, R.E., Greenberg, B.G., Horvitz, D.G., Abernathy, J.R.: The two alternate questions randomized response model for human surveys. J. Am. Stat. Assoc. 68(343), 525–530 (1973). https://doi.org/10.2307/2284771

    Article  Google Scholar 

  13. Greenberg, B.G., Abul-Ela, A.L.A., Simmons, W.R., Horvitz, D.G.: The unrelated question randomized response model: theoretical framework. J. Am. Stat. Assoc. 64(326), 520–539 (1969). https://doi.org/10.2307/2283636

    Article  MathSciNet  Google Scholar 

  14. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under local privacy. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 2436–2444. ICML 2016, JMLR.org, New York (2016). http://dl.acm.org/citation.cfm?id=3045390.3045647

  15. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2879–2887. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5392-extremal-mechanisms-for-local-differential-privacy.pdf

  16. Lehmann, E.L., Casella, G.: Theory of Point Estimation. STS. Springer, New York (1998). https://doi.org/10.1007/b98854

    Book  MATH  Google Scholar 

  17. Lensvelt-Mulders, G.J.L.M., Hox, J.J., van der Heijden, P.G.M., Maas, C.J.M.: Meta-analysis of randomized response research: thirty-five years of validation. Sociol. Methods Res. 33(3), 319–348 (2005). https://doi.org/10.1177/0049124104268664

    Article  MathSciNet  Google Scholar 

  18. Moran, P.A.P.: The random division of an interval. Suppl. J. Roy. Stat. Soc. 9(1), 92–98 (1947). https://doi.org/10.2307/2983572

    Article  MathSciNet  MATH  Google Scholar 

  19. Müller-Hannemann, M., Schirra, S. (eds.): Algorithm Engineering. LNCS, vol. 5971. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14866-8

    Book  Google Scholar 

  20. SOSA: Symposium on Simplicity in Algorithms, January 2018. https://simplicityalgorithms.wixsite.com/sosa/cfp

  21. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in apple’s implementation of differential privacy on MacOS 10.12. arXiv:1709.02753 [cs], September 2017. http://arxiv.org/abs/1709.02753

  22. Umesh, U.N., Peterson, R.A.: A critical evaluation of the randomized response method: applications, validation, and research agenda. Sociol. Methods Res. 20(1), 104–138 (1991). https://doi.org/10.1177/0049124191020001004

    Article  Google Scholar 

  23. Warner, S.L.: Randomized Response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). https://doi.org/10.1080/01621459.1965.10480775

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Thanks go to the anonymous reviewers for their comments. This work was in part funded by Oppland fylkeskommune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staal A. Vinterbo .

Editor information

Editors and Affiliations

A Proofs

A Proofs

We start by making a key observation.

Observation 1: Consider the \(2^n \times 2^n\) matrix \(C\). If we let entry \(C_{ix', jy'} = \eta ((ix') \oplus (jy')) = 2^{\eta (i \oplus j)} \;\eta (x' \oplus y'),\) we get that \(C_{x,y} = 1^{n - |x \oplus y|} \; 2^{|x \oplus y|}\). Since we can write \(C = J_1 \otimes J_2 \otimes \cdots \otimes J_n\) where \(J_k\) is the \(2 \times 2\) matrix \(J\) such that \(J_{i,j} = 2^{i \oplus j}\), i.e., \(J = \begin{pmatrix} 1 &{} 2 \\ 2 &{} 1 \end{pmatrix},\) we get that \(D_{x,y} = a^{n - |x \oplus y|} \; b^{|x \oplus y|}\) for \(D = C_{a,b}(n) = B_1 \otimes B_2 \otimes \cdots \otimes B_n\) where \(B_k = \begin{pmatrix} a &{} b \\ b &{} a \end{pmatrix}.\)

Proof of Proposition 1: Note that we can write

$$\begin{aligned}&{\text {Tr}}({\text {cov}}(\hat{\pi }(m))) = \sum _x {\text {Var}}(\hat{\pi }_x(m)), \text { } {\text {Tr}}({\text {cov}}(\hat{\pi }^*(m))) = \sum _x {\text {Var}}(\hat{\pi }_x^*(m))\\&{\text {Var}}(\hat{\pi }_x(m)) = m^{-1} F(x,\pi ), \text { } {\text {Var}}(\hat{\pi }^*_x(m)) = m^{-1} G(x,\pi ) \end{aligned}$$

where \(F\) and \(G\) are functions independent of \(m\). Then for any positive integer \(m\),

$$ L(m) = \frac{m^{-1} \sum _x F(x,\pi )}{m^{-1} \sum _x G(x,\pi )} = \frac{\sum _x F(x,\pi )}{\sum _x G(x,\pi )} = L. $$

and

$$\begin{aligned} \sum _x {\text {Var}}(\hat{\pi }_x(\alpha Lm))&= \sum _x \alpha ^{-1} m^{-1} L^{-1} F(x,\pi ) \le m^{-1} L^{-1} \sum _x F(x, \pi )\\&= \sum _x m^{-1} G(x, \pi ) = \sum _x {\text {Var}}(\hat{\pi }^*_x(m)). \end{aligned}$$

Furthermore,

$$\begin{aligned} {\text {E}}\left( \Vert \hat{\pi }(m) - \pi \Vert _2^2\right)&= {\text {E}}\left( \sum _x (\hat{\pi }_x(m) - p_x)^2\right) = \sum _x {\text {E}}\left( (\hat{\pi }_x(m) - p_x)^2\right) \\&= \sum _x {\text {Var}}(\hat{\pi }_x(m)), \end{aligned}$$

and similarly \({\text {E}}\left( \Vert \hat{\pi }^*(m) - \pi \Vert _2^2\right) = \sum _x{\text {Var}}(\hat{\pi }^*_x(m))\).   \(\square \)

Proof of Proposition 2: The proposition follows directly from Theorem 1.   \(\square \)

Proof of Proposition 3: We first note that for \(i \in \{0, 1, \ldots , 2^n - 1\}\) we have that \(\varsigma ((2^n - 1) - i) = \mathbf {1} \oplus \varsigma (i)\). From this and that \(\oplus \) commutes, we get

  1. 1.

    \(|\varsigma (i) \oplus \varsigma (n - i)| = n\), and

  2. 2.

    \(|\varsigma (i) \oplus \varsigma (j)| = |\varsigma (2^n - 1 - j) \oplus \varsigma (2^n - 1 - i)|\).

The above and that the entry \(C_{a,b}(n)_{i,j} = g(|\varsigma (i) \oplus \varsigma (j)|, a, b)\) for some \(g\), the proposition follows.   \(\square \)

Proof of Theorem 2: The first equation follows directly from Observation 1. We have that \(C_{a,b}(1)\) is invertible if \(a^2 \ne b^2\). From this and that \((A \otimes B) = (A^{-1} \otimes B^{-1})\) we complete the proof.   \(\square \)

Proof of Lemma 1: From Sect. 3.2 we have that

$$\begin{aligned} {\text {cov}}(\hat{\pi }(m))&= m^{-1} \left( C^{-1} \text {diag}(C\pi ) {C^{-1}}^T - \pi \pi ^T\right) . \end{aligned}$$

By properties of the trace of matrix products and symmetry of \(C^{-1}\),

$$\begin{aligned}&{\text {Tr}}\left( m^{-1} \left( C^{-1} \text {diag}(C\pi ) {C^{-1}}^T - \pi \pi ^T\right) \right) \\&= m^{-1}\left( {\text {Tr}}\left( C^{-1} \text {diag}(C\pi ) {C^{-1}}^T\right) - {\text {Tr}}(\pi \pi ^T) \right) \\&= m^{-1}\left( {\text {Tr}}({C^{-1}}{C^{-1}} \text {diag}(C \pi )) - s \right) \end{aligned}$$

From \((A \otimes B)(C \otimes D) = (AC) \otimes (BD)\) it follows that \(C_{a}(n) C_{a}(n) = C_{a^2 + (1-a)^2}(n)\). From this and Theorem 2 and Corollary 1 we get that the entry \((C^{-1}C^{-1})_{0,0} = f(n, a)\) where

$$ f(n, a) = \left( \frac{a^2+(1-a)^2}{(2a-1)^2}\right) ^n. $$

Furthermore, from Proposition 3 the diagonal entries of \(C^{-1}C^{-1}\) are all \(f(n,a)\). Combining this, that \({\text {Tr}}(AB) = \sum _{i,j}(A \odot B^T)_{i,j}\), and \(\sum _x C_x \pi = 1\),

$$\begin{aligned} {\text {Tr}}(C^{-1}C^{-1} \text {diag}(C \pi ))&= \sum _x f(n,a) C_x \pi = f(n,a) \sum _x C_x \pi = f(n,a), \end{aligned}$$

and consequently, \({\text {Tr}}({\text {cov}}(\hat{\pi }_x(m))) = m^{-1} \left( f(n,a) - s\right) \).   \(\square \)

Proof of Theorem 3: We have that

$$\begin{aligned} {\text {Tr}}({\text {cov}}(\hat{\pi }^*))&= m^{-1}{\text {Tr}}(\text {diag}(\pi ) - \pi \pi ^T) = m^{-1}(1 - s). \end{aligned}$$

From Lemma 1 and Proposition 1 we get that \(L= f_L(s) = \frac{c - s}{(1 - s)}\) for \(c = \left( \frac{a^2+(1-a)^2}{(2a-1)^2}\right) ^n.\) From \(0 \le p_x \le 1\) and \(\sum _x p_x = 1\), \(s\) has a minimum when \(p_x = 1/2^n\) for all \(x\), and maximum when \(p_x = 1\) for a fixed \(x\), and \(p_y = 0\) for \(y \ne x\). These values are then \(\frac{2^n}{(2^n)^2} = 2^{-n}\) and \(1\), respectively. The \(m\)’th derivative of \(f_L(s) = \frac{c-s}{1-s}\) wrt. \(0 \le s < 1\) is \(f_L^{(m)}(s) = \frac{m!}{(1-s)^m} \left( f_L(s) - 1 \right) \). The loss \(f_L\) therefore achieves its minimum at \(f_L(2^{-n})\).   \(\square \)

Proof of Proposition 4 (sketch): The \(m\)’th derivative of \(f_L(s) = \frac{c-s}{1-s}\) wrt. \(0 \le s < 1\) is \(f_L^{(m)}(s) = \frac{m!}{(1-s)^m} \left( f_L(s) - 1 \right) \). Since \(c \ge 1\), \(f^{(m)}_L \ge 0\) for all \(m > 0\). In particular, we have that \(f_L\) is convex, as is \(f_L^{(m)}\) for all \(m\). Using the expectation for a first order Taylor approximation for convex \(f_L\) we have that for random variable \(S\)

figure b

where \(\lambda = \max _{x \in \mathcal {I}} f^{(2)}_L(x) \ge 0\) for suitable interval \(\mathcal {I}\). Dividing \((*)\) by \(f_L({\text {E}}(S)) = L(n)\), we get

$$ 1 \le \frac{{\text {E}}(f_L(S))}{f_L({\text {E}}(S))} \le 1 + \delta , $$

where

$$ \delta = \frac{\lambda {\text {Var}}(S)}{2 f_L({\text {E}}(S))}. $$

Let \(S = \pi ^T\pi \). Recalling that \(c = c(a)^n\) and expanding both numerator and denominator at \(n=3\) (where the minimum occurs since \(f_L\) is increasing and \({\text {Var}}(S)\) and \({\text {E}}(S)\) are both decreasing in \(n\)), we see that \(\delta (n) \in O(2^{-3n})\). Applying Chebyshev’s inequality, we have that \(P(S \ge {\text {E}}(S) + 10 {\text {Var}}(S)^{\frac{1}{2}}) \le 0.01\). Evaluating \(\delta \) at \({\text {E}}(S) + 10 {\text {Var}}(S)^{\frac{1}{2}}\) and \(n=3\), we arrive at the numerical bound.   \(\square \)

Proof of Proposition 5: Let the computation of \(Z \otimes R\) require \(t_f(n^2)\) time for \(2\times 2\) matrix \(Z\) and \(R\) of size \(n \times n\). Then we can compute \(R_{a,b}(n)\) at a time cost of \(t(n) = t_f(2^{2(n-1)}) + t(n-1) = \sum _{i = 0}^n t_f(2^{2i}) = \sum _{i = 0}^n t_f(4^i).\) Letting \(t_f(n) = k 4 n\) for some \(k\), then \(t(n) = 4k\sum _{i=0}^n 2^{2i} = 4k \sum _{i=0}^n 4^{i} = 4k (1 + \frac{1-4^n}{1-4}) = 4k (1 + \frac{4^n-1}{3}).\) Now we have that \(t(n) = O(4^n) = O({2^n}^2) = O(|R_{a,b}(n)|)\). In other words, the singly recursive algorithm \(R_{a,b}(n)\) is linear in the time in the number of elements of the output matrix as we can perform \(t_f\) in linear time in the size of input \(R\), in fact we can expect that the Kronecker product can be implemented with \(k \le 3\), due to reading, multiplication, and writing.   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinterbo, S.A. (2018). A Simple Algorithm for Estimating Distribution Parameters from \(n\)-Dimensional Randomized Binary Responses. In: Chen, L., Manulis, M., Schneider, S. (eds) Information Security. ISC 2018. Lecture Notes in Computer Science(), vol 11060. Springer, Cham. https://doi.org/10.1007/978-3-319-99136-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99136-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99135-1

  • Online ISBN: 978-3-319-99136-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics