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Abstract

Browser fingerprinting is a relatively new method of uniquely iden-
tifying browsers that can be used to track web users. In some ways
it is more privacy-threatening than tracking via cookies, as users have
no direct control over it. A number of authors have considered the
wide variety of techniques that can be used to fingerprint browsers;
however, relatively little information is available on how widespread
browser fingerprinting is, and what information is collected to cre-
ate these fingerprints in the real world. To help address this gap, we
crawled the 10,000 most popular websites; this gave insights into the
number of websites that are using the technique, which websites are
collecting fingerprinting information, and exactly what information is
being retrieved. We found that approximately 69% of websites are,
potentially, involved in first-party or third-party browser fingerprint-
ing. We further found that third-party browser fingerprinting, which
is potentially more privacy-damaging, appears to be predominant in
practice. We also describe FingerprintAlert, a freely available browser
extension we developed that detects and, optionally, blocks fingerprint-
ing attempts by visited websites.
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1 Introduction

A number of authors have discussed the very wide variety of readily available
attributes collectable by websites from a visiting browser, enabling websites
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to uniquely identify browsers and potentially track them; this is known as
browser fingerprinting [1, 9, 24, B1]. Although the range of retrievable at-
tributes, as well as methods for retrieving them, have been widely discussed,
relatively little has been published regarding the real-world prevalence of
browser fingerprinting, who is deploying it, and the types of attributes col-
lected to achieve it. This issue clearly merits further investigation, and has
motivated the work described.

Browser fingerprinting is becoming an increasingly serious privacy con-
cern despite some apparently benign applications (see Section . Its vir-
tually permanent natureﬂ is something that might be subject to future reg-
ulation, much as the use of cookies has recently received the attention of
regulators in Europe. Its use is virtually invisible to users and there is no
direct way of preventing it. Moreover, we found that the four browsers used
by more than 88% of web usersE| (i.e. Chrome, Internet Explorer, Firefox and
Edge) do almost nothing to help mitigate ﬁngerprintingﬂ alert the user to
its occurrence, or even provide information about it in user help documents.

We examined the fingerprinting behaviour of the 10,000 most visited
websites. We aimed to discover how many websites deploy browser finger-
printing, whether directly or through third-parties. We also examined which
attributes are collected. Further, to help raise awareness of this issue, we
developed a browser extension that alerts users whenever a visited website
attempts to fingerprint their browser; users can also opt to enable a finger-
printing blocking feature.

The remainder of the paper is organized as follows. Section [2| describes
tracking and browser fingerprinting, and reviews relevant prior art. In Sec-
tion [3| the collection of data from 10,000 websites is described; the results
obtained are reported in Section [4] and analysed in Section [5} In Section [6]
we discuss the relationship with the prior art. Section [7] describes the Fin-
gerprintAlert extension, and the paper ends with discussion and conclusions
in Section 8

2 Background

2.1 Online tracking

Online tracking (or web tracking) is the process of monitoring a user’s online
activities; entities that perform tracking are known as trackers [22]. The
methodology used in our study, like that of many other studies, cannot

1Some browser attributes change over time (e.g. browser version) but uniquely identi-
fying browsers is usually still possible [41], and uniquely identifying the hosting platform
is also possible if a different browser is used [§].

The most commonly used browser data was retrieved from https://www.
netmarketshare.com/browser-market-share.aspx [accessed on 01/07/2018].

JFirefox has a limited set of options to thwart fingerprinting.
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conclusively determine if a website is actually tracking users; we simply
observe whether they collect attributes from browsers that would allow them
to track via browser fingerprinting. In line with common usage, we refer to
recipients of fingerprintable data (whether first- or third-party) as trackers.

In practice, the most common motive for online tracking is to enable on-
line behavioural advertising. This describes the practice by web advertising
companies of tracking users’ online activities in order to display personalised
and targeted advertisements [40]. Additionally, tracking is used as a tool for
market research [24]. There are two main approaches to online tracking —
stateful tracking involving the use of cookiesﬂ and stateless tracking, includ-
ing the use of browser fingerprinting [24] as defined in Section In this
paper, following the seminal work of Eckersley [9], we focus on the latter.

In some ways, browser fingerprinting is a more reliable method of track-
ing than the use of cookies [23], and it appears that browser fingerprinting
is increasingly being used for this purpose. Unlike browser fingerprinting,
cookies are stored on user devices and so can be controlled or deleted by
users. In particular, the use of a private browsing modeﬂ as provided by
many browsers, whilst limiting the use of cookies does very little to pro-
tect users against browser fingerprinting [4]. Furthermore, while modern
browsers provide a user-selectable Do Not Track option, this apparently
does not prevent widespread tracking [2].

2.2 Browser Fingerprinting

Browser fingerprinting enables user web activity to be tracked. It relies
on learning properties of a browser and its host platform, including both
hardware properties and software state (cf. the term device fingerprinting
[18]). Browser fingerprinting typically involves a web server performing some
combination of: (a) collecting and analysing information contained in HTTP
request headers, and (b) downloading JavaScript to the browser which col-
lects and sends back information gathered from browser APIs. Examples
of collected information include: screen resolution, CPU/GPU model, and
names of installed fontﬂ As in these examples, collectable attributes relate
to both browser and host platform.

Tracking web users has long been possible by using cookies. However, the
absence of a cookie (e.g. because it has been deleted by the user) means that
the device can no longer be tracked [9]. By contrast, browser fingerprinting
requires no files to be stored on the user’s device, its effectiveness partly

4A web cookie is a small amount of data sent by a website as part of an HT' TP response
and then stored by the browser. The browser then provides the contents of the cookie
back to the same server in subsequent HTTP requests [6].

®Modes of this type, which have various names, are intended to enhance the privacy
properties of the browser [42].

SA demonstration of the wide range of information collectable from any browser is
available at https://fingerprintable.org/test.
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depends on the browser, and users have virtually no control over it [4].
It can be used for tracking web users by creating a unique ID derived by
combining collected attributes [20].

Four widely discussed uses of browser fingerprinting are: targeted ad-
vertising [2], 22]; social media sharing [22], 33]; analytics services |2}, [22]; and
web security [2, B8]. Of course, browser fingerprinting has other uses, e.g.
to act as a second layer of authentication [9] or to enhance the effectiveness
of CAPTCHAS [3]. However, even in these cases the server gets the benefit,
and the user is often not informed that fingerprinting is in use [43]. Deter-
mining the exact reason(s) why a website deploys browser fingerprinting is
extremely difficult.

Browser fingerprinting websites perform it either as a first-party or a
third-party (or both). That is, a website may download JavaScript to the
browser, which can send the collected attributes back to either its own site
(first-party fingerprinting) or to a third-party site (third-party fingerprint-
ing) [35]. It is even possible that some website operators are not aware that a
third-party is performing browser fingerprinting via their website [10]. This
could arise because third-party fingerprinting sites typically provide client
websites with the JavaScript which collects and sends the attributes used
for fingerprinting and in return, the third-party site provides a range of ser-
vices to the client website (e.g. data analytics or social plugins). As a result,
some website operators may not know what data the third-party JavaScript
collects from user browsers, or what it might be used for.

In the context of tracking, first-party fingerprinting gives relatively little
information to a website — it merely enables multiple visits by the same
browser to be linked, and gives no information about other visited websites.
If the user identity is known by other means (e.g. because the user logs in)
it can also indicate when this user is employing multiple devices [2]. Third-
party fingerprinting, on the other hand, is much more privacy-damaging in
that it enables browsers (and hence users) to be tracked across multiple
websites. Later in this paper we report on the websites that perform the
majority of third-party tracking.

2.3 Previous Work

Back in 2010, Eckersley [9] first described how the collection of a range
of apparently trivial and readily-available browser attributes, such as time
zone, screen resolution, set of installed plugins, and operating system ver-
sion, could be combined to uniquely identify a browser; he gave this process
the name browser fingerprinting. Since then, many other authors, including
Mowery et al. [27, 28], Boda et al. [7], Olejnik et al. [32], Fifield et al. [16],
Takei et al. [36] and Mulazzani et al. [29], have described a range of ways
of enhancing its effectiveness. In parallel, and motivated by the threat to
user privacy posed by browser fingerprinting, a number of authors, e.g. Niki-



forakis et al. [30], Fiore et al. [I7] and FaizKhademi et al. [11] have proposed
ways of limiting its effectiveness.

The BrowserLeaks website (https://www.browserleaks.com) and Alaca
et al. [5] catalogue a wide range of types of information that could be used
for browser fingerprinting. Pathilake et al. [39] have also classified some of
the most widely used methods for fingerprinting. Browser fingerprinting is
clearly very effective; for example, in a large-scale study, Laperdrix et al.
[20] observed that an average of 86% of desktop and mobile browsers possess
a unique fingerprint; other studies |9, 27] have reported similar results (80—
90%). It is important to note that some of the attributes that can be used
for fingerprinting vary between desktop and mobile platforms; as a result
the efficiency of fingerprinting also varies between platform types [20]. For
example, a device model name can be retrieved from a mobile browser user
agent but not from its desktop counterpart.

We conclude this brief review of the prior art by summarising previous
work with a similar scope to that of this paper, namely examining the preva-
lence and nature of browser fingerprinting. In 2015, Libert [23] published
the results of a study of third-party HTTP requests utilized for browser
fingerprinting. Acar et al. [2] performed a large-scale study of fingerprint-
ing focussing mainly on detection by whether a site examined the set of
installed fonts. More recently, Le et al. [21] followed a similar approach, but
based detection on use of the canvas API rather than the installed fonts.
Englehard et al. [10] performed one of the most comprehensive studies in
this area, although they focussed on tracking in general and not just on
stateless (fingerprinting-based) tracking. Englehardt et al. examined the
JavaScript downloaded by websites to browsers, a potentially rich source of
information, using their own tool, OpenWPM. According to the authors,
this tool performs better than many other similar tools such as FPDetec-
tive [2]. However, the use of automated tools to examine JavaScript has
limitations, in that tools can only look for scripts they are programmed to
identify, regardless of the nature of data collected by a tracker. Metwalley
et al. [26] also examined the prevalence of tracking; however, they looked at
a relatively limited number of websites (500) and aimed to detect all types
of online tracking via passive measurements rather than looking specifically
at fingerprinting.

2.4 Motivation

Despite the fact that browser fingerprinting has been extensively studied,
relatively little information has appeared on its prevalence and the browser
attributes that are collected in practice. To the authors’ knowledge, no other
study has listed all the browser fingerprinting attributes that are collected
by a large set of real-world websites. This observation motivates the work
described in the sequel, in which we describe a study of the fingerprinting
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behaviour of the 10,000 most popular websites. Unlike the work of Engle-
hardt et al. [I0] and Acar et al. [2], we chose not to examine the JavaScript
itself, but instead monitor the data that is actually transferred back from
the browser. While adopting a somewhat similar method, the scale of the
study is more than an order of magnitude larger than the study of Metwalley
et al. [26].

One important motive for understanding better the prevalence and na-
ture of browser fingerprinting is to help in developing tools that inform the
user about fingerprinting, and also enable users to exert control over the
degree to which fingerprinting is possible. To this latter end, in Section [7]
we describe FingerprintAlert, a browser extension developed as part of the
study, which makes users aware whenever a website is collecting information
usable for browser fingerprinting. It also allows all detected fingerprinting
to be blocked.

3 Data Collection Methodology

3.1 Data Gathering

The main objectives of the data collection exercise were to assess the number
of websites performing browser fingerprinting, and what types of data are
being collected for this purpose. To achieve our objectives, we decided to
crawl a large number of well-used websites and to test their data gathering
behaviour. We chose 10,000 sites, as this seemed both sufficiently many to
generate representative results, and also a manageable number so we could
analyse the considerable volumes of data generated. We only looked at the
data transmitted, rather than analysing the downloaded JavaScript, for two
main reasons: manual analysis of JavaScript on this scale was infeasible,
and automated analysis, as noted above, has limitations. Moreover, the
data that is sent was the key issue of concern for us, not so much how it is
gathered.

We used a simple method to decide whether a web server is performing
browser fingerprinting. To try to “normalize” web server behaviour, we
looked only at the interactions that occur when a browser initially visits the
homepage of the website, rather than other information gathering exercises
that might occur (e.g. when a user tries to log in). So, a website that sends
any fingerprinting browser attributes back to its, or a third-party, server at
a first visit has been deemed to be engaged in browser fingerprinting; the
precise criterion used to decide whether a site is fingerprinting is given in

Section B.3



3.2 Experimental Set Up

In order to select which websites to crawl, we retrieved the top 10,000 web-
sites from the freely available Majestic list of the one million most visited
websiteﬂ We wrote a program to crawl the homepages of these websites
to discover if they employ browser fingerprinting techniques at the point
when the website is first loaded (i.e. prior to any interaction). This of
course means that we missed websites that employ interaction-triggered fin-
gerprinting. The crawler was created using Selenium WebDriveIEL a Python
script, the FingerprintAlert extension, and the Chrome browser (details of
the crawler software components and the device used can found in Appen-
dices and . The Python script instructs Selenium to visit the 10,000
websites in the list, wait for each to fully load, and then wait for a further
short period before moving to the next website.

The delay is included because, in preparatory work, we manually vis-
ited 50 websites on the list and found that some only relayed information
after a delay ranging from one second to several minutes following the full
loading of the page. Such waits seem likely to be both to allow the various
elements of the web page to be loaded and executed and to take account
of dynamic content being continuously loaded (e.g. advertisements). We set
the short delay to 3 seconds; this was a fairly arbitrary choice, although it
was long enough to cause a number of websites to transmit data, although
not sufficiently long to make the crawling process significantly more time
consuming.

The extension collects and stores all data that is relayed from the browser
to one or more web servers using the GET, POST or HEAD HTTP meth-
odsﬂ [15], i.e. the commonly used means by which information, including at-
tributes used for fingerprinting, is relayed from browser to server. Whether
or not the data was sent SSL/TLS-protected, i.e. using HTTPS [34], was
also recorded.

The crawling process took approximately 300 hours to complete. It
took this long for several reasons, including that some websites took several
minutes to fully load, and that Selenium occasionally crashed. In such cases,
the crawler was restarted manually, where we re-crawled websites after a
crash to ensure we did not miss any data.

"Majestic is a website specializing in web usage statistics, and provides a daily-updated
list of the top one million websites, https://majestic.com/reports/majestic-million
[accessed on 09/10/2017].

8Selenium is open-source software used to automate browsers for testing purposes —
see https://www.seleniumhq.org.

“The quantity of data that can be relayed using GET or HEAD is very limited, whereas
POST allows the transmission of very large volumes (megabytes) of data.
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3.3 Data Processing

Prior to the full crawling process we initially crawled a smaller sample (ap-
proximately 1,000 of the websites) to test the crawler. In this process we
indiscriminately collected all data sent (if any) from the browser to web
servers. Manual examination of the collected data revealed it included in-
formation unrelated to the visiting device or the browser (e.g. the URLs
of displayed advertisements), i.e. of no interest to this study. Most im-
portantly for our purposes, we were able identify fingerprinting attributes
that had unique formats or values (e.g. screen resolution: 1920x1080) that
made automatic detection possible. Using these preliminary findings, we
programmed our crawler to automatically detect a set of 17 attributes (as
listed in Appendix |A.1)). The crawler used regular expressions to examine
relayed data and match them with the prepopulated attributes.

The presence of one or more of these attributes in data returned by
the browser was used to determine whether or not a website was engaged in
fingerprinting. This set of 17 attribute types includes many of the attributes
whose use for fingerprinting is most widely discussed, so we believe that the
presence or absence of an attribute of one of these types is a reasonable
indicator of whether fingerprinting is being performed.

However, other attributes are much more complex, and hence are difficult
to automatically identify. In subsequent manual analysis of the recorded
data, we were able to identify many additional attributes because they were
labelled by name in the captured data. To perform this task automatically
would have been extremely difficult because some sections of the recorded
data were not parsed, and the substrings of the data that were parsed varied
in format (unsurprisingly given the absence of any standards for data formats
for transferred attributes).

In order to manually identify fingerprinting attributes in the collected
data, we first used publicly available scripts to retrieve a large set of finger-
printing attributes from the browser that was used to run the experiments
(the scripts we used can be found at https://github.com/fingerprintable).
We then attempted to match these values with the values in the collected
data. Once we completed the matching, we manually inspected the matches
found; this was necessary to ensure that the matches found were genuine
and not coincidental similarities in strings or numbers. In most cases the
match was confirmed by finding labels followed by the expected values in
the collected data.

3.4 Challenges Addressed

We faced a number of challenges in both implementing crawling and process-
ing the collected data. First, websites are unlikely to admit use of browser
fingerprinting, and so we can only attempt to judge their behaviour based
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on the types of information retrieved from the browser, and when it was col-
lected. As mentioned earlier, there is a wide range of attributes that, when
put together, can be used to create a unique device fingerprint. Identify-
ing and monitoring all such attributes is very challenging, especially since
new attributes seem to arise frequently (given continuously evolving browser
functionality). Moreover, many websites cause the browser to send a series of
data strings back to the server; automatically, or even manually, identifying
what these data represent is highly non-trivial. It was not always possible
to parse the data sent since there is no standard for such data transmissions;
indeed, some websites may deliberately obfuscate the data they send. It was
therefore impossible to fully interpret all the data. Fortunately, there are
certain attributes that are easily identifiable because of their special format
and range of values, such as screen resolution (e.g. 1920x1080), fonts (e.g.
Arial), or geolocation coordinates (e.g. 51.4167, -0.5667).

It is very difficult to determine the minimum number of attributes needed
to produce a unique fingerprint. Fingerprint uniqueness depends on many
factors, including the range of values of an attribute, how often it changes,
and how different it is between one browser/platform and another. As a re-
sult, we made the simplifying assumption that a website is deemed a tracker
if it causes a browser to send at least one of the 17 attributes given in
Appendix

As our crawler was Selenium-based, it suffered from the known crashing
problem [I0] on certain websites, e.g. when it was unable to fully load all the
elements of a website. In such cases the crawler had to be manually restarted.
On average, Selenium crashed once in every 155 visited websites. Moreover,
Chrome extensions are limited to 5MB of storage and so, to ensure that
the collected data did not reach that limit, we programmed the crawler to
stop after every 200 visited websites, yielding an average of 3MB of collected
data. However, Selenium usually crashed before reaching the 200-website
limit.

The 10,000 websites took an average of 19 seconds to fully load. Our tests
were performed using an Internet connection with a minimum bandwidth of
40 Mbps, and so connection limitations are unlikely to be the reason for the
loading delays. The time to load a website noticeably increased as we went
through the list of crawled websites, i.e. the less popular websites loaded
more slowly. So, in future similar experiments, we would recommend that
crawlers should not timeout until at least 20 seconds have elapsed.

4 Results

The data collected in this study, as well as the tools we used for data collec-
tion and analysis, are available at https://github.com/fingerprintable.
The dataset includes the contents of all HT' TP messages sent by and to the
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crawled websites that attempted fingerprinting. This includes the data re-
trieved from the visiting device (i.e. the device used for data gathering), as
well as the domain names of the sender and receiver of the data. Figure
shows a sample of a complete block of data from amongst those collected in

our study.
{
"toURL": "<tracker URL is shown here>",
"referer": "<visited website URL is shown here>",
"method": "POST",
'"d.atal'l 2

"fp={\"os\":\"2\",\"browser\":\"Chrome6l, 0,3163,100\", \"fonts\":\"

undefined\", \"screenInfo\":\"1280*800*24\", \"plugins\":\"Portable

Document Format::internal-pdf-viewer: :Chrome PDF

Plugin| : :mhjfbmdgcfjbbpacojofohoefgiehjai: :Chrome FPDF

Viewer|::internal-nacl-plugin::Native Client|Shockwave Flash 24.0

r0::internal-not-yet-present: :Shockwave Flash|Enables Widevine

licenses for playback of HTML audio/video content. (version:
1.4.8.1008) : :widevinecdmadapter.plugin: :Widevine Content

Decryption Module\"};"

}

Figure 1: Excerpt of collected data

Using a combination of automated parsing and manual inspection, we
detected the transmission of 284 different attribute types. We further de-
tected 1,914 distinct fingerprinters. 70 websites (i.e. 0.7%) timed out (e.g.
because the website did not respond) during the crawling process and thus
were fully, or partially, excluded from our findings. Overall, 6,876 (68.8%)
of the crawled websites collected data from visiting browsers (as first- or
third-parties) that could be used for browser fingerprinting. We refer to
such websites as fingerprinting websites; of course, despite the name, the
fingerprinting websites might not actually be using the collected data for
fingerprinting.

Fingerprinting is most commonly performed by third-party sites; 84.5%
of the 6,876 sites collecting data sent it only to third-parties. Of the rest,
2.4% were exclusively first-party fingerprinters, with the other 13.1% using
both first- and third-party data collection. Over the 6,876 fingerprinting
websites, data was sent to an average of 3.42 domains. The largest number
of different data-collecting websites to which data was sent for a single visited
website was 42.

Fingerprinting websites collected an average of 1.75KB of data. The
third-party websites that collected the most data were yandex (2.9MB),
optimizely (2.8MB) and casalemedia (2.1MB). Figure [2| shows the top 10
third-party websites in terms of collected data volume for a single visiting
browser.

Of the attributes we can automatically detect, the three most frequently
collected were: screen/browser resolution, language, and charset (i.e. char-

10
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Figure 2: Top 10 fingerprinters in terms of collected data volume per browser

acter encoding). We found that fingerprinters collected, on average, 5 of the
17 pre-populated attributes. Figure [3] summarises the 10 most frequently
collected attribute types. The most widely used fingerprinting third-party
was google—analytics{igl (see https://github.com/fingerprintable for a
complete list of fingerprinting third-parties); google-analytics provides web
analytics as well as other web-based services to websites. DoubleClic™]|
(Google’s online advertising service) was the website that collected the
largest volume of data overall.

As noted above, amongst the collected data we were able to identify 284
fingerprinting attributes, which we divided into six categories (see Table .
The full list of 284 attributes can be found in Appendix

Table 1: Summary of identified fingerprinting attributes
Attribute Type | WebGL| Features Media| Misc.| IO* Network| Total
Count 114 66 41 35 20 10 286

*Input/Output

https://analytics.google.com
"Whttps://www.doubleclickbygoogle.com

11
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Figure 3: Top 10 collected attributes

5 Analysis

5.1 Processing Collected Data

The crawler logged every website that relayed data if one, or more, of the 17
pre-programmed attributes were detected. We examined random samples of
the collected data to identify the presence of any false positives. We found
some HTTP messages that contained data that were incorrectly matched
with one of the 17 attributes. We wrote a script to remove such records
(e.g. if the string 1280088. jpeg matched with the screen resolution width
1280). This filtering reduced the number of false positives. However, in gen-
eral, identifying false positives (if any) in the filtered data is non-trivial since
the ability to fingerprint browsers typically depends on both the number and
type of collected attributes. For example, Mowery et al. [28] have demon-
strated that the canvas API alone could be enough to fingerprint a browser,
and Laperdrix et al. [20] demonstrated a seemingly successful method of
fingerprinting based on a specific set of just 17 attributes.

12



5.2 Undetected Fingerprinting

As noted in Section [3.2] the crawler only visited the homepages of the 10,000
websites. Websites we reported as not deploying browser fingerprinting
might nevertheless still be doing so on other pages. Moreover, the attribute
collection reported here was unprompted (i.e. no clicking, cursor movements
or typing was involved) except for loading of the web page. Through man-
ual visits to selected websites, we found that some websites only cause the
browser to send fingerprinting attributes when there are further interactions.
Moreover, some websites only retrieved attributes when a user submits a
form or logs in, and such cases would be too complex (if not impossible) to
capture automatically. The focus of this study is fingerprinting that targets
everyone, including those engaged in casual browsing.

5.3 Prevalence of Fingerprinting

Our study confirms the findings of Englehardt and Narayanan [10] that fin-
gerprinting is commonplace, at least by widely-used websites, and yet there
are a relatively small number of entities actually collecting and processing
attributes (mainly third-party trackers). Indeed, the top five third-party fin-
gerprinting domains (see Figure [4)) are all part of a single company, Google
Inc. This finding is consistent with Libert [23], who found that 78.07% of
the top one million websites send data to a Google-owned domain.

We found that 68.8% of the top 10,000 websites are potentially engaged
in fingerprinting, although previous studies yielded rather different results.
For example, in 2013, Nikiforakis et al. [31] found that only 0.4% of the top
10,000 websites deployed fingerprinting. A year later, Acar et al. [I] reported
that 5% of the top 100,000 websites deployed browser fingerprinting using
the canvas APIL. It thus seems likely that both the prevalence of browser
fingerprinting and the number of attributes being collected for this purpose
have significantly increased.

5.4 Fingerprinting Attributes

We attempted to find the fingerprinting attributes reported by Alaca et al.
[5] and the BrowserLeaks website in the collected data, including attributes
not in the list of 17 attribute types detectable by the crawler. This gave us
an indication of the range of attributes that are collected in the real world,
as opposed to those discussed in the literature, and also helped us improve
the functioning of the extension described in the Section

As reported above, we were able to identify the collection of 284 at-
tributes, a much larger number than those reported by previous studies.
This is partly explained by the fact that previous studies have searched for
a smaller number of attributes; for example Eckersley [9] and Cao et al. [§]
looked for just 10 and 53 respectively. The significantly higher number we

13
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Figure 4: Top third-party fingerprinting domains

found also seems likely to be a result of the growing use of browser finger-
printing [2, BI], and the fact that we monitored the HTTP messages trans-
mitted between visited websites and potential trackers as opposed to detect-
ing the presence of pre-identified fingerprinting scripts, as previously widely
performed. Most of the attributes we were able to identify are collectable
by BrowserLeaks.com. However, BrowserLeaks can also collect many at-
tributes that we did not find any websites to be collecting, including many
of the browser features collectable by Moderm'zﬂ

5.5 Deployment of HT'TPS

Some fingerprinting websites do not use HT'TPS to send the fingerprinting
attributes which are thus transmitted in plaintext; this is a potentially sig-
nificant user privacy threat. Of the 1,914 distinct fingerprinters we detected,
as many as 683 used only HTTP for attribute transmission, 274 mixed use
of HTTP and HTTPS, and the remaining 957 used only HTTPS. That is,
50% of the fingerprinting websites used HTTP at least in some cases for
transmitting what could be construed as personally identifiable informa-

12 A JavaScript library that help websites detect the availability of css and html5 features
in a visitor’s browser https://modernizr.com
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tion. Seemingly, the use of HI'TP is more common in less popular websites,
as Merzdovnik et al. [25] reported that as many as 60% of the top 100,000
websites performing fingerprinting used HTTP. We identified a fingerprint-
ing website that used the WebSocket protocol| as well as HTTP. These
results apply only to the use of HTTP/HTTPs for transmitting browser
attributes, not to whether or not the visited website uses HT'TPS.

5.6 Fingerprint IDs

Some websites cause a browser to send a value that is explicitly labelled
fingerprint or fp, along with fingerprinting attributes. These values are
typically strings of alphanumerics that appear to function as platform /user
identifiers. Evidently, some first- and third-party trackers share such user
identifiers [12], allowing them to compile extensive profiles of users. This
also means that a website or a tracker could acquire user- or platform-related
information without any prior interaction with that user. Such ID-sharing
practices clearly make browser fingerprinting-based tracking more privacy-
threatening.

6 Relationship to the Prior Art

Our study, like that of Libert [23], examined HTTP requests; however,
whereas Libert examined only third-party tracking, we also considered first-
party tracking, i.e. by the visited website itself. Moreover, we focussed on
browser fingerprinting and not on tracking via cookies, a topic that has been
extensively examined in the prior art (e.g. Felten et al. [13], Krishnamurthy
et al. [I9] and Mayer et al. [24]). A further difference between the work de-
scribed here and several previous studies, including that of Englehardt et al.
[10], is that they examined the fingerprinting scripts while we examined the
data relayed back to server via HI'TP. Most significantly, and as discussed
in Section we detected a much higher level of browser fingerprinting
than previously reported; indeed, our results suggest that fingerprinting is
becoming ubiquitous.

Given that this is a rapidly changing and evolving area, it is important
to repeat studies frequently, and so one contribution of our work is to reveal
the current state of the art. We do not claim that the approach we have
adopted is better than other approaches, but it does have the advantage
of being based purely on the data itself, and not on the many and various
scripts that might be used to fingerprint browsers. Our study has enabled
us to give an up to date, fairly comprehensive, and large-scale list of the
attributes being used in practice for browser fingerprinting.

131t is a relatively new full-duplex TCP communication protocol [T4].
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7 Browser Extension

7.1 Overview

As part of the research described here, we developed F ingerpm’ntAlertFE], a
browser extension compatible with desktop versions of Chrome and Firefox
for both Windows and macOS. Based on the preliminary crawling described
in Section we programmed the extension to detect the same 17 at-
tributes. It is activated whenever a web page is loaded, and checks whether
any of these pre-specified attributes are being relayed back to a web server.
If the extension detects such activity, it displays an alert that includes both
the sending and receiving URLs. The extension also provides a detailed
report of detected activities, including data relayed and the corresponding
destination(s). Finally, the extension offers a user-selectable option to au-
tomatically block detected fingerprinting attempts. If selected, an HTTP
message including any of the monitored attributes will be blocked from be-
ing relayed back to a remote server. Despite only detecting 17 attributes,
these attributes are typically transmitted alongside other attributes which
are also blocked, given that they are in the same HTTP message.

7.2 Blocking Feature

Websites typically send collected data in a series of HI'TP messages, and
FingerprintAlert blocks those messages that contain at least one the 17
attributes. We found that these attributes are typically transmitted in the
same HTTP message as a large number of other fingerprinting attributes,
which are also blocked as a result.

As with any extension that interferes with browser behaviour, the block-
ing feature of FingerprintAlert might cause unexpected results or even break
some websites. To ensure it does not cause significant usability issues, we
tested it on the 50 most visited websites from our list. We enabled the
blocking feature, and spent around two minutes on each website perform-
ing actions such as signing up, logging in and clicking on links. During
the tests we did not observe any unexpected behaviour or errors except for
some glitches on two websites (e.g. unable to load support chat window).
Nonetheless, in the unlikely event that the extension damages a user’s expe-
rience at a website, the blocking option or the notifications option can easily
be disabled. The extension will continue to record detected fingerprinting
attempts even if both these options are disabled.

“https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
https://addons.mozilla.org/en-US/firefox/addon/fingerprintalert

16


https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
https://addons.mozilla.org/en-US/firefox/addon/fingerprintalert

7.3 Challenges

Detecting newer or obscure fingerprinting attributes is an obstacle that faces
all privacy extensions [10]. Moreover, websites could choose to conceal trans-
mitted attributes, e.g. using encryption, or use fingerprinting attributes that
are not publicly known. Additionally, it is difficult to automatically detect
all fingerprinting attribute values, as they may be similar to other data or
have no specific set of values. On the other hand, detecting and examining
scripts executed on websites is likely to be hindered by changes in code,
syntax and execution. For that reason, the extension notifies the user if
any HTTP message sent to a server is found to contain one or more of the
selected set of 17 attributes.

7.4 Other Extensions and Future Improvements

The extension complements, rather than replaces, other extensions that mit-
igate fingerprinting, such as those that monitor and block fingerprinting
scripts (e.g. Ghoesrty[lfl and Privacy Badger@. The main purpose of our
extension is to make users aware of fingerprinting attempts as they happen
and the identity of domains collecting the fingerprinting data, and as a result
increase their awareness of how widespread such practices are. The results
of our study could also help in developing new tools designed to thwart fin-
gerprinting. In the future, we aim to improve FingerprintAlert by increasing
the number of automatically-detectable attributes. This can be achieved by
further in-depth examination of the formats and values of attributes that
are currently undetectable. Since the crawler is based on the extension, any
future crawls would also be made more effective by such improvements.

8 Discussion and Conclusions

Cookies are familiar to many users, especially with the introduction of regu-
lations on their use, such as the so-called cookie laWE] covering tracking
whether using cookies or any other technology. These regulations have
caused many websites to announce the use of cookies. However, while users
can disable local storage of cookies, cookies can be selectively deleted, and
cookies expire, browser fingerprinting is virtually outside of user control and
is much more permanent; it is thus significantly more threatening to user
privacy.

Many authors, e.g. Nikiforakis et al. [30] and Torres et al. [37], have de-
scribed means of reducing the effectiveness of fingerprinting through browser

https://www.ghostery. com

Yhttps://www.eff.org/privacybadger

""http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm  [accessed  on
14/04/2018]
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extensions or by adjusting user-configurable browser settings. Previously de-
scribed extensions typically either hide certain attributes or fabricate their
values. While such extensions can be helpful, they also have well-known
limitations; exhibiting an unrealistic set of attributes values is also finger-
printable [31] and could negatively affect the browsing experience (e.g. if
screen resolution values are manipulated).

We have shown that browser fingerprinting is being conducted on a sig-
nificantly larger scale than previously reported, involving the transmission
of large volumes of browser and device-specific data to trackers. We also re-
ported on the large number of fingerprinting attributes collected. As other
authors have described, browser fingerprinting has significant negative im-
plications for user privacy, and it is therefore important that the web user
community is made aware of its prevalence and potential effectiveness. To
this end we have developed FingerprintAlert, that informs users when fin-
gerprinting is occurring and can also block it. If web user privacy is to be
preserved, fingerprinting technology needs to be made user-controllable so
users can limit the degree to which they are tracked. Our browser extension
contributes to this by providing users with the option to block browser fin-
gerprinting. In the longer term it may be necessary for regulators to examine
ways of limiting the degree to which users are tracked using fingerprinting,
and/or for browser manufacturers to find ways of developing browsers that
limit how easily one user can be distinguished from another.

Ethical Issues. Clearly any experiment involving real world websites
raises potential ethical issues. However, no data relating to individuals were
accessed, no vulnerabilities in websites were discovered or exploited, and
all websites were accessed as intended by their providers. Websites were
crawled only once, except in cases of a crawler crash where an additional
visit was required. All the results are publicly available, as described in
Section [l
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Appendices

A Crawling Components and Environment

A.1 Prepopulated List of Attributes

Resolution, OS, OS Version, User-Agent, Browser Name, Browser Version,
WebGL Renderer, WebGL Vendor, WebGL Version, GPU, GPU Vendor,
Installed Plugins, Language, Geolocation, City, IP Addresses, and Charset.

A.2 Crawler Software Components

Component Details

Browser extension FingerprintAlert 1.0
Programming language | Phython 3.6.3
Automation tool Selenium 3.8.1

A.3 Computing Environment

Component | Details

Device MacBook Pro (10.1.1)
(ON) MacOS Sierra 12.1
Browser Chrome 62.0.3202.94

B Attributes Collected by Fingerprinters
B.1 WebGL

aliasedlinewidthrange,aliasedpointsizerange,alphabits,angleins
tancedarrays,antialiasing,bluebits,depthbits,experimental-webg
1,extblendminmax,extdisjointtimerquery,extfragdepth,extshadert
exturelod,extsrgb,exttexturefilteranisotropic,fragmentshaderhi
ghfloatprecision,fragmentshaderhighfloatprecisionrangemax,frag
mentshaderhighfloatprecisionrangemin,fragmentshaderhighintprec
ision,fragmentshaderhighintprecisionrangemax,fragmentshaderhig
hintprecisionrangemin,fragmentshaderlowfloatprecision,fragment
shaderlowfloatprecisionrangemax,fragmentshaderlowfloatprecisio
nrangemin, fragmentshaderlowintprecision,fragmentshaderlowintpr
ecisionrangemax,fragmentshaderlowintprecisionrangemin,fragment
shadermediumfloatprecision,fragmentshadermediumfloatprecisionr
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angemax,fragmentshadermediumfloatprecisionrangemin,fragmentsha
dermediumintprecision,fragmentshadermediumintprecisionrangemax
,fragmentshadermediumintprecisionrangemin,greenbits,max3dtextu
resize,maxanisotropy,maxarraytexturelayers,maxcolorattachments
,maxcombinedfragmentuniformcomponents,maxcombinedtextureimageu
nits,maxcombinedvertexuniformcomponents,maxcubemaptexturesize,
maxdrawbuffers,maxfragmentinputcomponents,maxfragmentuniformbl
ocks,maxfragmentuniformcomponents,maxfragmentuniformvectors,ma
xprogramtexeloffset ,maxrenderbuffersize,maxsamples,maxtexturei
mageunits,maxtexturelodbias,maxtexturesize,maxtransformfeedbac
kinterleavedcomponents,maxtransformfeedbackseparateattribs,max
transformfeedbackseparatecomponents,maxuniformblocksize,maxuni
formbufferbindings,maxvaryingcomponents,maxvaryingvectors,maxv
ertexattribs,maxvertexoutputcomponents,maxvertextextureimageun
its,maxvertexuniformblocks,maxvertexuniformcomponents,maxverte
xuniformvectors,maxviewportdims,minprogramtexeloffset,oeseleme
ntindexuint,oesstandardderivatives,oestexturefloat,oestexturef
loatlinear,oestexturehalffloat,oestexturehalffloatlinear,oesve
rtexarrayobject,performancecaveat,redbits,renderer,shadinglang
uageversion,stencilbits,unmaskedrendererwebgl ,unmaskedvendorwe
bgl,vendor,version,vertexshaderhighfloatprecision,vertexshader
highfloatprecisionrangemax,vertexshaderhighfloatprecisionrange
min,vertexshaderhighintprecision,vertexshaderhighintprecisionr
angemax,vertexshaderhighintprecisionrangemin,vertexshaderlowfl
oatprecision,vertexshaderlowfloatprecisionrangemax,vertexshade
rlowfloatprecisionrangemin,vertexshaderlowintprecision,vertexs
haderlowintprecisionrangemax,vertexshaderlowintprecisionrangem
in,vertexshadermediumfloatprecision,vertexshadermediumfloatpre
cisionrangemax,vertexshadermediumfloatprecisionrangemin,vertex
shadermediumintprecision,vertexshadermediumintprecisionrangema
x,vertexshadermediumintprecisionrangemin,webgl,webglcompressed
textures3tc,webglcompressedtextures3tcsrgb,webgldebugrendereri
nfo,webgldebugshaders,webgldepthtexture,webgldrawbuffers,webgl
losecontext,webgl2,webkitexttexturefilteranisotropic,webkitweb
glcompressedtextures3tc,webkitwebgldepthtexture,webkitwebgllos
econtext.

B.2 Features

adblock,applicationcache,backgroundsize,blending,bluetooth,bor
derimage,borderradius,boxshadow,canvas,canvaswebp,canvasblendi
ng,canvaswinding,credentials,cssanimations,csscolumns,cssgradi
ents,cssreflections,csstransforms,csstransforms3dc,csstransiti
ons,draganddrop, flexbox,flexboxlegacy,fontface,generatedconten
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t,getbattery,getgamepads,getusermedia,hashchange,history,hsla,
imghash,inlinesvg,installedfonts,installedplugins, javaenabled,
js,mediadecvices,mimetypes,multiplebgs,opacity,permissions,pos
tmessage,presentation,registerprotocolhandler,requestmediakeys
ystemaccess,requestmidiaccess,rgba,sendbeacon,serviceworker,sh
ockwaveflash,smil,svg,svgclippaths,textshadow,towebp,unregiste
rprotocolhandler,usb,vibrate,websqldatabase,webworkers,webkitg
etusermedia,webkitpersistentstorage,webkittemporarystorage,web
rtc,websockets.

B.3 Media

ac-baselatency,ac-channelcount,ac-channelcountmode,ac-channeli
nterpretation,ac-maxchannelcount,ac-numberofinputs,ac-numberof
outputs,ac-samplerate,ac-state,an-channelcount,an-channelcount
mode,an-channelinterpretation,an-fftsize,an-frequencybincount,
an-maxdecibels,an-mindecibels,an-numberofinputs,an-numberofout
puts,an-smoothingtimeconstant,audioogg,avcl.42c00d,avcl.42e01le
(mp4a.40.2) ,codecsl,dynamiccompressor,h264,hybridoscillator ,mp
3,mp4a.40.2,mpeg,opus,oscillator,theora,videomp4,videoogg,vorb
is(ogg) ,vorbis(vp8) ,vorbis(vp9) ,vorbis(wav) ,wav,webm,wméa.

B.4 Input/Output

windowstate,outerheight,outerwidth, innerheight,innerwidth,widt
h,height,availablewidth,availableheight,colordepth,keytimes,mo
use,orientation,scrolls,maxtouchpoints,touchevent,touchstart,s
peakersinstalled,webcamsinstalled,microphonesinstalled.

B.5 Network

downlink,effectivetype,isproxied,istor,isusingtorexitnode,loca
lip,onchange,publicipv4,publicipv6,rtt.

B.6 Miscellaneous

appcodename ,batterylevel,charging,chargingtime,charset,collect
time,cookieenabled, cpucores,dischargingtime,donottrack,geoloca
tion,graphicscardvendor,hardwareconcurrency,hastimezonemismatc
h,incognito,indexeddb, jsheapsizelimit,languages,localstorage,n
avigator,online,opendatabase,platform,product,productsub,refer
rer,renderer,sessionstorage,timestamp,timezone,total jsheapsize
,usedjsheapsize,useragent,vendor,vendorsub.
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