Skip to main content

Analyzing Resilience to Computational Glitches in Island-Based Evolutionary Algorithms

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

We consider the deployment of island-based evolutionary algorithms (EAs) on irregular computational environments plagued with different kind of glitches. In particular we consider the effect that factors such as network latency and transient process suspensions have on the performance of the algorithm. To this end, we have conducted an extensive experimental study on a simulated environment in which the performance of the island-based EA can be analyzed and studied under controlled conditions for a wide range of scenarios in terms of both the intensity of glitches and the topology of the island-based model (scale-free networks and von Neumann grids are considered). It is shown that the EA is resilient enough to withstand moderately high latency rates and is not significantly affected by temporary island deactivations unless a fixed time-frame is considered. Combining both kind of glitches has a higher toll on performance, but the EA still shows resilience over a broad range of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, Hoboken (2005)

    Book  Google Scholar 

  2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

  3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  4. Anderson, D.P., Reed, K.: Celebrating diversity in volunteer computing. In: Proceedings of the 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp. 1–8. IEEE Computer Society, Washington (2009)

    Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Beltrán, M., Guzmán, A.: How to balance the load on heterogeneous clusters. Int. J. High Perform. Comput. Appl. 23, 99–118 (2009)

    Article  Google Scholar 

  7. Cole, N.: Evolutionary algorithms on volunteer computing platforms: the MilkyWay@Home project. In: de Vega, F.F., Cantú-Paz, E. (eds.) Parallel and Distributed Computational Intelligence. Studies in Computational Intelligence, vol. 269, pp. 63–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10675-0_4

    Chapter  Google Scholar 

  8. Cotta, C., et al.: Ephemeral computing and bioinspired optimization - challenges and opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and Applications, pp. 319–324. SCITEPRESS, Lisboa, Portugal (2015)

    Google Scholar 

  9. Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L. (ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan Kaufmann Publishers, Vail (1993)

    Google Scholar 

  10. Dorronsoro, B., Alba, E.: Cellular Genetic Algorithms Operations Research/Computer Science Interfaces, vol. 42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77610-1

    Book  MATH  Google Scholar 

  11. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature - PPSN II, pp. 37–48. Elsevier Science Inc., New York (1992)

    Google Scholar 

  12. Hidalgo, J., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island model fault tolerant? In: Thierens, D., et al. (eds.) Genetic and Evolutionary Computation - GECCO 2007, pp. 2737–2744. ACM Press, New York (2007)

    Google Scholar 

  13. Kumar, P., Sridhar, G., Sridhar, V.: Bandwidth and latency model for DHT based peer-to-peer networks under variable churn. In: 2005 Systems Communications (ICW 2005, ICHSN 2005, ICMCS 2005, SENET 2005), pp. 320–325. IEEE August 2005

    Google Scholar 

  14. Laredo, J., Castillo, P., Mora, A., Merelo, J.J.: Evolvable agents, a fine grained approach for distributed evolutionary computing: walking towards the peer-to-peer computing frontiers. Soft Comput. 12(12), 1145–1156 (2008)

    Article  Google Scholar 

  15. Laredo, J., Castillo, P., Mora, A., Merelo, J.J., Fernandes, C.: Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Perform. Syst. Archit. 1(4), 260–268 (2008)

    Article  Google Scholar 

  16. Lässig, J., Sudholt, D.: General scheme for analyzing running times of parallel evolutionary algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature - PPSN XI, pp. 234–243. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_24

    Chapter  Google Scholar 

  17. Lastovetsky, A.: Heterogeneous parallel computing: from clusters of workstations to hierarchical hybrid platforms. Supercomput. Front. Innovations 1(3), 70–87 (2014)

    Google Scholar 

  18. Lombraña González, D., Fernández de Vega, F., Casanova, H.: Characterizing fault tolerance in genetic programming. Future Generation Computer Systems 26(6), 847–856 (2010)

    Article  Google Scholar 

  19. Meri, K., Arenas, M., Mora, A., Merelo, J.J., Castillo, P., García-Sánchez, P., Laredo, J.: Cloud-based evolutionary algorithms: an algorithmic study. Nat. Comput. 12(2), 135–147 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_72

    Chapter  Google Scholar 

  21. Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable and ephemeral computational environments. Nat. Comput. 16(2), 189–200 (2017)

    Article  MathSciNet  Google Scholar 

  22. Nogueras, R., Cotta, C.: Analyzing self-\(\star \) island-based memetic algorithms in heterogeneous unstable environments. Int. J. High Perform. Comput., Appl (2016). https://doi.org/10.1177/1094342016678665

    Book  MATH  Google Scholar 

  23. Renard, H., Robert, Y., Vivien, F.: Data redistribution algorithms for heterogeneous processor rings. Int. J. High Perform. Comput. Appl. 20, 31–43 (2006)

    Article  Google Scholar 

  24. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: 6th ACM SIGCOMM Conference on Internet Measurement - IMC 2006, pp. 189–202. ACM Press, New York (2006)

    Google Scholar 

  25. Tomassini, M.: Spatially Structured Evolutionary Algorithms Natural Computing Series. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-29938-6

    Book  MATH  Google Scholar 

  26. Vespignani, A.: Predicting the behavior of techno-social systems. Science 325(5939), 425–428 (2009)

    Article  MathSciNet  Google Scholar 

  27. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056853

    Chapter  Google Scholar 

  28. Wickramasinghe, W., Steen, M.V., Eiben, A.E.: Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: Thierens, D. (ed.) Genetic and Evolutionary Computation - GECCO 2007, pp. 1460–1467. ACM Press, New York (2007)

    Google Scholar 

  29. Zhou, J., Tang, L., Li, K., Wang, H., Zhou, Z.: A low-latency peer-to-peer approach for massively multiplayer games. In: Despotovic, Z., Joseph, S., Sartori, C. (eds.) AP2PC 2005. LNCS (LNAI), vol. 4118, pp. 120–131. Springer, Heidelberg (2006). https://doi.org/10.1007/11925941_10

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish Ministerio de Economía and European FEDER under Projects EphemeCH (TIN2014-56494-C4-1-P) and DeepBIO (TIN2017-85727-C4-1-P) and by Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nogueras, R., Cotta, C. (2018). Analyzing Resilience to Computational Glitches in Island-Based Evolutionary Algorithms. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics