
This is a repository copy of Empirical analysis of diversity-preserving mechanisms on 
example landscapes for multimodal optimisation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136492/

Version: Accepted Version

Proceedings Paper:
Covantes Osuna, E. orcid.org/0000-0001-5991-6927 and Sudholt, D. 
orcid.org/0000-0001-6020-1646 (2018) Empirical analysis of diversity-preserving 
mechanisms on example landscapes for multimodal optimisation. In: Auger, A., Fonseca, 
C., Lourenço, N., Machado, P., Paquete, L. and Whitley, D., (eds.) Parallel Problem 
Solving from Nature – PPSN XV. PPSN 2018: 15th International Conference on Parallel 
Problem Solving from Nature, 08-12 Sep 2018, Coimbra, Portugal. Lecture Notes in 
Computer Science, 11102 . Springer Verlag , pp. 207-219. ISBN 9783319992587 

https://doi.org/10.1007/978-3-319-99259-4_17

The final publication is available at Springer via 
https://doi.org/10.1007/978-3-319-99259-4_17

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Empirical Analysis of Diversity-preserving

Mechanisms on Example Landscapes for

Multimodal Optimisation⋆

Edgar Covantes Osuna and Dirk Sudholt

University of Sheffield, Sheffield, S1 4DP, United Kingdom
ecovantes1@sheffield.ac.uk, d.sudholt@sheffield.ac.uk

Abstract. Many diversity-preserving mechanisms have been developed
to reduce the risk of premature convergence in evolutionary algorithms
and it is not clear which mechanism is best. Most multimodal optimisa-
tion problems studied empirically are restricted to real-parameter prob-
lems and are not accessible to theoretical analysis, while theoreticians
analyse the simple bimodal function TwoMax. This paper looks to nar-
row the gap between both approaches. We perform an extensive empirical
study involving 9 common diversity mechanisms on Jansen-Zarges mul-
timodal function classes (Jansen and Zarges, PPSN 2016) that allow to
control important problem features while still being amenable to theo-
retical analysis. This allows us to study functions with various degrees
of multimodality and to explain the results in the light of previous theo-
retical works. We show which mechanisms are able to find and maintain
a large number of distant optima, escape from local optima, and which
fail to locate even a single peak.

Keywords: diversity-preserving mechanisms, evolutionary algorithms,
multimodal optimisation, empirical study, theory

1 Introduction

Many optimisation problems are multimodal, and finding global optima or high-
quality local optima can become a challenge for any optimisation algorithm [15,
17]. Evolutionary algorithms (EAs) are well suited to dealing with multimodal
problems due to their use of a population. A diverse population can explore sev-
eral hills in the fitness landscape simultaneously and offer several good solutions
to the user, a feature desirable for decision making, in multi-objective optimi-
sation and in dynamic optimisation. However, a major difficulty when applying
EAs is that the population may converge to a sub-optimal individual before the
fitness landscape is explored properly.

Many diversity-preserving mechanisms have been developed to reduce the
risk of such premature convergence, including fitness sharing, clearing, avoiding
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duplicates, fitness diversity, crowding methods, restricted tournament selection,
and many others [4,7,16,18]. These mechanisms seek to enable EAs to visit many
different regions of the search space and generate solutions that differ from those
seen before [10]. Given such a variety of mechanisms to choose from, it is often
not clear which mechanism is the best choice for a particular problem.

Previous empirical analyses have considered real-parameter multimodal op-
timisation problems [5] like the 4 one-dimensional, five-peaked, sinusoidal, mul-
timodal functions called M1−4 defined in [11, Sect. 5.3]. The single variable x is
restricted to the real-value range [0, 1] encoded using binary representation and
decoded by interpreting the bit string as unsigned binary integer and dividing
it by 2n − 1, where n is the length of the bit string. Other studies used Gray
codes [15]. The drawback of real-valued encodings is that it is not obvious how
phenotypic features such as local optima appear in genotype space; for example
what Hamming distance local optima have and how likely it is that mutation
jumps from one basin of attraction to another. This makes the analysis of the
population dynamics a very challenging task for theoretical analysis.

Previous theoretical studies that considered multimodal problems [1,2,6,13]
compared the expected running time of different diversity mechanisms to find
both global optima on the bimodal function TwoMax(x) := {

∑n

i=1 xi, n −
∑n

i=1 xi} that has a straightforward mapping between genotypes (bit strings)
and phenotypes (number of 1-bits).TwoMax consists of two different symmetric
slopes (or branches) ZeroMax and OneMax with 0n and 1n as global optima,
respectively, and the goal is to evolve a population that contains both optima1.
This is challenging as the two optima have the maximum possible Hamming dis-
tance. Studying TwoMax led to insights into the capabilities and weaknesses of
various diversity mechanisms (see Section 2 and Sudholt’s survey [19]), however
a question left open is how diversity mechanisms deal with many local optima.

Jansen and Zarges [9] addressed the need for more general classes of func-
tions for multimodal optimisation for both empirical and theoretical analysis by
defining multimodal landscapes with straightforward binary encodings (see Sec-
tion 3). We seek to narrow the gap between theory and practice by performing
an empirical study on the Jansen-Zarges multimodal function classes, comple-
menting existing rigorous theory for TwoMax [1,2,6,13] with empirical results
of more complex functions with multiple different peaks, slopes and heights. The
main goal is to provide insights into the working principles of these mechanisms
by testing their ability to find and maintain many local optima in the popula-
tion as well as their ability to escape from local optima with different basins of
attraction. We use previous theoretical results to inform the choice of algorithm
parameters and to discuss in how far our empirical results agree or disagree with
theoretical results obtained for TwoMax.

1 In [6] an additional fitness value for 1n was added to distinguish between a local
optimum 0n and a unique global optimum 1n. The discussion of previous work
from [6] is adapted to a TwoMax with two optima [1, 2, 13] (see Table 1 and [19]).



Algorithm 1 (µ+1) EA

1: Initialise P with µ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ P uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose z ∈ P uniformly at random from all individuals with worst fitness in P .
6: if f(y) ≥ f(z) then P = P \ {z} ∪ {y}.

2 Diversity Mechanisms & Previous Results for TwoMax

Following previous theoretical work, we consider diversity mechanisms embedded
in a bare-bones EA: a (µ+1) EA with uniform parent selection in a population
of size µ, using standard mutation (and no crossover). The offspring y replaces
a worst individual z from the population if f(y) ≥ f(z) (see Algorithm 1).

Table 1 summarises previous work for the (µ+1) EA with diversity mech-
anisms on TwoMax (details for each (µ+1) EA variant can be found in the
respective publications and in [19]). Some mechanisms succeed in finding both
optima on TwoMax efficiently, that is, in (expected) time O(µn log n). Others
have a very low success probability. Friedrich, Oliveto, Sudholt, and Witt [6]
showed that the plain (µ+1) EA (PL, Algorithm 1) is not able to maintain in-
dividuals on both branches for a long time; the whole population is likely to
converge to one of the two peaks [6, Theorem 1].

Introducing other simple mechanisms to the (µ+1) EA like avoiding genotype
duplicates (NGD), where (after initialisation) identical copies of individuals are
prevented from entering the population [6, Algorithm 2], and avoiding fitness
duplicates (NFD), rejecting individuals with the same fitness [6, Algorithm 3],
are not able to prevent the extinction of one branch, ending with the population
converging to one optimum with high probability [6, Theorem 2 and 3, resp.].

In the (µ+1) EA with probabilistic crowding (PC) [2, Algorithm 1], an off-
spring competes with its parent and the survivor is chosen with a probabil-
ity proportional to their fitness [12]. Covantes Osuna and Sudholt showed that
this mechanism is unable to evolve solutions of significantly higher fitness than
that obtained during initialisation (or, equivalently, through random search),
even when given exponential time [2, Theorem 2.2]. The reason is that fitness-
proportional selection between parent and offspring results in an almost uniform
choice as both have very similar fitness, hence fitness-proportional selection de-
grades to uniform selection for replacement. In deterministic crowding (DC), the
offspring competes against its parent and replaces it if the offspring is at least
as good [11]. For the (µ+1) EA with deterministic crowding [6, Algorithm 4],
this mechanism with a sufficiently large population is able to reach both optima
with high probability in expected time O(µn log n) [6, Theorem 4].

In restricted tournament selection (RTS), for every offspring created, RTS
selects uniformly at random (u. a. r.) w (window size) members from the popu-
lation with replacement. Each offspring competes with the closest element from
this set and the offspring replaces it if its fitness is at least as good [8]. For the



Table 1: Overview of runtime analyses for the (µ+1) EA with diversity mecha-
nisms on TwoMax, adapted from [2]. The success probability is the probability
of finding both optima within (expected) time O(µn log n). Conditions include
restrictions on the population size µ, the sharing/clearing radius σ, the niche
capacity κ, window size w, and µ′ := min(µ, log n).

Diversity Mechanism Success prob. Conditions

PL Plain (µ+1) EA [6] o(1) µ = o(n/ log n)
NGD No Genotype Duplicates [6] o(1) µ = o(

√
n)

NFD No Fitness Duplicates [6] o(1) µ = poly(n)

PC Probabilistic Crowding [2] 2−Ω(n) all µ
DC Deterministic Crowding [6] 1− 2−µ+1 all µ

RTS Restricted Tournament Selection [2] ≥ 1− 2−µ′+3 w ≥ 2.5µ lnn
PFS Population-based Fitness Sharing⋆(σ = n/2) [6] 1 µ ≥ 2
FS Individual-based Fitness Sharing⋆(σ = n/2) [13] 1 µ ≥ 3
CL Clearing (σ = n/2) [1] 1 µ ≥ κn2

⋆ Fitness sharing uses phenotypic sharing based on the number of ones.

(µ+1) EA with RTS [2, Algorithm 2], the mechanism succeeds in finding both
optima of TwoMax in the same way as deterministic crowding, provided that
w is chosen large enough [2, Theorem 3.1]. However, if w is too small, then it
cannot prevent one branch taking over the other, leading to exponential running
times with high probability [2, Theorem 3.4].

Fitness sharing derates the real fitness of an individual by an amount that
represents the similarity to other population members. A population-based fit-
ness sharing (PFS) approach [6, Algorithm 5], constructing the best possible new
population amongst parents and offspring is able to find both optima in expected
time O(µn log n) for any population size µ ≥ 2 [6, Theorem 5]. A drawback of
this approach is that examining all possible new populations is computation-
ally expensive. The conventional fitness sharing (FS), where selection is based
on individuals, was studied by Oliveto, Sudholt, and Zarges [13, Algorithm 1].
Population size µ = 2 is not sufficient to find both optima in polynomial time;
the success probability is only 1/2−Ω(1) [13, Theorem 1]. However, with µ ≥ 3,
the (µ+1) EA finds both optima in expected time O(µn log n) [13, Theorem 3].
In all the above results, fitness sharing used a phenotypic distance: the distance
between two search points x and y is the absolute difference in their number of
ones. This choice is tailored to TwoMax and is not applicable in our scenario.
Hence our experiments must rely on fitness sharing with genotypic distances
(Hamming distance), for which no runtime analyses are available.

In clearing (CL), individuals are sorted in decreasing fitness and are processed
in this order. Each individual is compared against other individuals according to
its fitness with distance < σ (clearing radius) which determines if both individu-
als belong to the same subpopulation (niche) or not. Then, the procedure iterates
through all remaining individuals (i. e., those with lower or equal fitness) that



havent been cleared yet, until κ (niche capacity) best individuals (also called
winners) have been found, and all remaining individuals from the same niche
are cleared to the minimum fitness value possible [14]. Finally, the individuals
with best fitness are selected (set of winners) and individuals coming from the
new generation are preferred [1, Algorithm 1 and 2]. Clearing, with a clearing
radius of σ = n/2, niche capacity κ = 1, and µ ≥ κn2 is able to find both optima
in expected time O(µn log n) [1, Theorem 5.6].

3 Jansen-Zarges Multimodal Function Classes

Jansen and Zarges [9] introduced several problem classes spanned by k peaks
p1, p2, . . . , pk ∈ {0, 1}n for an arbitrary number k ∈ N of peaks. Each peak i has
a position pi ∈ {0, 1}n, a slope ai ∈ IR+, and an offset bi ∈ IR+

0 . The fitness
value of a search point depends on peaks in its vicinity as defined as follows.

Definition 1 (Definition 3 in [9]). Let k ∈ IN and k peaks (p1, a1, b1), (p2, a2,
b2), . . . , (pk, ak, bk) be given, then

– JZ1(x) := acp(x) ·G
(

x, pcp(x)
)

+ bcp(x), called nearest peak function,
– JZ2(x) := max

i∈{1,2,...,k}
ai ·G(x, pi) + bi, called weighted nearest peak function,

where cp(x) := argmini∈{1,2,...,k} H(x, pi) is defined by the closest peak to a
search point, and G(x, pi) := n−H(x, pi) indicates the proximity of x to pi.

For the nearest peak function, JZ1(x), the fitness of a search point x is
determined by the proximity to the closest peak i = cp(x) along with its slope ai
and its offset bi. In cases where multiple iminimise H(x, pi), i should additionally
maximise ai ·G(x, pi) + bi.

The weighted nearest peak function, JZ2(x), takes the height of peaks into
account. The peak i yielding the largest value ai · G(x, pi) + bi determines the
function value. The bigger the height of a peak, the bigger its influence on the
search space in comparison to smaller peaks. Note that, in case of equal slopes
a1 = · · · = ak and equal heights b1 = · · · = bk, both functions JZ1 and JZ2 using
parameters a1, . . . , ak, b1, . . . , bk are identical as for JZ2 the maximum over all
terms ai ·G(x, pi)+ bi for all 1 ≤ i ≤ k is attained for the closest peak i = cp(x).

Theorem 2. For JZ1 and JZ2 using the same parameters a1 = · · · = ak and
b1 = · · · = bk we have JZ1 = JZ2.

In the case of two peaks p1 and p2, if these peaks are complementary, that is,
p2 = p1, then JZ1 and JZ2 generalise the TwoMax function, with TwoMax

being the special case of p1 = 0n, p2 = 1n, a1 = a2 = 1 and b1 = b2 = 0 [9]. This
setting was studied for the (µ+1) EA with clearing in [3].

We consider peaks being placed independently and u. a. r., as this strategy is
simple, fair, and it scales towards an arbitrary number of peaks. The slopes are
chosen equal to 1 for all peaks for the sake of simplicity. Even though the peaks
are placed randomly, if the peaks have moderately similar heights, the resulting



fitness landscape has a clear structure: with high probability all peaks are local
optima, and all search points within a Hamming ball of radius Ω(n) belong to
a peak’s basin of attraction. This holds for both functions JZ1 and JZ2 as they
have equal fitness values within the mentioned Hamming balls (but may have
different values on other search points).

Theorem 3. Assume k peaks p1, . . . , pk chosen independently and u. a. r. from
{0, 1}n. If a1 = · · · = ak = 1 and max1≤i≤k bi −min1≤i≤k bi ≤ cn for a constant
c < 1/2 then with probability 1−k2e−Ω(n) for radius r := (1/2−c)/3 ·n we have:

1. all k peaks p1, . . . , pk are local optima in both f1 and f2,
2. for all 1 ≤ i ≤ k, all search points in Bi := {x | H(x, pi) ≤ r}, a Hamming

ball of radius r around pi, belong to the basin of attraction of pi with respect
to both JZ1 and JZ2, that is, there is a Hamming path from x to pi on which
the values of JZ1 and JZ2 are strictly increasing, and

3. for all search points x ∈
⋃k

i=1 Bi, JZ1(x) = JZ2(x).

Proof. Assume without loss of generality min1≤i≤k bi = 0 (as adding a fixed
value does not affect the problem structure), hence bi ≤ cn for all 1 ≤ i ≤ k.

By Chernoff bounds, the probability that two different peaks will have Ham-
ming distance at most n/2 − r is e−Ω(n). By the union bound, the probability
that this holds for any pair of peaks is at most k2 · e−Ω(n). We assume in the
following that every two peaks have a Hamming distance larger than n/2− r.

Now consider a search point x ∈ Bi, that is, H(x, pi) ≤ r. Since r ≤ n/6 we
have n/2 ≥ 3r, and thus for all j 6= i we have H(x, pj) ≥ H(pi, pj) − H(x, pi) >
n/2−r−r ≥ r ≥ H(x, pi). So pi is a unique closest peak, cp(x) = i. By definition
of JZ1, the second statement follows for JZ1 as on every shortest Hamming path
from x to pi, subsequently decreasing the Hamming distance to pi increases the
fitness by ai = 1. Since r ≥ 1 if n is large enough, pi is a local optimum for JZ1.

It only remains to show the third statement as then the first two statements
also apply to JZ2. To prove that JZ2(x) = JZ1(x) for x ∈ Bi, we need to show
that the maximum over terms aj · G(x, pj) + bj = n − H(x, pj) + bj from the
definition of JZ2 is attained for j = i. We have n − H(x, pi) + bi ≥ n − r as
H(x, pi) ≤ r and bi ≥ 0. For j 6= i we have n−H(x, pj) + bj < n/2 + 2r + cn as
bj ≤ cn and H(x, pj) ≥ H(pi, pj)−H(x, pi) > n/2−r−r = n/2−2r. Noting that
n/2+2r+ cn = n/2+3r+ cn− r = n/2+(n/2− cn)+ cn− r = n− r establishes
n−H(x, pj)+bj ≤ n−H(x, pi)+bi and hence JZ2(x) = max1≤j≤k(n−H(x, pj)+
bj) = n−H(x, pi) + bi = JZ1(x). ⊓⊔

4 Experimental Analysis

For the experimental analysis we test each of the algorithms from Table 1 (re-
ferred to by the acronyms defined in the first column) on Jansen-Zarges mul-
timodal function classes. We consider a problem size n = 100, genotypic dis-
tance for all algorithms that require a dissimilarity measure and stop runs after
10µn lnn generations. This time limit is motivated by [2, Lemma 3.3] stating



that, loosely speaking, 2eµn lnn ≈ 5.44µn lnn generations are sufficient to per-
form hill climbing on two peaks with high probability.

The experimental framework is divided in 3 experimental set-ups. In Sect. 4.1
we assess the ability of each mechanism to find many peaks with equal height, and
in Sect. 4.2, we assess the ability of each mechanism to maintain the population
diversity when considering peaks with different heights to yield global and local
optima. For both sections, the number of peaks was increased exponentially as
k = {2, 4, 8, . . . , 64}. For each k, we generated 100 different instances choosing k
peaks u. a. r. from {0, 1}n. In each experiment, all algorithms are tested on the
same set of 100 instances to ensure a fair comparison. The challenge for each
mechanism is to find and maintain as many peaks as possible before reaching the
10µn lnn generations; we record the fraction of the peaks found. The population
size is chosen large enough (µ = 100) to be able to accommodate all peaks.

The analysis in Sect. 4.3 is inspired by [3, Sect. 7.3] and focusses on landscapes
with two peaks. In this section we take a closer look at the ability of the diversity
mechanisms to deal with different basins of attraction, including a wider range
of two-peaked landscapes than the ones likely to be generated by placing peaks
u. a. r.. The goal is to observe which mechanisms are able to escape from local
optima by tunnelling through the fitness valley that separates two peaks. We
choose µ = 32 as in [3, Sect. 7.3] and also consider the same two initialisations:
the standard uniform random initialisation and biased initialisation where the
whole population is initialised with copies of one peak (0n for TwoMax). Biased
initialisation is used in order to observe how the mechanisms are able to escape
from a local optimum and how fast it is compared to a random initialisation.

Based on the theoretical analysis in [2] we define the window size w =
2.5µ lnn for RTS. We know from [6, 13] that both FS approaches with phe-
notypic sharing and σ = n/2 are always efficient on TwoMax but no theory
for genotypic sharing is available. Preliminary experiments for genotypic shar-
ing and σ = n/2 on TwoMax yielded poor results; however with σ = n (which
implies that all individuals always share fitness) both peaks were found in most
runs. This makes sense on other landscapes as well as if σ is set smaller than the
radius or basin of attraction around a local optimum, then FS is unable to push
individuals away from said local optimum. Thus it seems best to err on the side
of choosing σ too large rather than too small.

For CL the situation is different. If σ is chosen too large, such that there
are several optima within a distance of σ, then global optima may be cleared,
making it impossible to maintain many optima in the population. So for CL
it seems best to err on the side of choosing σ too small rather than too large.
We choose σ = n/3 for Sect(s). 4.1 and 4.2 as with high probability every two
different peaks will have a Hamming distance larger than n/3 (cf. Theorem 3).
For Sect. 4.3, we use the recommendation σ = min{H(p1, p2), n/2} from [3].

4.1 Finding Peaks of Equal Height

We consider the JZ1 function with equal slopes a1 = · · · = ak = 1 and off-
sets b1 = · · · = bk = 0. We know from Theorem 2 that with equal parameters



JZ1 = JZ2. In Fig. 1 (blue/left box plots), we show the fraction of peaks obtained
in each of the 100 instances and its variance for each choice of k.

As can be seen, the PL, NGD and NFD perform poorly; these have already
been proven to perform poorly on TwoMax [6]. PC as predicted in [2] is not
able to find even one peak. FS performs best for an intermediate number of
peaks, k ∈ {4, 8, 16}, but still far worse than the best mechanisms. This is in
contrast to theoretical results [6,13] where FS in both variants was shown to be
very effective on TwoMax. These differences may be down to the differences
between TwoMax and JZ1 with random peaks and/or they may be caused
by the differences between phenotypic and genotypic sharing. Interestingly, PFS
performs far worse than the conventional FS. This is surprising as PFS uses a
significant amount of computation time to search for the best possible population
(in terms of shared fitness) it can create out of all parents and offspring, hence we
would have expected it to perform better than FS. A possible explanation for the
poor performance of FS is that even when the population is able to locate basins
of attraction of several peaks, we found several individuals scattered around each
peak, apparently repelling each other and preventing each other from reaching
the peak.

Finally, DC, RTS and CL perform surprisingly well: they find all optima most
of the time for k ≤ 16, and find most optima for k = 32. Only for a large number
of k = 64 peaks, performance deteriorated to around 80% of peaks found. This
deterioration is not surprising as the population size was fixed to µ = 100. RTS
with w = 2.5µ lnn seems to behave similarly to DC as predicted in [2].

4.2 Finding Peaks with Different Height

For this case we make use of the JZ2 function with a1 = · · · = ak = 1 and b1 · · · bk
chosen independently and u. a. r. from [0, 1, . . . , n/3]. This range is motivated by
Theorem 3, as here two peaks differ in their heights by at most n/3, choosing the
leading constant c := 1/3 as the simplest constant smaller than 1/2. Theorem 3
then yields that all search points within Hamming balls of radius n/18 centred
at a peak are located in the peak’s basin of attraction. Fig. 1 (red/centre box
plots) shows the fraction of peaks obtained in each of the 100 instances and its
variance for each k = {2, 4, 8, . . . , 64} peaks. To gauge the quality of the peaks
found, we also plot the normalised best fitness found (green/right box plots),
formally f∗

i /opti where f
∗
i is the fitness of the best peak found on instance i and

opti is the optimal value of instance i.
In this setting PL, NGD and NFD manage to find the global optimum in

up to 80% of instances. This suggests that on this function class it is fairly easy
to find a global optimum. However, they rarely find more than one peak, hence
they seem to suffer from premature convergence. PC continues to show the worst
performance of all mechanisms. PFS and FS find fewer peaks on JZ2 compared
to JZ1. This makes sense since the former setting is more difficult than the latter;
both mechanisms seem to suffer from the issues mentioned in Sect. 4.1.

Finally, DC, RTS and CL also find fewer peaks due to the difficulty of this
setting, but still show the best performance of all mechanisms analysed in this



paper and they manage to find the global optimum in all instances. For k ≤ 8 is
not possible to always find all peaks any more, but they still manage to find at
least 50% of the peaks. Then, for k ≥ 16 the performance deteriorates in such
a way that it is not possible to reach any more 50% of the peaks but still the
mechanisms manage to find some of the peaks. The general cause of the drop
in the performance seems to be that all mechanisms struggle to escape from the
optimum found, also that low-quality optimums are being dropped when better
peaks have been found.

4.3 Escaping from Local Optima

Theorem 3 and its proof suggest that when peaks are chosen u. a. r., they will
have a Hamming distance close to n/2. We would like to investigate how the
diversity mechanisms behave if peaks have different Hamming distances. Follow-
ing [3], we focus on two peaks and vary their Hamming distance between 1 and
n by choosing p1 = 0n and p2 ∈ {0n−11, 0n−212, . . . , 1n}, along with a1 = a2 = 1
and b1 = b2 = 0. As argued in [3], this captures the performance across all
possible JZ1 functions with two complementary peaks and the given slopes and
offsets. In particular, it includes many functions that only have an exponen-
tially small probability to be generated when choosing peaks independently and
u. a. r. With biased initialisation, the algorithms have to find the other optimum
by tunnelling through the fitness valley that separates these two peaks. This is
a much harder task compared to hill climbing on various hills, where the aim is
for the population to maintain a good spread over the search space.

We use the set-up and empirical data for CL from [3] and report the average
number of generations of 100 runs, with two stopping criteria: both optima have
been found or t = 10µn lnn generations were reached.

From Fig. 2a all mechanisms are effective when the Hamming distance is
so small that the peaks are very close together such that the second peak can
be found by a mutation of the first peak found (except for PC, that is not
able to reach a single peak). But as the distance increases, the time for some
mechanisms increases rapidly; they are inefficient on all non-trivial settings. DC
and RTS seem to be agnostic of Hamming distances as they show a very stable
and equal performance across the whole range of Hamming distances. This make
sense as DC climbs up both peaks with equal probability (cf. the analysis on
TwoMax [6]) and RTS behaves similarly to DC. CL is very effective and only
mildly worse than DC and RTS. We see that for FS with genotypic sharing is
only effective if the peaks have a Hamming distance that is very close to n or
trivially small. For intermediate values, FS fails badly.

With biased initialisation (Fig. 2b), CL is the only mechanism able to escape
from local optima with different basins of attraction. As shown theoretically
in [3], this is because cleared individuals are able to explore the fitness landscape
by performing a random walk. We know from [6, 13] that both FS approaches
with phenotypic sharing and sharing radius σ = n/2 are able to escape from local
optima as well, if the two peaks are complementary. With genotypic sharing both
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(f) k = 64

Fig. 1: Experimental results for all (µ+1) EA variants from Table 1 among 100
instances generated u. a. r. for each number of peaks k = {2, 4, 8, . . . , 64}, µ = 100
and n = 100, stopping runs after 10µn lnn generations. Blue/left: fraction of
peaks found on JZ1 with peaks of equal height. Red/centre: fraction of peaks
found on JZ2 with peaks with different heights, b1 . . . bk chosen u. a. r. from
{0, 1, . . . , n/3}. Green/right: normalised best fitness found on JZ2 experiments.
Squares indicate median values.
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(b) Biased Initialisation

Fig. 2: The average number of generations among 100 runs for finding both peaks
p1 = 0n and p2 = {0n−11, 0n−212, . . . , 1n} on the fitness landscape defined by
JZ2 with a1 = a2 = 1 and b1 = b2 = 0 or t = 10µn lnn generations were
reached, for all (µ+1) EA variants mentioned in Table 1, using n = 100 and
µ = 32. Results for both random and biased initialisation are shown.

FS approaches perform very poorly and seem unable to escape from local optima.
Also the other mechanisms fail as they are unable to accept worse search points.

5 Conclusions

We have performed an extensive empirical study involving 9 common diversity
mechanisms on Jansen-Zarges multimodal function classes, covering various de-
grees of multimodality from 2 to 64 peaks and peaks having equal or different
heights, reflected in their basins of attraction. Our results show that the plain
(µ+1) EA, the simple mechanisms: avoiding genotype and fitness duplicates can-
not maintain subpopulations on several peaks; once a peak has been found it
seems impossible to escape from such a peak. Probabilistic crowding shows a
terrible performance as it is unable to locate even a single peak. These findings
are in line with theoretical results on TwoMax [2, 6].

Previous theoretical results have shown that both fitness sharing approaches
are always efficient on TwoMax if phenotypic distances are being used and
parameters are set appropriately [6,13]. This includes the ability to climb down
a peak and to tunnel through fitness valleys to reach other niches. Unfortunately
this is not the case for fitness sharing with genotypic distance. Only when the
peaks have a Hamming distance that is trivially small or very close to n they seem
to be effective; for any other intermediate case they show a poor performance.

Deterministic crowding, restricted tournament selection and clearing perform
well for peaks with the same slope and height, much better than all other diver-
sity mechanisms. Only for large numbers of peaks (k = 64) and different heights



the performance starts to deteriorate. Finally, only clearing has shown the ability
to escape from local optima since all other mechanisms seem unable to accept
worse search points or unable to tunnel through fitness valleys.
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