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Abstract. For the last ten years, almost every theoretical result con-
cerning the expected run time of a randomized search heuristic used
drift theory, making it the arguably most important tool in this domain.
Its success is due to its ease of use and its powerful result: drift theory
allows the user to derive bounds on the expected first-hitting time of a
random process by bounding expected local changes of the process – the
drift. This is usually far easier than bounding the expected first-hitting
time directly.
Due to the widespread use of drift theory, it is of utmost importance to
have the best drift theorems possible. We improve the fundamental addi-
tive, multiplicative, and variable drift theorems by stating them in a form
as general as possible and providing examples of why the restrictions we
keep are still necessary. Our additive drift theorem for upper bounds only
requires the process to be nonnegative, that is, we remove unnecessary
restrictions like a finite, discrete, or bounded search space. As corollar-
ies, the same is true for our upper bounds in the case of variable and
multiplicative drift.

1 Drift Theory

In the theory of randomized algorithms, the first and most important part of
algorithm analysis is to compute the expected run time. A finite run time guaran-
tees that the algorithm terminates almost surely, and, due to Markov’s inequality,
the probability of the run time being far larger than the expected value can be
bounded, too. Thus, it is important to have strong and easy to handle tools in
order to derive expected run times. The de facto standard for this purpose in
the theory of randomized search heuristics is drift theory.

Drift theory is a general term for a collection of theorems that consider
random processes and bound the expected time it takes the process to reach a
certain value – the first-hitting time. The beauty and appeal of these theorems
lie in them usually having few restrictions but yielding strong results. Intuitively
speaking, in order to use a drift theorem, one only needs to estimate the expected
change of a random process – the drift – at any given point in time. Hence, a
drift theorem turns expected local changes of a process into expected first-hitting
times. In other words, local information of the process is transformed into global
information.

Drift theory gained traction in the theory of randomized search heuristics
when it was introduced to the community by He and Yao [7, 8] via the additive
drift theorem. However, they were not the first to prove it. The result dates back
to Hajek [6], who stated the theorem in a fashion quite different from how it is
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phrased nowadays. According to Lengler [12], the theorem has been proven even
prior to that various times. Since then, many different versions of drift theorems
have been proven, the most common ones being the variable drift theorem [9]
and the multiplicative drift theorem [3]. The different names refer to how the
drift is bounded other than independent of time: additive means that the drift
is bounded by the same value for all states; in a multiplicative scenario, the drift
is bounded by a multiple of the current state of the process; and in the setting
of variable drift, the drift is bounded by any monotone function with respect to
the current state of the process.

At first, the theorems were only stated over finite or discrete search spaces.
However, these restrictions are seldom used in the proofs and thus not necessary,
as pointed out, for example, by Lehre and Witt [11], who prove a general drift
theorem without these restrictions. Nonetheless, up to date, all drift theorems
require a bounded search space;1 Semenov and Terkel [18] state a Theorem
very much like an additive drift theorem for unbounded search spaces, but they
require the process to have a bounded variance, as they also prove concentration
for their result.

The area of randomized search heuristics is, in fact, in strong need of extended
drift theorems and a careful discussion of what happens when restrictions are not
met. While most search spaces are finite and, thus, the existing drift theorems
sufficient, progress will be inhibited whenever search spaces are not naturally
finite. Worse yet, the existing drift theorems might be applied where they are
not applicable, as happened when in [4, Section 4] the additive drift theorem
was applied on an unbounded search space.

While previously new drift theorems were proven on a need-to-have basis
using whatever restrictions where present in the concrete application, we aim
at providing the best possible theorem for any applications to come. For the
restrictions that remain, we give examples that show that these restrictions are,
in some sense, necessary. In this way, we want to further the understanding
of random processes in general and not just for a concrete application; thus,
this work should benefit a lot of future work in the area of randomized search
heuristics.

Our most important results are the upper and lower bound of the classical
additive drift theorem (Thm. 5 and 7, respectively), which we prove for un-
bounded2 search spaces. These theorems are used as a foundation for all of our
other drift theorems in other settings. Overall, our results can be summarized
as follows:

For additive drift, we prove an upper bound for any nonnegative process
(Thm. 5), and a lower bound for processes with bounded expected step size
(Thm. 7).

1 Lengler [12] briefly mentions infinite search spaces and also gives a proof for a re-
stricted version of the additive drift theorem in the setting of an unbounded discrete
search space.

2 For the upper bound, we require the search space to be lower-bounded but not
upper-bounded. We still refer to such a setting as unbounded.
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For multiplicative drift and variable drift, we prove upper bounds for
any nonnegative process (Cor. 11 and 12; and Thm. 9 and 10, respectively).

The intention of this paper is to provide a fully-packed reference for very
general yet easy-to-apply drift theorems. That is, we try to keep the requirements
of the theorems as easy as possible but still state the theorems in the most general
way, given the restrictions. Further, we discuss the ideas behind the different
theorems and some of the proofs in order to provide insights into how and why
drift works, we provide examples, and we discuss prior work at the beginning of
each section.

We only consider bounds on the expected first-hitting time, as this is al-
ready a vast field to explore. However, we want to mention that drift theory has
also brought forth other results than expected first-hitting times, namely, con-
centration bounds and negative drift, which are related. Both areas bound the
probability of the first-hitting time taking certain values. Concentration bounds
show how unlikely it is for a process to take much longer than the expected
first-hitting time [2, 10]. On the other hand, negative drift bounds how likely
it is for the process to reach the goal although the drift is going the opposite
direction [10, 15, 16]. These results are also very helpful but out of the scope of
this paper.

Our paper is structured as follows: in Section 2, we start by introducing im-
portant notation and terms, which we use throughout the entire paper. Further,
we also discuss Theorem 1, which our proofs of the additive drift theorems rely
on. In Section 3, we discuss additive drift and prove our main results. We then
continue with variable drift in Section 4 as a generalization of additive drift. In
this section, we introduce two different versions of first-hitting time that our
results are based on. Last, we consider the scenario of multiplicative drift in
Section 5.

Most of our proofs can be found in the appendix. A shorter version of this
paper has been accepted at PPSN 2018.

2 Preliminaries

We consider the expected first-hitting time T of a process (Xt)t∈N over R, which
we call Xt for short. That is, we are interested in the expected time it takes
the process to reach a certain value for the first time, which we will refer to as
the target. Usually, our target is the value 0, that is, we will define the random
variable T = inf{t | Xt ≤ 0} (where we define that inf ∅ := ∞).

We provide bounds on E[T |X0 ] with respect to the drift of Xt, which is
defined as

Xt − E[Xt+1 |X0, . . . , Xt ] .

Note that E[T |X0 ] as well as E[Xt+1 |X0, . . . , Xt ] are both random variables.
Because of the latter, the drift is a random variable, too. Further note that, if the
drift is positive, Xt decreases its value in expectation over time when considering
positive starting values. This is why 0 will be our target most of the time.
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We are only interested in the process Xt until the time point T . That is,
all of our requirements only need to hold for all t < T (since we also consider
t+1). While this phrasing is intuitive, it is formally inaccurate, as T is a random
variable. We will continue to use it; however, formally, each of our inequalities in
each of our requirements should be multiplied with the characteristic function
of the event {t < T }. In this way, the inequalities trivially hold once t ≥ T and,
otherwise, are the inequalities we state. This is similar to conditioning on the
event {t < T } but has the benefit of being valid even if Pr[t < T ] = 0 holds.

We want to mention that all of our results actually hold for a random process
(Xt)t∈N adapted to a filtration (Ft)t∈N, where T is a stopping time defined with
respect to Ft.

3 Since this detail is frequently ignored in drift theory, we phrase
all of our results with respect to the natural filtration, making them look more
familiar to usual drift results. For any time point t ≤ T , we call X0, . . . , Xt−1

the history of the process.
Last, we state all of our results conditional onX0, that is, we bound E[T |X0 ].

However, by the law of total expectation, one can easily derive a bound for
E[T ] = E

[

E[T |X0 ]
]

.

2.1 Martingale Theorems

In this section, we state two theorems that we will use in order to prove our re-
sults in the next sections. Both theorems make use ofmartingales, a fundamental
concept in the field of probability theory. A martingale is a random process with
a drift of 0, that is, in expectation, it does not change over time. Further, a
supermartingale has a drift of at least 0, that is, it decreases over time in expec-
tation, and a submartingale has a drift of at most 0, that is, it increases over
time in expectation.

The arguably most important theorem for martingales is the Optional Stop-
ping Theorem (Theorem 1). We use a version given by Grimmett and Stirzaker [5,
Chapter 12.5, Theorem 9] that can be extended to super- and submartingales.

Theorem 1 (Optional Stopping). Let (Xt)t∈N be a random process over R,
and let T be a stopping time4 for Xt. Suppose that

(a) E[T ] < ∞ and that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that

E
[

|Xt+1 −Xt|
∣

∣X0, . . . , Xt

]

≤ c.

Then:

1. If, for all t < T , Xt − E[Xt+1 |X0, . . . , Xt ] ≥ 0, then E[XT ] ≤ E[X0].
2. If, for all t < T , Xt − E[Xt+1 |X0, . . . , Xt ] ≤ 0, then E[XT ] ≥ E[X0].

3 More information on filtrations can be found, for example, in Randomized Algo-

rithms [14] in the section on martingales.
4 Intuitively, for the natural filtration, a stopping time T is a random variable over N
such that, for all t ∈ N, the event {t ≤ T} is only dependent on X0, . . . , Xt.
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Theorem 1 allows us to bound E[XT ] independently of its history, which is
why our drift results are independent of the history of XT as well.

Note that case (1) refers to supermartingales, whereas case (2) refers to sub-
martingales. Intuitively, case (1) says that a supermartingale will have, in expec-
tation, a lower value than it started with, which makes sense, as a supermartin-
gale decreases over time in expectation. Case (2) is analogous for submartingales.
For martingales, both cases can be combined in order to yield an equality.

Martingales are essential in the proofs of our theorems. We will frequently
transform our process such that it results in a supermartingale or a submartin-
gale in order to apply Theorem 1.

Another useful theorem for martingales is the following Azuma–Hoeffding
Inequality [1]. This inequality basically is for martingales what a Chernoff bound
is for binomial distributions.

Theorem 2 (Azuma-Hoeffding Inequality). Let (Xt)t∈N be a random pro-
cess over R. Suppose that

(a) there is some value c > 0 such that, for all t ∈ N, it holds that |Xt−Xt+1| <
c.

If, for all t ∈ N, Xt−E[Xt+1 |X0, . . . , Xt ] ≥ 0, then, for all t ∈ N and all r > 0,

Pr[Xt −X0 ≥ r] ≤ e−
r
2

2tc2 .

3 Additive Drift

We speak of additive drift when the drift can be bounded by a value independent
of the process itself. That is, the bound is independent of time and state.

When considering the first-hitting time T of a random process (Xt)t∈N whose
drift is lower -bounded by a value δ > 0, then E[T |X0 ] is upper -bounded by
X0/δ. Interestingly, if the drift of Xt is upper -bounded by δ, E[T |X0 ] is lower -
bounded by X0/δ. Thus, if the drift of Xt is exactly δ, that is, we know how
much expected progress Xt makes in each step, our expected first-hitting time is
equal to X0/δ. This result is remarkable, as it can be understood intuitively as
follows: since we stop once Xt reaches 0, the distance from our start (X0) to our
goal (0) is exactly X0, and we make an expected progress of δ each step. Thus,
in expectation, we are done after X0/δ steps.

3.1 Upper Bounds

We give a proof for the Additive Drift Theorem, originally published (in a more
restricted version) by He and Yao [7, 8]. We start by reproving the original
theorem (which requires a bounded search space) but in a simpler, more elegant
and educational manner. We then greatly extend this result by generalizing it
to processes with a bounded step width. Finally, we lift also this restriction.
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In all of these cases, we require our random process to only take nonnegative
values. The intuitive reason for this is the following: when estimating an upper
bound for the expected first-hitting time, we need a lower bound of the drift. This
means the larger our bound of the drift, the better our bound for the first-hitting
time. Since our process is nonnegative, the drift for values close to 0 provides a
natural bound for the drift (which is uniform over the entire search space, since
we look at additive drift). If our process could take values less than 0, we could
artificially increase our lower bound of the drift for values that are now bounded
by 0 and, thus, improve our first-hitting time. At the end of this section, we also
give an example (Example 6), which shows how our most general drift theorem
(Theorem 5) fails if the process can take negative values.

The proof of the following theorem transforms the process into a supermartin-
gale and then uses Theorem 1. However, in order to apply Theorem 1, we have
to make sure to fulfill its condition (a), which is the hardest part.

Theorem 3 (Upper Additive Drift, Bounded). Let (Xt)t∈N be a random
process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ 0, that

(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −
E[Xt+1 |X0, . . . , Xt ] ≥ δ, and that

(c) there is some value c ≥ 0 such that, for all t < T , it holds that Xt ≤ c.

Then

E[T |X0 ] ≤
X0

δ
.

Note that condition (a) means that T can be rewritten as inf{t | Xt = 0},
that is, we have to hit 0 exactly in order to stop. We show in Example 6 why
this condition is crucial.

Condition (b) bounds the expected progress we make each time step. The
larger δ, the lower the expected first-hitting time. However, due to condition (a),
note that small values of Xt create a natural upper bound for δ, as the progress
for such values can be at most |Xt − 0| = Xt.

Condition (c) means that we are considering random variables over the in-
terval [0, c]. It is a restriction that all previous additive drift theorems have but
that is actually not necessary, as we show with Theorem 5. In the following proof,
we use this condition in order to show that E[T ] < ∞, which is necessary when
applying Theorem 1.

Proof (Proof of Theorem 3). We want to use case (1) of the Optional Stopping
Theorem in the version of Theorem 1. Thus, we define, for all t < T , Yt = Xt+δt,
which is a supermartingale, since

Yt − E[Yt+1 |Y0, . . . , Yt ] = Xt + δt− E[Xt+1 + δ(t+ 1) |X0, . . . , Xt ]

= Xt − E[Xt+1 |X0, . . . , Xt ]− δ ≥ 0 ,
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as we assume that Xt−E[Xt+1 |X0, . . . , Xt ] ≥ δ for all t < T . Note that we can
change the condition Y0, . . . , Yt to X0, . . . , Xt because the transformation from
Xt to Yt is injective.

We now show that E[T |X0 ] < ∞ holds in order to apply Theorem 1. Let
r > 0, and let a be any value such that Pr[X0 ≤ a] > 0. We condition on
the event {X0 ≤ a}, and we consider a time point t′ = (a + r)/δ and want
to bound the probability that Xt′ has not reached 0 yet, that is, the event
{Xt′ > 0}. We rewrite this event as {Xt′ − a > −a}, which is equivalent to
{Yt′ − a > −a+ δt′ = r}, by definition of Y and t′.

Note that, for all t < T , |Yt − Yt+1| < c + δ + 1, as we assume that Xt ≤ c.
Thus, the differences of Yt are bounded and we can apply Theorem 2 as follows,
noting that Y0 = X0 ≤ a, due to our condition on {X0 ≤ a}:

Pr[Yt′ − a > r |X0 ≤ a ] ≤ Pr[Yt′ − Y0 ≥ r |X0 ≤ a ] ≤ e
− r

2

2t′(c+δ+1)2 .

If we choose r ≥ a, we get t′ ≤ 2r/δ and, thus,

Pr[Yt′ − Y0 > r |X0 ≤ a ] ≤ e
− rδ

4(c+δ+1)2 .

This means that the probability that Xt′ has not reached 0 goes exponentially
fast toward 0 as t′ (and, hence, r) goes toward ∞. Thus, the expected value of T
is finite.

Now we can use case (1) of Theorem 1 in order to get E[YT |X0 ] ≤ E[Y0 |X0 ].
In particular, noting that XT = 0 by definition,

X0 = E[X0 |X0 ] = E[Y0 |X0 ]

≥ E[YT |X0 ] = E[XT + δT |X0 ] = E[XT |X0 ] + δE[T |X0 ] = δE[T |X0 ] .

Thus, we get the desired bound by dividing by δ. ⊓⊔

Note that the arguments in this proof only need the property of bounded
differences in order to apply Theorem 2. Thus, we can relax the condition of a
bounded state space into bounded step size, which can be seen in the following
theorem.

Theorem 4 (Upper Additive Drift, Bounded Step Size). Let (Xt)t∈N be
a random process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose
that,

(a) for all t ≤ T , it holds that Xt ≥ 0, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E[Xt+1 |X0, . . . , Xt ] ≥ δ, and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1−Xt| ≤

c.

Then

E[T |X0 ] ≤
X0

δ
.
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Although the proof of Theorem 3 can be used for Theorem 4 as well, we
provide a different proof strategy in the appendix, which we then generalize for
our next theorem. This alternative strategy defines a process similar to Xt that
behaves like Xt in the limit.

The proof of Theorem 4 makes use of Theorem 3 by artificially bounding
the search space for a time that is sufficient in order to bound the expected
first-hitting time. This approach can be used in order to let the restriction of
the bounded step size fall entirely. Since we cannot make many assumptions
about the process in this case anymore, we rely on Markov’s inequality in order
to show that our process will not leave, with sufficiently high probability, an
interval large enough to properly bound the expected first-hitting time.

Theorem 5 (Upper Additive Drift, Unbounded). Let (Xt)t∈N be a ran-
dom process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ 0, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E[Xt+1 |X0, . . . , Xt ] ≥ δ.

Then

E[T |X0 ] ≤
X0

δ
.

As we already mentioned before, note that the condition of the process not
being negative is important in order to get correct results. The following example
highlights this fact.

Example 6. Let n > 1, and let (Xt)t∈N be a random process with X0 = 1 and,
for all t ∈ N, Xt+1 = Xt with probability 1− 1/n, and Xt+1 = −n+1 otherwise.
Let T denote the first point in time t such that the event Xt ≤ 0 occurs. We
have, for all t < T , that Xt − E[Xt+1 |X0, . . . , Xt ] = 1 and, thus, E[T |X0 ] ≤ 1
if we could apply any of the additive drift theorems. However, since T follows a
geometric distribution with success probability 1/n, we have E[T |X0 ] = n.

3.2 Lower Bound

In this section, we provide a lower bound for the expected first-hitting time
under additive drift. In order to do so, we need an upper bound for the drift.
Since we now lower-bound the first-hitting time, a large upper bound of the drift
makes the result bad. Thus, we can allow the process to take negative values,
as these could only increase the drift’s upper bound. However, we need to have
some restriction on the step size in order to make sure not to move away from
the target. Again, we provide an example (Example 8) showing this necessity at
the end of this section.

Theorem 7 (Lower Additive Drift, Expected Bounded Step Size). Let
(Xt)t∈N be a random process over R, and let T = inf{t | Xt ≤ 0}. Furthermore,
suppose that
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(a) there is some value δ > 0 such that, for all t < T , it holds that Xt −
E[Xt+1 |X0, . . . , Xt ] ≤ δ, and that

(b) there is some value c ≥ 0 such that, for all t < T , it holds that
E
[

|Xt+1 −Xt|
∣

∣X0, . . . , Xt

]

≤ c.

Then

E[T |X0 ] ≥
X0

δ
.

Proof. We make a case distinction with respect to E[T |X0 ] being finite. If
E[T |X0 ] is infinite, then the theorem trivially holds. Thus, we now assume
that E[T |X0 ] < ∞.

Similar to the proof of Theorem 3, we define, for all t < T , Yt = Xt + δt,
which is a submartingale, since

Yt − E[Yt+1 |Y0, . . . , Yt ] = Xt − δt− E[Xt+1 − δ(t+ 1) |X0, . . . , Xt ]

= Xt − E[Xt+1 |X0, . . . , Xt ]− δ ≤ 0 ,

as we assume that Xt − E[Xt+1 |X0, . . . , Xt ] ≤ δ for all t < T and because,
again, the transformation of Xt to Yt is injective.

Since we now assume that both E[T |X0 ] < ∞ and, further, that
E
[

|Xt+1 −Xt|
∣

∣X0, . . . , Xt

]

≤ c for all t < T , we can directly apply case (2)
of Theorem 1 and get that E[YT |X0 ] ≥ E[Y0 |X0 ]. This yields, noting that
XT ≤ 0,

X0 = E[X0 |X0 ] = E[Y0 |X0 ]

≤ E[YT |X0 ] = E[XT + δT |X0 ] = E[XT |X0 ] + δE[T |X0 ] ≤ δE[T |X0 ] .

Thus, we get the desired bound by dividing by δ. ⊓⊔

Note that the step size has to be bounded in some way for a lower bound, as
the following example shows.

Example 8. Let δ ∈ (0, 1), and let (Xt)t∈N be a random process with X0 = 2
and, for all t ∈ N, Xt+1 = 0 with probability 1/2 and Xt+1 = 2Xt−2δ otherwise.
Further, let T denote the first point in time t such that Xt = 0. Then T follows
a geometric distribution with success probability 1/2, which yields E[T ] = 2.
However, we have that Xt − E[Xt+1 |X0, . . . , Xt ] = δ. If Theorem 7 could be
applied to this process (by neglecting the condition of the bounded step size),
the theorem would yield that E[T ] ≥ 2/δ, which is not true.

4 Variable Drift

In contrast to additive drift, variable drift means that the drift can depend on
the current state of the process (while still being bounded independently of the
time). Interestingly, these more flexible drift theorems can be derived by using
additive drift. Intuitively, the reasoning behind this approach is to scale the
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search space such that the information relevant to the process’s history cancels
out.

It is important to note that variable drift theorems are commonly phrased
such that the first-hitting time T denotes the first point in time such that the
random process drops below a certain value (our target) – it is not enough to
hit that value. However, this restriction is not always necessary. Thus, we also
consider the setting from Section 3, where T denotes the first point in time such
that we hit our target. In this section, our target is no longer 0 but a value xmin.

In all of our theorems in this section, we make use of a setD. This set contains
(at least) all possible values that our process can take while not having reached
the target yet. It is a formal necessity in order to calculate the bound of the
first-hitting time (via an integral). However, when applying the theorem, it is
usually sufficient to choose D = R or D = R≥0.

The first variable drift theorem was proven by Johannsen [9] and, indepen-
dently in a different version, by Mitavskiy et al. [13]. It was later refined by Rowe
and Sudholt [17]. In all of these versions, bounded search spaces were used. Due
to Theorem 5, we can drop this restriction.

Going below the target. The following version of the theorem assumes that
the process has to drop below the target, denoted by xmin. We provide the other
version afterward.

Theorem 9 (Upper Variable Drift, Unbounded, Below Target). Let
(Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t | Xt < xmin}.
Additionally, let D denote the smallest real interval that contains at least all
values x ≥ xmin that, for all t ≤ T , any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0 and that
(b) there is a monotonically increasing function h : D → R

+ such that, for all
t < T , we have Xt − E[Xt+1 |X0, . . . , Xt ] ≥ h(Xt).

Then

E[T |X0 ] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(z)
dz .

Hitting the target. As mentioned before, it is not always necessary to drop
below the target. For the additive drift, for example, we are interested in the
first time reaching the target. Interestingly, the proof for the following theorem
is straightforward, as it is almost the same as the proof of Theorem 9. Intuitively,
the waiting time for getting below the target, once it is reached, is eliminated
from the expected first-hitting time. However, it is important to note that it is
now not allowed to get below the target.

Theorem 10 (Upper Variable Drift, Unbounded, Hitting Target). Let
(Xt)t∈N be a random process over R, xmin ≥ 0, and let T = inf{t | Xt ≤ xmin}.
Additionally, let D denote the smallest real interval that contains at least all
values x ≥ xmin that, for all t ≤ T , any Xt can take. Furthermore, suppose that,
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(a) for all t ≤ T , it holds that Xt ≥ xmin and that
(b) there is a monotonically increasing function h : D → R

+ such that, for all
t < T , we have Xt − E[Xt+1 |X0, . . . , Xt ] ≥ h(Xt).

Then

E[T |X0 ] ≤
∫ X0

xmin

1

h(z)
dz .

5 Multiplicative Drift

A special case of variable drift is multiplicative drift, where the drift can be
bounded by a multiple of the most recent value in the history of the process. As
before, we provide upper bounds in the two versions of either dropping below the
target or hitting it. In this setting, it can be intuitively argued why the version of
dropping below the target is useful: consider a sequence of nonnegative numbers
that halves its current value each time step. This process will never reach 0
within finite time. However, it drops below any value greater than 0.

Both upper bounds we state are simple applications of the corresponding
variable drift theorems from Section 4.

Going below the target. Corollary 11 has first been stated by Doerr et al. [3]
using finite state spaces. However, a closer look at the proof shows that this
restriction is not necessary.

Corollary 11 (Upper Multiplicative Drift, Unbounded, Below Target).
Let (Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t | Xt <
xmin}. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E
[

Xt+1

∣

∣X0, . . . , Xt

]

≥ δXt.

Then

E[T |X0 ] ≤
1 + ln

(

X0

xmin

)

δ
.

Hitting the target. By applying Theorem 10 instead of Theorem 9, we get
the following theorem. As in the case of Theorem 10, the process now has to be
lower-bounded by xmin.

Corollary 12 (Upper Multiplicative Drift, Unbounded, Hitting Tar-
get). Let (Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t |
Xt ≤ xmin}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ xmin, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E
[

Xt+1

∣

∣X0, . . . , Xt

]

≥ δXt.

11



Then

E[T |X0 ] ≤
ln
(

X0

xmin

)

δ
.

Again, we provide an example that shows that the bounds above are as tight
as possible, up to constant factors, for the range of processes we consider. The
example describes a process that decreases deterministically, that is, it has a
variance of 0.

Example 13. Let δ ∈ (0, 1) be a value bounded away from 1. Consider the pro-
cess (Xt)t∈N, with X0 > 1, that decreases each step deterministically such that
Xt+1 = (1−δ)Xt holds. Let T denote the first point in time such that the process
drops below 1. Thus, we get T = Θ(− log(1−δ) X0) = Θ

(

− ln(X0)/ ln(1− δ)
)

=

Θ
(

ln(X0)/δ
)

, where the last equation makes use of the Taylor expansion of
ln(1− δ) = Θ(−δ), as 1− δ does not converge to 0, by assumption.
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A Appendix

A.1 Proof of Theorem 4

Before we prove Theorem 4, we state and prove the following lemma, which we
are then going to use in the proof of Theorem 4.

Lemma 14. Let X be a random variable over N and (Xn)n∈N a sequence
of random variables over N. If, for all x ∈ N, it holds that Pr[X = x] ≤
limn→∞ Pr[Xn = x], then E[X ] ≤ limn→∞ E[Xn].

Proof. First we show, for all x, that the condition Pr[X = x] ≤
limn→∞ Pr[Xn = x] implies Pr[X = x] = limn→∞ Pr[Xn = x]. Assume, by
way of contradiction, that there is an ε > 0 and an x′ ∈ N such
that limn→∞ Pr[Xn = x′] = Pr[X = x′] + ε. Let k ≥ x′ be such that
∑k

x=0Pr[X = x] > 1 − ε/2. Since Xn converges to X , choose an n0 ∈ N

and a δ ∈ R with 0 ≤ δ < ε/
(

2(k + 1)
)

such that, for all x ∈ {0, . . . , k},
Pr[Xn0 = x] ≥ Pr[X = x] − δ if x 6= x′, and Pr[Xn0 = x′] ≥ Pr[X = x′] + ε− δ
otherwise. Then we have

k
∑

x=0

Pr[Xn0 = x] > 1− ε

2
− (k + 1)δ + ε = 1− (k + 1)δ +

ε

2
> 1 ,

since ε/2 > (k+1)δ. This contradicts that Xn0 follows a probability distribution.
Thus, for all x ∈ N, Pr[X = x] = limn→∞ Pr[Xn = x].

Now, let a = limn→∞ E[Xn]. Suppose, by way of contradiction, E[X ] > a.
Then there is a k and an ε > 0 such that

k
∑

i=1

i · Pr[X = i] ≥ a+ ε .

Let n be large enough such that, for all i with 1 ≤ i ≤ k,
∣

∣Pr[Xn = i] −
Pr[X = i]

∣

∣ ≤ ε/(i · 2i). We now have

E[Xn] =

∞
∑

i=1

i · Pr[Xn = i] ≥
k
∑

i=1

i · Pr[Xn = i]

≥
(

k
∑

i=1

i ·
(

Pr[X = i]− ε

i · 2i
)

)

=

(

k
∑

i=1

i · Pr[X = i]

)

−
k
∑

i=1

ε

2i

>

(

k
∑

i=1

i · Pr[X = i]

)

− ε ≥ a ,

a contradiction. ⊓⊔
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Proof (of Theorem 4). Let a be any value such that Pr[X0 ≤ a] > 0. For any
z > a and any t ∈ N, let Az,t be the event that, for all t

′ ≤ t, {Xt′ ≤ z}. Consider
the process (Xt[z])t∈N with Xt[z] = Xt if Az,t is true and Xt[z] = 0 otherwise.
Let T [z] be the first-hitting time of 0 of this modified process. Then the process
is a random process on [0, z] with a drift of at least δ toward 0, so Theorem 3
yields E

[

T [z]
∣

∣X0[z]
]

≤ X0[z]/δ. Note that X0[z] ≤ X0, since the values of X0[z]
and X0 either coincide (if Az,t is true) or (if Az,t is false) X0[z] = 0 ≤ X0, since
Xt is non-negative for all t ≤ T . Further, the expected value of T [z] is the same
when conditioning on X0 or X0[z], since Az,t is defined with respect to Xt. Thus,
E[T [z] |X0 ] = E

[

T [z]
∣

∣X0[z]
]

≤ X0/δ.
Since the step width of X is bounded by c, we have, for all z ≥ a + ck,

that Pr
[

T [z] = k
∣

∣X0 ≤ a
]

= Pr[T = k |X0 ≤ a ]: during k steps, both processes
cannot exceed z. Thus, they are the same, by construction. Since a is arbitrary, it
follows that Pr

[

T [z] = k
]

= Pr[T = k]. Using Lemma 14, we now see E[T |X0 ] ≤
limz→∞ E

[

T [z]
∣

∣X0

]

≤ X0/δ. ⊓⊔

A.2 Proof of Theorem 5

Proof (of Theorem 5). We use the same approach as in the proof of Theorem 4.
Thus, we use the same notation of a, Az,t, and Xt[z]. However, this time, we
cannot bound the step size of X deterministically. Thus, we do so probabilisti-
cally. In the following, we condition on the event {X0 ≤ a} without denoting
this explicitly.

By the law of total probability, we have, for all k ∈ N, all z > a, and all
t ≥ k,

Pr[T = k] = Pr[T = k |Az,t ]Pr[Az,t] + Pr
[

T = k
∣

∣Az,t

]

Pr
[

Az,t

]

≤ Pr[{T = k} ∩ Az,t] + Pr
[

Az,t

]

.

Note that Pr[T = k |Az,t ] = Pr[T [z] = k |Az,t ], as X[z] = X , due to the condi-
tion Az,t. Thus,

Pr[T = k] ≤ Pr[{T [z] = k} ∩ Az,t] + Pr
[

Az,t

]

≤ Pr
[

T [z] = k
]

+ Pr
[

Az,t

]

.

We now show that Pr
[

Az,t

]

goes to 0 as z goes to infinity. This will establish

Pr[T = k] ≤ limz→∞ Pr
[

T [z] = k
]

.
Due to Markov’s inequality, we get, for any c > 0 and all t < T , that

Pr[Xt+1 > cXt |X0, . . . , Xt ] ≤ 1/c, as E[Xt+1 |X0, . . . , Xt ] ≤ Xt − δ < Xt.
Thus, inductively, we get Pr

[

Xt+1 > ct+1X0

∣

∣X0, . . . , Xt

]

≤ (t + 1)/c via a
union bound by pessimistically assuming that {Xt+1 > ct+1X0} already holds
if, for any t′ ≤ t, {Xt′+1 > cXt′}. By defining z = ct+1a, we get that
Pr[Xt+1 > z |X0, . . . , Xt ] ≤ (t+ 1)/ t+1

√

z/a.
In order for Az,t to occur, it is sufficient that there is a t′ ≤ t such that

the event {Xt′ > z} occurs. Hence, via another union bound over all of these
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possibilities, we get

Pr
[

Az,t

]

≤
t
∑

t′=0

(t′ + 1) t
′+1
√
a

t
′+1
√
z

≤ (t+ 1)2a
t+1
√
z

,

which goes to 0 as z approaches infinity, since t is fixed.
Overall, we get that, for all k ∈ N, limz→∞ Pr

[

T [z] = k
]

≥ Pr[T = k]. By

applying Lemma 14, we now see that E[T |X0 ] ≤ limz→∞ E
[

T [z]
∣

∣X0

]

≤ X0/δ,
where the last inequality follows from an application of Theorem 3. ⊓⊔

A.3 Proof of Theorem 9

Proof (of Theorem 9). The proof follows the one given by Rowe and Sudholt [17]
very closely. We define a function g : D ∪ [0, xmin] → R≥0 as follows:

g(x) =

{

0 if x < xmin,
xmin

h(xmin)
+
∫ x

xmin

1
h(z)dz else.

Note that g is well-defined, since 1/h is monotonically decreasing and every
monotone function is integrable over all compact intervals of its domain. Further,
g(Xt) = 0 holds if and only if Xt < xmin. Thus, both processes have the same
first-hitting time.

Assume that x ≥ y ≥ xmin. We get

g(x)− g(y) =

∫ x

y

1

h(z)
dz ≥ x− y

h(x)
,

since h is monotonically increasing. Assuming y ≥ x ≥ xmin, we get, similar to
before,

g(x)− g(y) = −
∫ y

x

1

h(z)
dz ≥ −y − x

h(x)
=

x− y

h(x)
.

Thus, we can write, for x ≥ xmin and y ≥ xmin,

g(x)− g(y) ≥ x− y

h(x)
.

Further, for x ≥ xmin > y ≥ 0, we get

g(x)− g(y) =
xmin

h(xmin)
+

∫ x

xmin

1

h(z)
dz ≥ xmin

h(x)
+

x− xmin

h(x)

=
x

h(x)
≥ x− y

h(x)
.

Overall, for x ≥ xmin (including X0 ≥ xmin) and y ∈ R≥0, we can estimate

g(x)− g(y) ≥ x− y

h(x)
.

16



We use this to determine the drift of the process g(Xt) as follows:

g(Xt)− E[g(Xt+1) |X0, . . . , Xt ] = E[g(Xt)− g(Xt+1) |X0, . . . , Xt ]

≥ E[Xt −Xt+1 |X0, . . . , Xt ]

h(Xt)

≥ 1 ,

where we used the condition on the drift of Xt.
An application of Theorem 5 completes the proof. ⊓⊔

A.4 Proof of Theorem 10

Proof (of Theorem 10). This proof is almost identical to the proof of Theorem 9.
The difference is that we define our potential function g : D → R≥0 as follows:

g(x) =

{

0 if x ≤ xmin,
∫ x

xmin

1
h(z)dz else.

As for g(x) − g(y), the case x ≥ xmin > y does not exist anymore, since we
cannot get below xmin. Thus, the potential difference is the same in all cases,
and nothing changes in the rest of the proof. ⊓⊔

A.5 Proof of Corollaries 11 and 12

Proof (of Corollary 11). We define a function h : [xmin,∞) → R
+ with h(x) =

δx. Note that h is monotonically increasing and that, by construction, for all
t < T , Xt−E[Xt+1 |X0, . . . , Xt ] ≥ h(Xt). Thus, by applying Theorem 9, we get

E[T |X0 ] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(z)
dz =

xmin

δxmin
+

ln
(

X0

xmin

)

δ
,

which completes the proof. ⊓⊔

Proof (of Corollary 12). We define the same potential as in the proof of Corol-
lary 11 but apply Theorem 10 instead. ⊓⊔
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