
HAL Id: hal-01988846
https://inria.hal.science/hal-01988846

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enabling Non-Expert Analysis OF Large Volumes OF
Intercepted Network Traffic

Erwin van De Wiel, Mark Scanlon, Nhien-An Le-Khac

To cite this version:
Erwin van De Wiel, Mark Scanlon, Nhien-An Le-Khac. Enabling Non-Expert Analysis OF Large
Volumes OF Intercepted Network Traffic. 14th IFIP International Conference on Digital Forensics
(DigitalForensics), Jan 2018, New Delhi, India. pp.183-197, �10.1007/978-3-319-99277-8_11�. �hal-
01988846�

https://inria.hal.science/hal-01988846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 11

ENABLING NON-EXPERT ANALYSIS OF
LARGE VOLUMES OF INTERCEPTED
NETWORK TRAFFIC

Erwin van de Wiel, Mark Scanlon and Nhien-An Le-Khac

Abstract Telecommunications wiretaps are commonly used by law enforcement in
criminal investigations. While phone-based wiretapping has seen con-
siderable success, the same cannot be said for Internet taps. Large
portions of intercepted Internet traffic are often encrypted, making it
difficult to obtain useful information. The advent of the Internet of
Things further complicates network wiretapping. In fact, the current
level of complexity of intercepted network traffic is almost at the point
where data cannot be analyzed without the active involvement of ex-
perts. Additionally, investigations typically focus on analyzing traffic in
chronological order and predominately examine the data content of the
intercepted traffic. This approach is overly arduous when the amount
of data to be analyzed is very large.

This chapter describes a novel approach for analyzing large amounts
of intercepted network traffic based on traffic metadata. The approach
significantly reduces the analysis time and provides useful insights and
information to non-technical investigators. The approach is evaluated
using a large sample of network traffic data.

Keywords: Internet taps, network forensics, traffic metadata analysis

1. Introduction
Lawful interception is used by law enforcement in many middle and

high level criminal investigations. Investigations of intercepted traffic
cover voice and network data [19]. This work focuses on intercepted net-
work data that is a valuable source of evidence in crimes such as child
abuse material distribution [23], cloud hosted services [19], industrial
espionage [10], dead drops [10, 17], malicious software distribution [17],
instant messaging [22], piracy [18] and illegal content distribution [17].

184 ADVANCES IN DIGITAL FORENSICS XIV

However, investigating these crimes is challenging for non-technical per-
sonnel because of the difficulty in interpreting network data.

Analysis of the data can also be very labor-intensive. Placing a tele-
phone or IP tap requires special investigatory powers. In The Nether-
lands, the legal power is provided by the Special Investigative Powers Act
(Bijzondere Opsporings Bevoegdheid in Dutch). Dutch telecommunica-
tions law requires every provider to make data interception equipment
available to law enforcement. Law enforcement is also permitted to in-
tercept data at locations without service provider involvement, such as
when intercepting data from wireless access points.

Ideally, all digital forensic evidence should be analyzed by expert in-
vestigators. However, the reality is that there are simply too many cases
that require expert analysis and the case backlog is often too large [15].
As a result, evidence processing by non-experts has become a necessity
in law enforcement agencies around the world [16].

Analysis of intercepted data from an IP tap is often conducted by non-
technical investigators who analyze the data in chronological order. In a
typical scenario, an investigator analyzes data collected over a period of
four weeks. The investigator works with the first day of the IP tap data
and the analysis software presents all the data for the day starting from
0:00 to 23:59. If the focus is on HTTP-based web traffic, each web visit
is displayed in a list view by the software. The investigator then selects
a row and the contents of the website are displayed. The only option
in such a scenario is for the investigator to examine every web visit
sequentially. As a result, it would take a considerable amount of time to
analyze the IP tap traffic over the entire four-week period. The analysis
software may provide options to filter on text strings and protocols such
as HTTP or FTP, but the investigator must know in advance the search
terms to be used in the filtering.

A solution is to analyze all the traffic and create text filters based
on knowledge about the case. However, this task is challenging because
even ordinary Internet users produce vast amounts of traffic, and the
traffic will increase significantly as the use of the cloud increases [5, 9].

This chapter proposes a novel approach for analyzing large streams of
intercepted data from IP taps. Instead of analyzing the data chronolog-
ically, the approach identifies what lies behind an intercepted Internet
connection and produces an overview of the extracted information that
can be interpreted by non-technical investigators. This chapter also de-
scribes the Network Intell system, which instead of focusing on data
content, analyzes metadata related to the protocols seen in the data.
This reduces the time required to analyze the intercepted traffic. It also
provides a quick way to retrieve intelligence information – essentially a

van de Wiel, Scanlon & Le-Khac 185

clear view of what is seen behind an IP tap. For example, if an investi-
gator knows that a mobile phone is present, then he can focus on data
related to mobile phone protocols. The performance of the system is
evaluated using a large sample of network traffic data.

2. Background
Several tools have been developed for analyzing intercepted network

traffic. However, the majority of the tools require highly-specialized
knowledge for their effective use.

The available tools can be divided in two groups. The first group
comprises tools created for professionals with high levels of networking
knowledge such as network administrators and digital investigators with
advanced network protocol expertise. These tools analyze network traffic
at the packet level and extract data for deeper analysis.

The second group comprises specialized network forensic tools that
analyze captured traffic. While these tools are not as complex as those
in the first group, they still require specialized networking knowledge.
Most of the tools are available as freeware or as professional versions
that cost between $500 and $1,000. The tools employ the well-known
PCAP packet capture format.

2.1 Network Forensic Analysis Tools
The NetworkMiner tool was created by Hjelmvik [7] in 2007. The

tool splits network traffic and extracts data from within the traffic. The
latest version of NetworkMiner can distinguish between hosts, but this
feature cannot be used when a network connection in a lawful intercep-
tion scenario is analyzed; in such a scenario, the captured traffic appears
to come from a single IP address (tapped IP address). Additionally, Net-
workMiner does not scale well with increasing data size. For example,
the analysis of a 1.25 GB capture takes more than 21 minutes. Net-
workMiner parses all the information and the results may be analyzed
by scrolling the list view. However, the tool is too advanced to be used
effectively by non-technical investigators.

The Xplico tool extracts application data from a network capture [3].
Network traffic is broken down to the protocol level and metadata is
extracted for each protocol. Xplico can be used to analyze relatively
large network capture datasets. It parses all the information and the
results can be viewed and analyzed via a web interface. Although the
tool is easy to operate, an investigator still needs to review and analyze
the data. Moreover, the tool cannot identify the devices behind the

186 ADVANCES IN DIGITAL FORENSICS XIV

captured network point because it does not incorporate the knowledge
required to interpret the data.

The popular Wireshark network analyzer breaks traffic down to the
packet level, and can even analyze broken and half packets. Wireshark
also supports the reconstruction of network flows, data analysis using
advanced filtering and deep packet inspection. However, Wireshark can
be difficult to use by non-technical investigators. Additionally, it is rel-
atively slow when performing filtering and running modules. This is
because each filter and module must be executed on the entire dataset.
Filter creation is also very slow because each filter has to be tested on the
entire database. Wireshark only supports single capture files, although
it is possible to connect multiple captures using third-party tools. More-
over, Wireshark requires significant amounts of time to analyze the large
volumes of intercepted network traffic encountered in a forensic investi-
gations involving residential or corporate users.

2.2 Traffic Metadata Analysis Tools
Several tools are available for examining and/or extracting metadata

from capture files. An example is the p0f tool [24]. This tool employs
passive traffic fingerprinting to identify the entities involved in TCP/IP
communications. However, in order to obtain the best results, the tool
must be executed on the target network (i.e., network on which the
interception is conducted). This is almost never possible in the case of
lawful interception because the actual capture takes place at the Internet
provider. The p0f tool can only identify or fingerprint traffic coming
from the tapped IP address, which is typically a single router or gateway.

Justniffer is another tool that focuses on metadata in network capture
files [12]. The tool targets request and response information from various
protocols. Justniffer exports information in a log format and provides
Python scripts that support network forensic functionality.

3. Network Intell System
This section specifies the requirements of a system for analyzing large

amounts of intercepted network traffic. The requirements are realized
by the proof-of-concept Network Intell system, which is also described
in this section.

3.1 System Requirements
The Network Intell system is not intended to be a one-size-fits-all solu-

tion. Instead, it should greatly facilitate the analysis of large amounts of
network traffic to discover evidence relevant to digital forensic investiga-

van de Wiel, Scanlon & Le-Khac 187

tions. Another key requirement is speed of analysis. Casey [1] has spec-
ified a number of requirements for network traffic processing tools [1].
The Network Intell system should satisfy the following requirements:

Tcpdump Format: This format is desired because the WinPcap
library is used to parse network traffic. Thus, the proposed system
should be designed to handle PCAP traffic.

Reliable Protocol Identification: Deep packet inspection must
be used where possible to identify different protocols.

Data Reduction: The actual contents of rebuilt packet streams
need not be stored. Instead, the system should focus on metadata
and only store packet information. This increases the speed of
automated analysis and reduces the storage requirements.

Keyword Search: The system should identify devices and their
usage behind an Internet connection based on custom queries. It
particular, it should search for metadata items using keywords.
Since data content is not stored, it is not possible to search the
contents.

Read-Only Feature: The parsed traffic is stored in an SQLite
database. The stored data should be accessed as needed, but no
modifications should be made to the database.

A key requirement is that Network Intell should be operable by digital
investigators and/or non-technical investigators. A digital investigator
would be able to input and change the rules that identify the devices
and objects behind an intercepted network point. A non-technical in-
vestigator would simply operate the system and report the results in an
investigative report or pass the results for further analysis by a digital
investigator. Any user should be allowed to edit the rules.

3.2 System Design
Figure 1 shows the Network Intell architecture. The system has three

main components: (i) network parser; (ii) fragmented traffic reassembler;
and (iii) protocol analyzer/parser.

Network Parser. The system splits protocol data to produce usable
metadata. This metadata is stored in a SQLite database that may be
queried later for devices and objects behind the intercepted network
address. The technical requirements define the traffic that is used as a

188 ADVANCES IN DIGITAL FORENSICS XIV

Network
Intel
GUITCP Packet 2

TCP Packet 1 UDP

TCP Flow

Protocol Parser

Database

TCP
Reassembly

IPv4 (degragmented)
or IPv6

Figure 1. Network Intell architecture.

parsing object. The most useful protocols in the traffic are selected for
parsing. Each parsed protocol is stored in its own database table.

WinPcap provides options for intercepting live network traffic and
opening stored packet captures (PCAP files). However, the Network
Intell system is designed to only operate on stored packet captures. As
stated above, the interception of network packets is done at a service
provider. The function pcap open offline in WinPcap is used to open
offline stored packet captures. By opening a packet capture in this man-
ner, it is possible to loop through all the stored packets.

The first requirement is to only include Ethernet packets from the
network access layer. The next requirement is to only parse Ethernet
packets with IPv4 or IPv6 headers from the Internet layer. This is
motivated by the fact that, as of June 2016, 10.88% of the computing
systems that accessed Google used IPv6 [11] and the percentage has
grown to 18.09% as of January 2018 [6]. The parser selects Ethernet
packets with IPv4 or IPv6 headers associated with the TCP, UDP or
ICMP protocols. At this stage, ICMP packets are also logged.

The final requirement is the application layer. This layer is the most
important because the final results stored in the database are associated
with the application layer protocols that are selected.

Fragmented Traffic Reassembler. The most complex part of net-
work analysis is packet reassembly. Packet reassembly occurs at two
layers: (i) IP layer; and (ii) TCP layer.

IP fragmentation can be caused by IPv4 routers that fragment IPv4
packets when they are transferred to other networks [13]. Reassembly
of the fragmented packets is done by the receiving endpoint. Since IPv4

van de Wiel, Scanlon & Le-Khac 189

packets do not necessarily arrive in order, it is difficult to reassemble the
packets in the correct order without errors. Fragmented packet reassem-
bly is performed using the IP datagram reassembly algorithms described
in RFC 815 [2].

Network Intell uses code implemented in the IPTraf tool [8]. Several
attack vectors target the manner in which IP fragmentation is handled.
However, protection from IP fragmentation attacks is beyond the scope
of this work. In any case, IPv4 fragmentation is not seen very often and
IPv6 routers do not support fragmented IPv6 packets.

TCP reassembly is the next step in rebuilding network streams and
data. Analysis tools rely on proper TCP reassembly to rebuild traffic.

Rebuilding TCP packets produces streams (also called flows). Con-
siderable research has focused on TCP reassembly (see, e.g., Wagener et
al. [21]). Problems that occur during IPv4 reassembly also occur in TCP
reassembly. Exploits can be used to bypass the reassembly process and
can even crash the software. Protection against TCP reassembly attacks
is not in the scope of this research, although it could be considered in
future tests of the system.

Network Intell uses a portion of the code in the tcpick TCP re-
assembly tool [4]. The modified code also incorporates a requirement
that every TCP connection must have a complete three-way handshake.
The three-way TCP handshake involves an exchange of packets before a
TCP connection is established.

In a three-way TCP handshake, three packets are exchanged between
a client and server with the first SYN packet being the most important
packet. ACK and SEQ numbers are used in the reassembly process.
The sender of the SYN packet is the initiator of the connection and
is identified as the “TCP flow from” entity. Without a SYN packet it
would be very complex to identify the entity that started the connection
because packets may not arrive in the same order as they were sent.
Therefore, a complete three-way handshake is needed before a connection
can be parsed for a higher-level protocol.

Network Intell relies on a four-tuple mechanism for packet reassem-
bly: (i) source IP address; (ii) destination IP address; (iii) source port;
and (iv) destination port. Each reassembled connection must start with
a SYN; this is needed to identify the entity that started the connection
and, thus, determine the client side and the server side. It is possible to
create flows that do not have starting SYNs, but this introduces packet
reassembly errors. Specifically, the sending and receiving endpoints can
get switched and incorrect assumptions are made during traffic analysis.
An example is when an HTTP request from an external entity is directed
to the intercepted network point. Without a SYN packet, the request

190 ADVANCES IN DIGITAL FORENSICS XIV

could be identified as traffic originating from inside the intercepted net-
work point and headed outside the network.

Network Intell rebuilds each flow in memory and stores the metadata
associated with the flow in the database. The stored metadata includes
the client and server IP addresses, the duration of the flow and the
amount of traffic that was intercepted. Flows remain active until a RST
or FIN packet is received in the TCP flow. After the flow information
metadata is exported to the database, the flow is removed from memory.

Network Intell also provides the option to export a complete flow. This
is useful for analyzing specific connections and data transfers. However,
the option is currently disabled because disk I/O slows down the analysis.
When a flow does not receive the RST or FIN terminating packets, then
the flow needs to be shut down after a period of time. This feature is
built into Network Intell, but more testing is required to determine the
correct timing for flow termination. In any case, since Network Intell
works on captured traffic, real-time analysis of live traffic is not an issue.

Protocol Analyzer/Parser. After IP packets are defragmented and
TCP packets are reassembled to create a stream or flow, they are parsed
by the protocol analyzer. The first step is to identify the contents of
the network stream. Casey [1] recommends that traffic should not be
filtered based on protocol because of the risk that other traffic can be
tunneled through a protocol such as HTTP. For the same reason, it
is not advisable to filter traffic based on port number. Although port
numbers are exported to a log file, the actual contents of the reassembled
packets are used to identify the protocols employed in the application
layer. The only exception is the DNS protocol, which is analyzed based
its port number (port 53).

Filtering the contents of TCP streams is referred to as deep packet
inspection. This technique is useful for detecting protocols hidden inside
network traffic. However, it is a complex process because it can cause
false hits based on the keywords used to identify protocols. Therefore, it
has to be continually evaluated and adjusted where needed, a task that
can only be done by a skilled network forensic investigator.

The key functions of Network Intell are to analyze different application
layer protocols and store important metadata in a SQLite database.
Network Intell conducts deep packet inspection by searching for specific
keywords in packet headers. First, it looks for protocol-specific details
such as an HTTP header that ends with “\r\n\r\n.” Next, it searches
for specific keywords such as “GET” and “POST” that are bound to the
protocol. Based on the results, the reconstructed packets are identified
by their protocol. This method is based on the approach used by Xplico

van de Wiel, Scanlon & Le-Khac 191

Figure 2. Network Intell main menu.

to identify protocols. Currently, Network Intell employs deep packet
inspection to identify HTTP, FTP, SMTP and POP3 protocol packets.
Because deep packet inspection is used, these protocols are detected even
when they run on ports other than their default ports.

4. System Implementation
As described above, Network Intell analyzes intercepted network traf-

fic. Win32 C was chosen as the programming language to ensure ade-
quate speed of analysis. The Pelles C Microsoft Windows development
environment was used to create 32/64-bit C language code [14].

Network Intell maintains several logs. The results of each analysis
and the network packets can be exported to a separate log file. The
system also can export each TCP stream/flow to a binary file. This
enables research to be conducted on unknown network traffic and the
content to be verified for consistency. Figure 2 shows the Network Intell
main menu functionality, which includes analysis, search, detection rule
editing, report creation, settings and help.

The main – and initial – function is analysis. A non-technical investi-
gator can execute this function if he/she knows which capture files need
to be investigated. The system asks for the names of the network cap-
ture files in the PCAP format. After the files are input, the MD5 and
SHA1 hashes of the files are computed. Also, the numbers of packets
in the files are counted. The PCAP format does not save packet counts
in the header. The only safe way to count packets is to open a capture
file and loop through all the packets with a counter running. The result
of the analysis is a tree view with an overview of the analyzed items.
Since all the metadata is stored in a SQLite database, a user is allowed
to include new items as shown in Figure 3.

Detection rule editing is another important Network Intell function.
The detection rule editor facilitates the input and modification of rules.
A detection rule type must be selected, the result name entered, the
parent selected and, of course, the search query entered with partial or
exact match options (Figure 4).

192 ADVANCES IN DIGITAL FORENSICS XIV

Figure 3. Network Intell analysis options.

5. System Evaluation
This section describes the results of evaluating the Network Intell

system. The evaluation used intercepted network traffic in open source
captures and home network captures.

van de Wiel, Scanlon & Le-Khac 193

Figure 4. Network Intell detection rules.

The following evaluation scheme was employed:

Each protocol was tested using a protocol-specific PCAP file.

The results obtained using Network Intell were compared against
those obtained using other network forensic tools such as Wire-
shark. The only differences were seen at TCP stream/flow level.
Wireshark also identifies streams without a starting SYN packet;
however, Network Intell cannot handle such streams and needs a
SYN packet to identify a TCP stream/flow.

Personal network traffic was captured at the router level to mimic
intercepted network traffic. Most errors were detected during this
test because personal network traffic has a lot of content that is
not handled by Network Intell. An example is secure DNS traffic,
which causes an error in the parsing code.

Network Intell has not as yet been tested on a real-world inves-
tigation. The system is designed to be used by experts as well
as non-experts. However, it will be extended to enhance usability;
complex configurations will not be required to use the final system.

194 ADVANCES IN DIGITAL FORENSICS XIV

Performance tests were conducted to investigate how long it would
take to analyze an average network tap. The results revealed that Net-
work Intell can analyze and export about 1 GB per minute depending
on the computing equipment that hosts the system. This measurement
does not consider the exporting of every TCP stream/flow; this would
increase the analysis time considerably because a new file has to be cre-
ated for every TCP stream/flow. Network Intell was instrumented with
timers to compute the overall execution time. Considerable disk activity
was observed when the execution data was analyzed. This was caused
by the extensive logging for error checking and program flow analysis;
the execution time was also increased significantly.

As a result, the first measurements were taken with logging enabled.
In the first run, 1 GB of test data was used with logging enabled; the
time required was measured as 63 seconds on a standard workstation.
In the second run, the logging options were disabled and the same 1 GB
of test data was processed in just 35 seconds.

Network Intell produces a database of protocol-specific information
that can be analyzed further using a SQLite viewer. A query against
the SQLite capture database runs almost instantly. The only limitation
is when the amount of data approaches the maximum size of a SQLite
database (more than 140 TB). No performance testing was performed
on the analysis time because it takes less than a second to produce the
tree view. The information presented after the analysis of a PCAP file
is completed can be used by a digital forensic investigator to check the
number of streams that were analyzed and for any errors that may have
occurred.

The research goal has been to develop a system that produces useful
results from large volumes of data intercepted via a network tap. Instead
of analyzing the data in a chronological manner, the Network Intell sys-
tem identifies what lies behind the intercepted connection and produces
an overview of the discovered information. The system is easy to use
by experts as well as non-experts; in fact, it can be operated almost via
single button actions. Network Intell is fast – it analyzes approximately
1 GB of data per minute with logging enabled and requires just 34 sec-
onds to analyze 1GB of data without logging enabled. This analysis
speed is comparable to or exceeds the performance of other available
tools. Finally, Network Intell appears to be able to handle “big data”
scenarios. Specifically, good performance was achieved with 1GB cap-
ture files; in contrast, other network analysis tools either cannot handle
files of this size or become very slow after loading files of this size.

van de Wiel, Scanlon & Le-Khac 195

6. Conclusions
The chapter has presented a new approach for analyzing large amounts

of intercepted network traffic and Network Intell, its proof-of-concept
implementation. Network Intell exhibits good performance – it can ana-
lyze intercepted network traffic in the PCAP format at speeds of around
20 seconds per 200 MB. The analyzed information is stored in a SQLite
database that can be queried to identify the devices used behind a net-
work tap and obtain useful statistics about the captured traffic. Network
Intell can be used by digital forensic investigators with technical exper-
tise as well as by non-expert investigators.

Network Intell offers a good mix of functionality and performance,
but is a proof-of-concept system and several enhancements are possible.
For example, the current version engages detection rules input by users.
Future research will attempt to employ the Fingerbank database [20]
accessible at www.fingerbank.org, a device database containing MAC
addresses and user-agent device detection information. Additionally, it
is ineffective to employ complete user agent strings in lawful interception
scenarios because browser software is updated very frequently. Conse-
quently, future work will use detection rules based on browser names
instead of complete user agent strings with version numbers.

References

[1] E. Casey, Network traffic as a source of evidence: Tool strengths,
weaknesses and future needs, Digital Investigation, vol. 1(1), pp.
28–43, 2004.

[2] D. Clark, IP Datagram Reassembly Algorithms, RFC 815 (tools.
ietf.org/html/rfc815), 1982.

[3] G. Costa and A. De Franceschi, Xplico: Open Source Network
Forensic Analysis Tool (NFAT) (www.xplico.org), 2018.

[4] duskdriud, tcpick version 0.2.1 (tcpick.sourceforge.net), 2005.
[5] J. Farina, M. Scanlon, N. Le-Khac and M. Kechadi, Overview of

the forensic investigation of cloud services, Proceedings of the Tenth
International Conference on Availability, Reliability and Security,
pp. 556–565, 2015.

[6] Google, IPv6 Adoption Statistics, Mountain View, California (www.
google.com/intl/en/ipv6/statistics.html), 2018.

[7] E. Hjelmvik, Passive network security analysis with NetworkMiner,
(IN)SECURE Magazine, issue 18, pp. 18–21, October 2008.

[8] G. Java, IPTraf: IP Network Monitoring Software (iptraf.seul.
org), 2005.

196 ADVANCES IN DIGITAL FORENSICS XIV

[9] T. Lillard, Digital Forensics for Network, Internet and Cloud Com-
puting: A Forensic Evidence Guide for Moving Targets and Data,
Syngress, Burlington, Massachusetts, 2010.

[10] B. Nelson, A. Phillips and C. Steuart, Guide to Computer Forensics
and Investigations, Cengage Learning, Boston, Massachusetts, 2016.

[11] V. Nicolls, N. Le-Khac, L. Chen and M. Scanlon, IPv6 security
and forensics, Proceedings of the Sixth International Conference on
Innovative Computing Technology, pp. 743–748, 2016.

[12] O. Notelli, Justniffer, Plecno, Milan, Italy (justniffer.source
forge.net), 2014.

[13] N. Olifer and V. Olifer, Computer Networks: Principles, Technolo-
gies and Protocols for Network Design, John Wiley and Sons, Chich-
ester, United Kingdom, 2006.

[14] P. Orinius, Pelles C (www.smorgasbordet.com/pellesc), 2017.
[15] D. Quick and K. Choo, Impacts of increasing volume of digital foren-

sic data: A survey and future research challenges, Digital Investiga-
tion, vol. 11(4), pp. 273–294, 2014.

[16] M. Scanlon, Battling the digital forensic backlog through data de-
duplication, Proceedings of the Sixth International Conference on
Innovative Computing Technology, pp. 10–14, 2016.

[17] M. Scanlon, J. Farina and M. Kechadi, Network investigation
methodology for BitTorrent Sync: A peer-to-peer based file syn-
chronization service, Computers and Security, vol. 54, pp. 27–43,
2015.

[18] M. Scanlon, A. Hannaway and M. Kechadi, A week in the life of the
most popular BitTorrent swarms, Proceedings of the Fifth Annual
Symposium on Information Assurance, pp. 32–36, 2010.

[19] H. Schut, M. Scanlon, J. Farina and N. Le-Khac, Towards the foren-
sic identification and investigation of cloud hosted servers through
non-invasive wiretaps, Proceedings of the Tenth International Con-
ference on Availability, Reliability and Security, pp. 249–257, 2015.

[20] J. Spooren, D. Preuveneers and W. Joosen, Mobile device finger-
printing considered harmful for risk-based authentication, Proceed-
ings of the Eighth European Workshop on System Security, article
no. 6, 2015.

[21] G. Wagener, A. Dulaunoy and T. Engel, Towards an estimation
of the accuracy of TCP reassembly in network forensics, Proceed-
ings of the Second International Conference on Future Generation
Communications and Networking, vol. 2, pp. 273–278, 2008.

van de Wiel, Scanlon & Le-Khac 197

[22] D. Walnycky, I. Baggili, A. Marrington, J. Moore and F. Breitinger,
Network and device forensic analysis of Android social-messaging
applications, Digital Investigation, vol. 14(S1), pp. S77–S84, 2015.

[23] A. Yasinsac and Y. Manzano, Policies to enhance computer and net-
work forensics, Proceedings of the IEEE Workshop on Information
Assurance and Security, pp. 289–295, 2001.

[24] M. Zalewski, p0f (lcamtuf.coredump.cx/p0f3), 2014.

