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Abstract

The processing power of smartphones has promoted mobile applications of algorithms that were
previously considered too computationally intensive, such as steganography. Steganography apps allow
covert communication on a mobile phone using digital photographs on the phone. Digital forensic image
analysis of photographs and other files aims to detect such covert activity. In this research, we ask the
questions: how effectively can a steganography app be reverse engineered? How can this knowledge
help improve detection of stego images and other steg-related files? Two Android steganography apps,
PixelKnot and Da Vinci Secret Image, are analyzed. We find they are constructed in very different ways,
and provide different levels of security for hiding a message. We also present results of performing
detection on steganography files, that include images generated from the apps, with three different steg
detection software packages. We conclude there is a need for further work in both reverse engineering

of steganography apps and the ability to detect images produced by these apps.
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I. INTRODUCTION

The field of covert communications has a long history. Encryption of a message, called
cryptography, is a well-known method to communicate secretly, although by encrypting and
sending, it is known that a message is being transmitted. Steganography, on the other hand,
attempts to send a message without indication that it is being transmitted, to avoid detection of
secret communication. This is sometimes called “hiding in plain sight.” The word steganography
originates from the Greek, meaning ‘“covered writing.” The first written evidence of steganog-
raphy dates to the Greeks [1], where Herodotus describes how Histiaeus sent his slave to the
Ionian city of Miletus with a hidden message to advise a revolt against the Persian king. The
slave’s head was shaved, a message tattooed on the scalp, and the hair grown back. Once the
hair concealed the message, the slave was sent to the city’s regent, Aristagoras. After shaving
the hair, Aristagoras received the intended message. More recently, invisible ink and microdots
have performed the same task. Digital versions of hiding messages are now available in code
for computers as well as in apps for smartphones.

Digital steganography must hide a message or payload in the form of bits in a cover medium,
also represented by bits, in such a way as to not arouse suspicion of its hidden content. The
cover file is combined in some fashion with the payload and produces a stego file. The stego
file is then transmitted to the intended recipient, who extracts the hidden payload. Sometimes
a key is involved. The question remains, how can you change the bits of the cover medium,
such as a digital photograph, a PDF document, digital audio file, or video file, to represent the
payload bits, and then have the recipient successfully extract the payload once the stego version
is received? Hiding a payload in a digital photograph can be accomplished by appending the
payload after the End Of File (EOF) marker in jpeg images [2], [3], [4], in the color palette
of a GIF image [5], or in the EXIF header of an image [6], [7]; in a PDF file [8]; or in the
lower bits of a non-compressed RGB or grayscale image [9], or in the quantized Discrete Cosine
Transform coefficients of a compressed jpeg image [10]. Digital audio [11] and video [12] files
have also been used to hide payloads, as well as TCP/IP packets [13].

Detection of stego-related files is called steg detection. The existence of stego executables
and related files on a system can indicate that steganography was perhaps performed, so steg
detection can include the detection of such ancillary files that do not directly contain a payload.

Patterns in the stego files such as an embedded signature or statistical properties can also be



exploited to perform steganalysis. Signature-based detection of a stego or ancillary file, based
on specific characters or perhaps locations of specific added information, requires identification
of a signature and creation of computer code to open the file and search for such signatures.
Statistics-based detection considers statistical measures of a suspected stego file and searches for
abnormalities that indicate a stego. Another type of steg detection involves the use of machine
learning algorithms, and does not depend on signatures written explicitly into the stego file. This
latter type of steg detection is termed steganalysis and is used and developed mainly in academic
settings at the current time.

Although a mobile phone app can make steganography particularly easy to use, detection of
stego images produced by mobile steganography apps has not yet appeared in the literature,
to the best of our knowledge. Readily available for iOS and Android phones, mobile apps can
conceal a text payload inside a selected photograph either residing on the phone, or acquired
using the camera. With some apps, another file, such as a different image file, may be hidden.
Although there are roughly 30 such steganography apps available, not all of them are stable, and
may crash when using particular covering photos or large payloads, or on a particular model of
mobile phone. The code used for the embedding part of the hiding process, where the bits of the
cover image are changed to represent the payload bits, varies depending on the particular author
of the app. “Bit embedding” refers to the process of changing the cover image bits to represent
the message bits. In addition, not all apps have open-source code, which makes it difficult to
reverse-engineer the code. Thus, signature-based investigation of these steg apps may not be
easily performed, or even possible, if a signature does not exist. A machine learning classifier
may provide more reliable steg detection than signature-based, assuming we can acquire enough
image data to perform detection in this manner.

In principal, applying machine learning to detect stego images from a mobile phone camera
is no different from the classical academic setting. By the “classical academic setting” we mean
performing steganography or steganalysis using a known set of image data, and where the
embedding algorithm is completely known and machine learning detection algorithms can be
run. The object of many academic steganography algorithms is to demonstrate how difficult it is to
detect a new embedding algorithm, using known “best detection” algorithms (typically machine
learning algorithms). In the case of steganalysis, the goal is to show the new algorithm has clear
performance advantages over existing ones. We do not present any steganalysis results using

machine learning applications here, but include a short description for completeness. Instead



we focus on existing software that is available for practitioners used to detect the existence of
steganography.

In this paper, we present our results from reverse engineering two Android apps, PixelKnot [14]
and Da Vinci Secret Image [15]. Using our findings, we create a procedure to generate a large
quantity of stego images on a computer using PixelKnot code without resorting to a human
entering the information by hand, onto a phone, using the app. These two results have not been
published in the literature, to our knowledge. We then use several software packages to perform
detection of steganography, including testing of the stego images produced by the PixelKnot
app, providing the first such evaluation of publicly available steg detection software.

The remainder of the paper is organized as follows: we discuss other work related to steg
detection in Section II; in Section III, we present the two Android steg apps and a description
of the reverse engineering process we created for this purpose; and in Section IV, we give
a detailed analysis of the reverse engineering of PixelKnot and Da Vinci Secret Image apps.
Finally, in Section V, we present our evaluation of three existing software programs that perform

steg detection, and conclude in Section VI.

II. RELATED WORK

In this section, we discuss existing methods for detecting steganography payloads hidden in

image files. We also discuss existing tools used for reverse engineering Android applications.

A. Existing Steg Detection Approaches

We use the term steg detection to mean one of two conditions: (a) Discrimination between an
innocent image and a stego image; or (b) Identification of a file that can be associated with a
steganographic process. While steganalysis is commonly used to label the process described in
(a), item (b) can be used to describe the identification of executable files, or other non-image
files associated with producing a stego image. Forensic practitioners are interested in performing
both (a) and (b). There are three basic types of steg detection:

1) Signature-based;

2) Hash-based;

3) Classification based on using features in a machine learning environment.

Next, we briefly describe the three different steg detection approaches.



Signature-based steg detection first identifies possible signatures that a steganography program
writes to an output stego image, and then detects stego files using the signatures. Such signatures
exist in different forms and types. As an example, a program could embed the same fixed bit
string each time along with the payload; or, the embedding path could visit the same pixel
locations in the same order regardless of the payload content, leaving a repeated pattern in stego
files. Commercial tool Stego Hunt [16] and academic tool StegDetect by DC3 each provide
signature-based steg detection. Given that the signature of the stego program is known, signature-
based approaches can accurately identify stego images and possibly extract the hidden payload.
However, this type of approach requires updating the detection code on a regular basis: any
change in the signature can produce a different signature from the previous one, thus missing
the detection of a stego file.

Hash-based steg detection involves the identification of a previous, identical stego file, such as
an image identified in child pornography. Here, the exact same stego image hiding the payload
is acquired by others, and so all the stego images are identical in a bit-by-bit comparison which
results in identical hashes. This allows us to compare the hashed values of unknown images with
a list of hashed values of known stego images. The hash values are stored in a database, and
any new images needing to be analyzed have their hash value compared with others in the list.

Machine learning-based steg detection is a more complex detection approach. A machine
learning classifier can be constructed (theoretically) to identify an unknown stego image, if
training data is available, along with other caveats. We leave out the details, as it is beyond
the scope of this paper. Two such classifiers are discussed in [17] and [9]. In order to use such
classifiers, the steganalyzer must have access to a large amount of training data: typically, 700-
6000 cover images, the same number of corresponding stego images, and a representative feature
set and classifier. With these items and enough computing power, in many cases, it is possible

to create a successful machine classifier to detect stego images.

B. Reverse Engineering Android Applications

In order to perform steg detection on stego images produced by an Android app, our approach
is to inspect the Android program code that generates a stego image. By understanding how it
works, it may be possible to exploit particular characteristics of how the code processes an

image. We use reverse engineering techniques on two Android stego apps.



Reverse engineering is a commonly used program analysis technique. Analyzing an Android
application often requires a reverse engineering tool to convert the application binaries (the APK)
into a readable format. Android applications are developed in Java programming language, and
compiled into Dalvik bytecode [18] that is similar to the Java bytecode. The Dalvik bytecode
is then encoded and written into a DEX file within the APK. There are several existing tools
capable of extracting and decoding the DEX file from the APK, and recreating the application
code in the source or intermediate code format.

Apktool [19] is a tool for reverse engineering Android APK files. It can decode the DEX file
into an intermediate code format called Smali [20]. Apktool can also decode the resource XML
files including the graphical interface definition and the manifest file. Although Apktool does
not translate the DEX into Java code, it provides an accurate representation of the binaries by
avoiding loss in translation. Dex2jar [21] is a tool that can convert DEX to another intermediate
code format, Java bytecode, by mapping the DEX instructions to Java bytecode instructions. Java
Decompiler [22] can be used to decompile Java bytecode into Java source code, with possible
loss of metadata and certain irreversible DEX code blocks. Using Dex2jar and Java Decompiler
in combination, it is possible to recreate the Java source code from an APK file. However, due to
the inconsistency of Java Decompiler, the resulting source code can only be used as a reference

for the application analysis.

III. ANDROID STEGANOGRPAHY APPLICATIONS AND REVERSE ENGINEERING

Steganalysis applications in Android have certain common characteristics that can be exploited
during the reverse engineering process. These characteristics can be used to reduce the scope of
code analysis, and provide clues that lead to the code location of the core embedding algorithm.
In this section, we first analyze the common characteristics among Android steganography

applications, then describe the procedure and technical details of the reverse engineering process.

A. Common Characteristics of Steganography in Android

The first common characteristic of an Android steganography application is the user interface
(UI) components. The minimum requirement for Ul is to allow the user to: (1) select the cover
image, (2) input the payload, and optionally (3) input a password. As such, the application must

provide the corresponding UI components to enable these user interactions. As an example, Fig 1



and Fig 2 show the similarities of user input sequences between two apps: PixelKnot and Da

Vinci Secret Image.
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Fig. 1: User input sequence for PixelKnot.
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Fig. 2: User input sequence for Da Vinci Secret Image.



Additionally, in order to allow the user to select an image or take a picture, the application is
required to request the corresponding “permissions” in the program code and the manifest file,

as shown in Fig 3 below.

<{uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.READ EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.CAMERA"/>

Fig. 3: Permission request code from the Android application manifest

Another common characteristic is the usage of image processing libraries. Although there are
several available image processing libraries in Android, the image pixels will always be loaded
into a Bitmap object that stores all the pixel values. Therefore, the embedding algorithm code
will inevitably use an instruction that instantiates a Bitmap object, and method calls that access

the Bitmap object, such as Bitmap.getPixel(x,y).

B. The Reverse Engineering Process

We describe a general method to perform reverse engineering of steganography apps. Overall,

the reverse engineering process involves three steps:

1) Extracting the application code
2) Locating the core embedding algorithm

3) Analyzing the embedding algorithm

We first use the reverse engineering tool Apktool to extract the application code along with
the resource files, and then search for the code location of the core embedding algorithm. The
reason for choosing Apktool over others is that Apktool provides the most accurate representation
of the binary code. It does not attempt to transform or optimize the original binaries, and
simply increases the code readability by a one-to-one mapping from DEX instructions to Smali
instructions. Although more difficult to read than other instruction formats, Smali guarantees the
integrity of the code from the extraction.

Locating the core embedding algorithm is a two-pronged approach. We first inspect the
embedding workflow in the Ul domain. To do this, we run the application on a test device
and record the user input sequence during an embedding task. Using the Android Ul debugging

program UlIAutomator [23], we look for the resource ID of each Ul component in the input



sequence. With the resource IDs, we can then locate the Smali code of callback method for each
UI component. These callback methods possibly contain the code for image processing, payload
processing, and payload embedding.

However, due to the flexibility of Android UI programming, it is possible that the Ul com-
ponents have empty ID fields. Since Android allows authors to register callback methods for
UI components created during runtime, resource ID is not needed. In this case, we search
for the embedding algorithm using keywords. As previously mentioned, certain libraries and
objects will most likely be used during embedding. Using keywords such as BitmapFactory and
Bitmap.getPixel(x,y), we can trace the execution flow and eventually locate the entry point of
the embedding algorithm.

After the embedding algorithm code is located, we manually inspect the code to find the lines
that perform the embedding. Generally, an embedding algorithm starts by defining the order in
which the pixels are visited, called the embedding path. Next, the payload is divided into bits
or bytes and then embedded in a certain way along the embedding path. Other embedding tasks
such as payload encryption and random path generator also need to be analyzed. Since almost
every steganography application has a unique way of embedding the bitstreams, the algorithm

analysis is a process that varies case by case and relies on the experience of the analyst.

IV. CASE STUDY ON PIXELKNOT AND DA VINCI SECRET IMAGE

In this section, we provide the detailed analysis of reverse engineering two Android apps,
PixelKnot and Da Vinci Secret Image. These two Google Play Store apps have similar user
interfaces and functionality. However, they have very different embedding processes underneath

the user interface. We discuss their analysis results separately.

A. PixelKnot

PixelKnot [14] is an Android implementation of the academic steganography algorithm F5 [24],
with some modifications. We examine PixelKnot’s user interface by running the app on an
Android test device (a Google Pixel), and we analyze the embedding algorithm code by reading
its publicly available source code from Github [27]. To distinguish between PixelKnot’s version
of F5 and the academic version, we call the academic version of F5 as implemented in computer

code standard F5.



Fig. 4 shows the work flow of PixelKnot’s embedding process. PixelKnot takes three user
inputs: the image selected for embedding; the payload (text message); and a password. It then
produces a JPEG format output image, the stego image. F5 uses the quantized Discrete Cosine

Transform space for embedding the bits.

In pUtZ Cover Image Payload Password

Embedded Strings W

: : PixelKnot AES .
Bitmap Object Length ';?eﬁ:o v Ciphertext
4 bytes 38 bytes 17 bytes 25+ bytes
: Embedding: F5
: Embedding
.................................................................................... |
Output Stego Image (JPG)

Fig. 4. Embedding work flow of PixelKnot.

The PixelKnot algorithm performs two preparatory steps before executing the bit embedding
process. First, the input image is resized by downsampling if either its width or height exceeds
1280 pixels. In this case, the larger side is scaled to 1280 pixels, and the other side is scaled in
proportion to the original dimensions. For example, a 1920*1280 input image will be downsam-
pled to 1280*853 pixels in size. The resized image is then loaded into a Bitmap object, which
is a matrix array of the pixel values. Second, the creation of the bit string ultimately embedded
is a concatenation of four strings: a length string; a constant string; a string representing the
initialization vector for the AES encryption; and ciphertext produced by encrypting the payload

text using AES encryption. We describe each string next.

1) The length string indicates the number of bits of the ciphertext. The length string is 4

bytes long.



2) The constant string is 38 bytes long and consists of the following characters: “—-* PK v
1.0 REQUIRES PASSWORD —-*”.

3) The initialization vector (IV) is always 17 bytes long, and is a randomly-generated string
used as part of the AES encryption that produces the ciphertext. It is stored in the image
so that it can be used to extract the message later.

4) The last string is the AES-encrypted payload of the payload text input by the user.

Length PixelKnot Prefix AES IV AES Ciphertext
)\ | )\

Y Y Y Y
4 bytes 38 bytes 17 bytes minimal 25 bytes
\ J

|
minimal 84 bytes

Fig. 5: Format of the embedded message payload in PixelKnot

As the ciphertext generated by PixelKnot’s AES encryption has a minimum length of 25 bytes,
the resulting bit string embedded into the input image has a minimum length of 84 bytes, as
shown in Fig. 5.

The algorithm that PixelKnot uses to produce the ciphertext adds security over the standard
F5 algorithm. First, an AES secret key is generated using the function PBKDF?2 with HMAC and
SHAI, and uses the first third of the password as the key and the second third of the password
as salt. Second, using the AES-GCM-NoPadding cipher, the plaintext is encrypted with the AES
secret key and a random initialization vector (IV). Therefore the IV needs to be stored in the
image, as the ciphertext needs it for decryption. Finally, a pseudo-random pixel site visitation
of the pixel sites in the image is generated using the last third of the password. This random
path through the image visits a pixel value, and then embeds a bit there according to the F5
algorithm. The last part, spreading the bits that are embedded randomly around the image,
ensures that even though a constant string is embedded, it can only be found if the password is
known. Also, note that using the same password, the same input image, and the same payload
text, that the ciphertext is different each time the app is run. This is because the IV, which is
randomly generated, is different at each run of the app, thus producing a different ciphertext
string each time the app is run. Thus, the security of PixelKnot’s implementation of F5 depends
largely upon the strength of the password.

In order to generate thousands of stego images to evaluate the stego detection programs’



effectiveness, we install PixelKnot on multiple Android emulators running on a computer to
batch generate stego images. To verify that the emulator environment is identical to real Android
devices when running PixelKnot, we devise a test to compare the stego images produced from
an emulator with the stego images from a real device. Due to the randomness of the initial-
ization vector (IV), even with the same plaintext message and password, PixelKnot produces
different ciphertexts in different runs, which results in different stego images. Therefore, our
verification test uses a slightly modified version of PixelKnot called PK.vl, which removes
the AES encryption to remove the randomness. We install PK.vl on two Android emulators
and a Google Pixel phone. Given identical payload texts, identical cover images, and identical
passwords to PK.vl on the emulators and the Pixel, the stego images produced by each were
identical. We perform this test 10 times, using 10 different combinations of images, payloads,
and passwords. Once we verified that the emulator did indeed exactly mimic code running on
the Pixel phone, we created a second version of the PixelKnot source code, called PK.v2, to
efficiently generate large numbers of stego images. This version removes all the user interface
portions from the original app, and adds functionalities such as saving an intermediate cover
image and saving embedding stats including the embedding rate. PK.v2 reads input images from
a folder, uses different passwords, different payloads, and different pre-determined embedding
rates, to generate corresponding stego images. In this manner, we generated over 4000 stego

images at the rate of about 100 images per minute.

B. Da Vinci Secret Image

Da Vinci Secret Image is a steganography application that uses a simpler embedding algorithm
than PixelKnot. Due to the absence of available source code, we extracted the Smali code from
its APK file using Apktool, and located its embedding algorithm code using the aforementioned
two-pronged code locating approach. We then performed analysis on the target Smali code.

The Da Vinci Secret Image app provides similar functionalities to the user as PixelKnot. It
allows the user to select a cover image, input the text to hide, and optionally enter a password. The
user can also select one of a fixed number of image dimensions for the output image, including
the option to maintain the original size. Depending on the selected size, the input image may
be resized before the embedding process. While several different formats are supported for the

input image, the stego output is always PNG (Portable Network Graphics) format.
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A picture of the embedding process is shown in Fig. 6. The embedding is performed in the
alpha channel of the PNG image, visiting pixel sites in a lexicographical manner from top left

to bottom right. This is contrary to PixelKnot, where the pixel site visitation is random.

4 bytes 4 bytes 4 bytes

password in plaintext

The rest of the image is unchanged

Fig. 6: Schematic of the embedding process in Da Vinci Secret Image.

The image is pre-processed to prepare for embedding. The input image file is decoded and
loaded into a Bitmap object using the android API BitmapFactory.decodeFile(path/to/image). If
the user has chosen a size that is not the original, the Bitmap object is resized to match the
target size.

Next, a series of strings are generated. Below is the format of each string:

1) The first “length string” indicates the number of bits in the string “t2i” or “t2ip,” depending
on whether the user input a password. The length string is fixed at 4 bytes, or 32 bits. If a
password is given by the user, then the length string consists of the bits 100000, preceded
by 26 zeros (as there are 32 bits in the length string). If a password is not given by the
user, then the length string consists of the bits 10100, preceded by 27 zeros.

2) The second string is the bit representation of “t2i” or “t2ip”. If a user does not input a
password, then the string “t2i” is embedded; if a user does input a password, then the
string “t2ip” is embedded. This string is always 4 bytes long.

3) The third string is also a 4 bytes long “length string,” indicating the length of the password.

4) The fourth string is the bit representation of the password, in plaintext.

5) The fifth string is another 4 bytes long “length string” indicating the length of the payload.

6) The final string is the payload in bit representation, in plaintext.



The remaining bits of the image are unchanged should the payload string be shorter than the
remaining bits. The six strings are concatenated and then embedded into the alpha channel. The
alpha channel can be viewed as a fourth 8-bit plane of the RBG color image in PNG format.
The bit value “zero” of the string to embed is given the value 254 in the alpha channel. The
bit value “one” is given the value 255 in the alpha channel. If the input image had information
in the alpha channel and the original size is unchanged, information in the alpha would be
overwritten. However, changing pixels in the alpha channel does not change at all the RGB
values representing the image content, and thus the image scene is untouched.

Note that once the embedding process is known, it is straightforward to analyze a PNG image
and determine if Da Vinci Secret Image produced it. First, inspection of the alpha channel for
the characters “t2i” or “t2ip” in the fifth through eighth bytes location identifies this as a stego
produced by Da Vinci, so the first 64 bits of the alpha channel serves as a signature. Second, the
app uses the password only to verify that extraction of the payload can proceed, not to encrypt
the payload. If an incorrect password is given, the app will not extract the payload. However,
knowing information resides in the alpha channel, and once “t2i” or “t2ip” is observed, the
length of the payload can be read and the payload extracted and reconstructed into plaintext.

Despite the similarities in user interface and functionality, the embedding process of Da Vinci
is different from that of PixelKnot. Da Vinci uses a fixed embedding path as opposed to a random
embedding path as in PixelKnot. Da Vinci embeds bits directly into the alpha channel, while
PixelKnot embeds the message bits into the quantized DCT domain of JPEG. Most importantly,
there is no randomness or encryption in Da Vinci. Our analysis of Da Vinci’s algorithm reveals
that its stego images have an easily detectable signature. Due to the embedding of a signature
message and the absence of encryption and randomness, simply reading the first 64 pixels is

enough to identify a Da Vinci stego image.

V. PERFORMANCE EVALUATION OF STEG DETECTION ALGORITHMS

In this section, we evaluate three existing steg detection programs that are publicly avail-
able: StegDetect by DC3, commercially available Stego Hunt [16], and freeware StegDetect by
Provos [26], to answer the following research question:

« How effective are existing detection programs in detecting stego images generated from

stego apps and other existing freeware code?



A. Experimental Setup

DC3 StegDetect is a software program developed to detect stego-related files on a computer.
It has a GUI interface with several options to run it, including which programs to detect. It is a
software program that can be applied to many different types of files, including executable files
and stego images. We applied it to image files and executable files. It was last updated in the
mid 2000s, and so does not contain signatures of programs created or updated past then. It uses
signatures for detection, and attempts to extract a password, decrypt it, and extract the payload,
if possible.

StegoHunt 1s commercial software by WetStone. It is purchased at an initial price, with yearly
renewal of the license. It advertises StegoHunt as the “leading software tool for discovering the
presence of data hiding activities,” and it can “generate case specific reports for management
or court presentation” and “identify suspect carrier files: program artifacts, program signatures,
statistical anomalies.” The web pages do not specify, but it is likely that the program uses hash
tables for lookups, file signatures, and statistics to perform its analysis of files. There are 10
possible detection responses for a given scanned file, and it outputs results of the scanned files
in a report.

StegDetect by Provos is a completely different software from DC3’s StegDetect, developed
by Dr. Neil Provos. It only accepts JPG images as input to scan, and is designed to detect
stego images that are output by the three steganography programs: jsteg [27], jphide [28], and
outguess 0.13b [29]. All three steg embedding programs output JPEG formatted images. If a file
is detected as stego, the program then identifies the most likely embedding algorithm used.

We run the three detection programs on a set of images that contains both cover and stego
images. A subset of the images are in PNG format while the rest are in JPG format. Due to the
fact that StegDetect by Provos does not take PNG files as input, we excluded the PNG files for

this particular program.

B. Detection Results

To produce stego images to run through each of the three detection programs, we first create
a set of cover images. We use images that were acquired by a set of mobile phones as part of
the authors’ research lab [30], and create cover images in both PNG and JPG formats. Detailed
information of the image data is shown in Table 1. The test images are grouped into five sets,

each indicating a different file type or embedding algorithm.



TABLE I: Overall Information of the Image Data

Image Data tested on Steg Detection

Set Index | File Type | Cover or Stego | Total # Embedding Algorithm
1 PNG Cover 2090 (none)
2 JPG Cover 1606 (none)
3 JPG Stego 4818 PixelKnot
4 JPG Stego 421 standard F5 Steganography
5 PNG Stego 10 Camouflage

First, we run the detection programs on the cover images in Set 1 and Set 2. The detection

results are shown in Table II. Note that StegoHunt identifies more than half of the cover PNG

TABLE II: Detection Results on the Cover Images

Image Data Detection Results of:
Set Index | Total Number Stego Hunt DC3 StegDetect | Provos StegDetect
1 2090 1304 Carrier Anomalies 0 suspicious N/A
2 1606 0 anomalies 0 suspicious 380 stegos (24%)

images as having “anomalies.” We suspect this may be due to the different type of file formatting
to PNG these images received. Additionally, Provos StegDetect identified 24% of the cover JPGs
as stego images.

Next, we test the detection programs on the stego images in Set 3 and Set 4. The stego images
from Set 3 were generated from PixelKnot using scripts on Android emulators. (Note: This set of
stego images is generated using different embedding rates; generally speaking, a longer payload
means more bits changed, and that means detection can be easier. We do not discuss this further as
it is beyond the scope of the paper.) The stego images in Set 4 were generated from the standard

F5 steganography algorithm implemented on a desktop computer [25]. The detection result on

TABLE III: Detection Results of stego images from PixelKnot and standard F5

Image Data Detection Results of:
Set Index | Total Number | Embedding Algorithm Stego Hunt DC3 StegDetect | Provos StegDetect
3 4818 PixelKnot 0 anomalies 0 suspicious 1160 stegos (24%)
4 421 standard F5 399 Carrier Anomalies | 421 marked as F5 223 stegos(53%)

these two sets is shown in Table III. Neither StegoHunt nor DC3 StegDetect properly detected a



single stego image from PixelKnot. Recall that PixelKnot was created around 2012, and thus is
not in the DC3 StegDetect database. Here, Provos StegDetect correctly identified around 24%
of the PixelKnot stego images. For the F5 stego images in Set 4, StegoHunt identified almost
all as having “anomalies” but not “stego”, while DC3 StegDetect properly identified all 421
stego images as being embedded with the standard F5 algorithm. However, Provos StegDetect

identified only around 53% of the stego images properly, about the same as randomly guessing.

TABLE IV: Detection Results on the Camouflage Stego Images

Image Data Detection Results of:
Set Index | Total Number | Embedding Algorithm Stego Hunt DC3 StegDetect | Provos StegDetect
10/10: data appended | 10/10: detected as
5 10 Camouflage N/A
past EOF Camouflage

Finally, using an older steganography software Camouflage [2], we created 10 stego images
as the fifth image set. The detection result is shown in Table IV. Both StegoHunt and DC3
StegDetect correctly identified all 10 images as stego, with StegoHunt correctly responding that
data was appended past the EOF, and DC3 StegDetect marking the images as from Camouflage.
Additionally, DC3 StegDetect extracted the password and payload for the 10 stego images.

C. Discussions

In our experiments, the DC3 StegDetect outperforms the other two software packages on the
data that we provided. StegoHunt identifies Camouflage stegos and anomalies in most standard
F5 stegos, though not correctly as stego images. DC3 StegDetect identifies all F5 stegos, and
identifies and extracts messages in all Camouflage stegos. Neither StegoHunt nor DC3 StegDetect
identify PixelKnot stegos. Provos StegDetect has a high False Alarm Rate (24% as shown in
Table II) and high Missed Detection Rate (75% as shown in Table III). Among the 223 stegos in
image set 4 detected by Provos StegDetect, 219 were correctly identified as standard F5 stegos
while the other 4 were incorrectly identified as Outguess and jphide. We observe that Provos
StegDetect identifies all images tested here, cover or stego, with a rate between 25% and 50%,
not a useful feature for steg detection.

Since both StegoHunt and DC3 StegDetect can identify steganography programs, we used
those two programs to scan the two executables of standard F5 and Camouflage, and the source

code of standard F5. Neither program was able to correctly identify any of those three files.



VI. CONCLUSION

Mobile phones apps for steganography are slowly becoming more available, and this research
shows that some apps lend themselves to reverse engineering. We summarized the common
characteristics of steganography programs on the Android platform and examined two Android
steganography apps: PixelKnot and Da Vinci Secret Image.

Our analysis shows that, despite having similar user interfaces, the two apps have completely
different embedding processes. PixelKnot is based on the academic algorithm, F5 steganography,
hiding the payload in the quantized DCT domain and implementing anti-analysis measures such
as encryption and randomness. Da Vinci Secret Image, on the other hand, was simple and straight-
forward to analyze. We revealed an easily detectable signature in this app. Without encryption or
randomness, the app exhibited a signature that would properly identify its stego images. Other
newer stego apps may also have their own signatures.

Finally, we showed that existing software was not adequate to identify stego images from the
more recent steganography app PixelKnot. We believe that the field of steg detection for mobile

steg apps has room to expand and improve.
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