Skip to main content

Supervised Manifold-Preserving Graph Reduction for Noisy Data Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11061))

Abstract

Data reduction has become one of essential techniques in current knowledge discovery scenarios, dominated by noisy data. The manifold-preserving graph reduction (MPGR) algorithm has been proposed, which has the advantages of eliminating the influence of outliers and noisy and simultaneously accelerating the evaluation of predictors learned from manifolds. Based on MPGR, this paper utilizes the label information to guide the construction of graph and presents a supervised MPGR (SMPGR) method for classification tasks. In addition, we construct a similarity matrix using kernel tricks and develop the kernelized version for SMPGR. Empirical experiments on several datasets show the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pyle, D.: Data preparation for data mining. Appl. Artif. Intell. 17(5–6), 375–381 (1999)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  3. Sun, S., Hussain, Z., Shawe-Taylor, J.: Manifold-preserving graph reduction for sparse semi-supervised learning. Neurocomputing 124(2), 13–21 (2014)

    Article  Google Scholar 

  4. Madigan, D., Nason, M.: Data reduction: sampling. In: Handbook of Data Mining and Knowledge Discovery, pp. 205–208 (2002)

    Google Scholar 

  5. Barca, J.C., Rumantir, G.: A modified K-means algorithm for noise reduction in optical motion capture data. In: 6th IEEE/ACIS International Conference on Computer and Information Science in Conjunction with 1st IEEE/ACIS International Workshop on e-Activity, pp. 118–122 (2007)

    Google Scholar 

  6. Ou, Y.Y., Chen, C.Y., Hwang, S.C., Oyang, Y.J.: Expediting model selection for support vector machines based on data reduction. IEEE Int. Conf. Syst. 1, 786–791 (2003)

    Google Scholar 

  7. Burges, C.J.C.: Geometry and invariance in kernel based methods. In: Advances in Kernel Methods (2008)

    Google Scholar 

  8. Panda, N., Chang, E.Y., Wu, G.: Concept boundary detection for speeding up SVMs. In: 23rd International Conference on Machine Learning, pp. 681–688 (2006)

    Google Scholar 

  9. Jinlong, A.N., Wang, Z.: Pre-extracting support vectors for support vector machine. In: 5th International Conference on Signal Processing, vol. 3, pp. 1432–1435 (2000)

    Google Scholar 

  10. Zhang, L., Zhou, W., Chen, G., Zhou, H., Ye, N., Jiao, L.: Pre-extracting boundary vectors for support vector machine using pseudo-density estimation method. In: International Symposium on Multispectral Image Processing and Pattern Recognition, vol. 7496, pp. 74960J–74960J-7 (2009)

    Google Scholar 

  11. Rowels, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  12. Sindhwani, V., Rosenberg, D.S.: An RKHS for multi-view learning and manifold co-regularization. Int. Conf. Mach. Learn. 307, 976–983 (2008)

    Google Scholar 

  13. Tenenbaum, J.B., De, S.V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  14. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. Int. Conf. Comput. Vis. 2, 1208–1213 (2005)

    Google Scholar 

  15. Hinton, G., Roweis, S.: Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 41(4), 833–840 (2002)

    Google Scholar 

  16. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. c-18(5), 401–409 (2006)

    Google Scholar 

  17. Hinton, G., Rowels, S.: Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 41(4), 833–840 (2002)

    Google Scholar 

  18. Shaw, B., Jebara, T.: Structure preserving embedding. Int. Conf. Mach. Learn. 382, 937–944 (2009)

    Google Scholar 

  19. Zhang, L., Zhou, W.: On the sparseness of 1-norm support vector machines. Neural Netw. 23(3), 373–385 (2010)

    Article  Google Scholar 

  20. Kivinen, J., Smola, A.J., Williamson, R.C.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Zhang, H., Huang, W., Huang, Z., Zhang, B.: A kernel autoassociator approach to pattern classification. IEEE Trans. Syst. Man Cybern. 35(3), 593–606 (2005)

    Article  Google Scholar 

  22. Zhou, W., Zhang, L., Jiao, L.: Hidden space principal component analysis. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 801–805. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_93

    Chapter  Google Scholar 

  23. Zhang, L., Zhou, W., Jiao, C.: Hidden space support vector machines. IEEE Trans. Neural Netw. 15(6), 1424–1434 (2004)

    Article  Google Scholar 

  24. Han, M., Yin, J.: The hidden neurons selection of the eavelet networks using support vector machines and ridge regression. Neurocomputing 72(1–3), 471–479 (2008)

    Article  Google Scholar 

  25. Alvira, M., Rifkin, R.: An empirical comparison of SNoW and SVMs for face detection. Massachusetts Institute of Technology (2001)

    Google Scholar 

  26. Sun, S.: Ensembles of feature subspaces for object detection. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5552, pp. 996–1004. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01510-6_113

    Chapter  Google Scholar 

  27. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets.html. Accessed 21 Mar 2018

  28. Zhang, L., Zhou, W., Chang, P., Liu, J., Yang, Z., Wang, T.: Kernel sparse representation-based classifier. IEEE Trans. Signal Process. 60(4), 1684–1695 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61373093, No. 61402310, No. 61672364 and No. 61672365, by the Soochow Scholar Project of Soochow University, by the Six Talent Peak Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Zhang, L. (2018). Supervised Manifold-Preserving Graph Reduction for Noisy Data Classification. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics