Skip to main content

SERL: Semantic-Path Biased Representation Learning of Heterogeneous Information Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11061))

Abstract

The goal of network representation learning is to embed each vertex in a network into a low-dimensional vector space. Existing network representation learning methods can be classified into two categories: homogeneous models that learn the representation of vertexes in a homogeneous information network, and heterogeneous models that learn the representation of vertexes in a heterogeneous information network. In this paper, we study the problem of representation learning of heterogeneous information networks which recently attracts numerous researchers’ attention. Specifically, the existence of multiple types of nodes and links makes this work more challenging. We develop a scalable representation learning models, namely SERL. The SERL method formalizes the way to fuse different semantic paths during the random walk procedure when exploring the neighborhood of corresponding node and then leverages a heterogeneous skip-gram model to perform node embeddings. Extensive experiments show that SERL is able to outperform state-of-the-art learning models in various heterogenous network analysis tasks, such as node classification, similarity search and visualization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    databases, data mining, artificial intelligence and information retrieval.

  2. 2.

    https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng. Accessed on February, 2017.

  3. 3.

    1. Computational Linguistics, 2. Computer Graphics, 3. Computer Networks & Wireless Communication, 4. Computer Vision & Pattern Recognition, 5. Computing Systems, 6. Databases & Information Systems, 7. Human Computer Interaction, and 8. Theoretical Computer Science.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  2. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)

    Google Scholar 

  3. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119–128. ACM (2015)

    Google Scholar 

  4. Chen, T., Sun, Y.: Task-guided and path-augmented heterogeneous network embedding for author identification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 295–304. ACM (2017)

    Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM (2017)

    Google Scholar 

  6. Fu, T.y., Lee, W.C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings ACM on Conference on Information and Knowledge Management, pp. 1797–1806. ACM (2017)

    Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  10. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  11. Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. arXiv preprint arXiv:1711.10730 (2017)

  12. Sun, Y., Han, J.: Mining heterogeneous information networks: principles and methodologies. Synth. Lect. Data Mining Knowl. Discov. 3(2), 1–159 (2012)

    Article  Google Scholar 

  13. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endowment 4(11), 992–1003 (2011)

    Google Scholar 

  14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  15. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)

    Google Scholar 

  16. Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: KnowSim: a document similarity measure on structured heterogeneous information networks. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 1015–1020. IEEE (2015)

    Google Scholar 

  17. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  18. Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., Liu, Q.: Shine: Signed heterogeneous information network embedding for sentiment link prediction. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 592–600. ACM (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. This work was supposed by the National Natural Science Foundation of China(Grant No. 61472403, 61303243, 61702470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingping Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, H., Tang, W., Fan, X., Jing, Q., Bi, J. (2018). SERL: Semantic-Path Biased Representation Learning of Heterogeneous Information Network. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics