Skip to main content

Some Foundational Aspects of Rough Sets Rendering Its Wide Applicability

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11103))

Included in the following conference series:

  • 973 Accesses

Abstract

This paper aims to discuss about the reasons behind the wide applicability of the rough set approach in real-life projects. The rough set-based approximations of (vague) concepts is one among the most central notions, available in the literature, for dealing with imperfect data and/or information. Moreover, as the approach based on rough sets is directly driven from data it turns out to be advantageous for real life projects where data plays a crucial role. Besides, using rough set approach one can deal efficiently with algorithmic issues, especially in the context of searching for relevant computational building blocks (granules) for approximation of complex vague concepts. In this paper, we would focus on these few aspects of rough sets, in order to explain its wide applicability in real-life projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information readers are referred to some survey papers [55,56,57, 67], books, e.g., [19, 57, 71] and to the rough set database rsds.univ.rzeszow.pl.

  2. 2.

    This stage started a few years after the first paper by Pawlak on rough sets was published.

  3. 3.

    Leslie Valiant: https://people.seas.harvard.edu/~valiant/researchinterests.htm.

  4. 4.

    where U is a finite set and A is a set of attributes (i.e., for any \(a\in A,\) \(a: U\longrightarrow V_a,\) where \(V_a\) is the set of values of a).

  5. 5.

    \(\left| {X}\right| \) denotes the cardinality of the set X.

  6. 6.

    If then we will also write \(\Vert \alpha \Vert _U\) instead of .

  7. 7.

    Let us recall that a decision system is a triplet (U, A, d),  where (U, A) is an information system and \(d:U\longrightarrow V_d\) is the decision attribute with the set of values \(V_d\) such that \(d\notin A\) [51].

  8. 8.

    A rule of the form \(lh(r)\longrightarrow d=i, \) where lh(r) is a conjunction of descriptors of the form \(a=v\) for some \(a\in A_{tr}\) and \(i\in \{0,1\}\) is minimal if this rule is true in \(U_{tr}\) but if we drop an arbitrary descriptor from lh(r) the obtained rule will be no longer true in \(U_{tr}\) [39, 55].

  9. 9.

    The readers are referred to the literature for other relationships of rough sets and Dempster-Shafer theory (see, e.g., [11, 12, 76, 79, 10]). For example, new methods of inducing rules were developed for searching rules with the large support for unions of few decision classes and eliminating many other decision classes (see, e.g., [33]).

  10. 10.

    https://people.seas.harvard.edu/~valiant/researchinterests.htm.

References

  1. Albanese, A., Sankar, F., Pal, K., Petrosino, A.: Rough sets, kernel set, and spatiotemporal outlier detection. IEEE Trans. Knowl. Data Eng. 26, 194–207 (2014)

    Article  Google Scholar 

  2. An, S., Shi, H., Hu, Q., Li, X., Dang, J.: Fuzzy rough regression with application to wind speed prediction. Inf. Sci. 282, 388–400 (2014)

    Article  MathSciNet  Google Scholar 

  3. Banerjee, M., Mitra, S., Pal, S.K.: Rough-fuzzy MLP. IEEE Trans. Neural Nets 9, 1203–1216 (1998)

    Article  Google Scholar 

  4. Banerjee, M., Pal, S.K.: Roughness of a fuzzy set. Inf. Sci. 93(3–4), 235–246 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89876-4_26

    Chapter  Google Scholar 

  6. Bello, R., Falcón, R., Pedrycz, W.: Granular Computing: At the Junction of Rough Sets and Fuzzy Sets, Studies in Fuzziness and Soft Computing, vol. 234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-76973-6

  7. Breiman, L.: Statistical modeling: the two cultures. Statis. Sci. 16(3), 199–231 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chakraborty, M.K.: Membership function based rough set. Int. J. Approximate Reasoning 55(1), 402–411 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cornelis, C., Jensen, R., Martín, G.H., Ślȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010)

    Article  MathSciNet  Google Scholar 

  10. Denoeux, T.: Dempster-Shafer theory. Introduction, connections with rough sets and application to clustering. slides from letures at RSKT 2014, Shanghai, China, 25 October 2014. https://www.hds.utc.fr/~tdenoeux/dokuwiki/_media/en/rskt2014.pdf

  11. Denoeux, T., Li, S., Sriboonchitta, S.: Evaluating and comparing soft partitions: an approach based on Dempster-Shafer theory. IEEE Trans. Fuzzy Syst. 26(3), 1231–1244 (2017)

    Google Scholar 

  12. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–208 (1990)

    Article  Google Scholar 

  13. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)

    Article  Google Scholar 

  14. Ganivada, A., Ray, S., Pal, S.: Fuzzy rough sets, and a granular neural network for unsupervised feature selection. Neural Netw. 48, 91–108 (2013)

    Article  Google Scholar 

  15. Ganivada, A., Ray, S.S., Pal, S.: Fuzzy rough granular self-organizing map and fuzzy rough entropy. Theoret. Comput. Sci. 466, 37–63 (2012)

    Article  MathSciNet  Google Scholar 

  16. Goldin, D., Smolka, S., Wegner, P. (Eds.): Interactive Computation: The New Paradigm. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34874-3

  17. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  18. Hu, Q., Yu, D., Pedrycz, W., Chen, D.: Kernelized fuzzy rough sets and their applications. IEEE Trans. Knowl. Data Eng. 23, 1649–1667 (2011)

    Article  Google Scholar 

  19. Chikalov, I., et al.: Three Approaches to Data Analysis. Test Theory, Rough Sets and Logical Analysis of Data, Series Intelligent Systems Reference Library, vol. 41. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28667-4

  20. Jankowski, A.: Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57627-5

    Book  Google Scholar 

  21. Janusz, A., Ślȩzak, D.: Rough set methods for attribute clustering and selection. Appl. Artif. Intell. 28(3), 220–242 (2014)

    Article  Google Scholar 

  22. Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches. IEEE Press Series on Cmputationa Intelligence. IEEE Press and Wiley, Hoboken (2008)

    Book  Google Scholar 

  23. Joshi, M., Bhaumik, R.N., Lingras, P., Patil, N., Salgaonkar, A., Slezak, D.: Rough set year in India 2009. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Slezak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 67–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_7

    Chapter  Google Scholar 

  24. Joshi, M., Lingras, P., Rao, C.R.: Correlating fuzzy and rough clustering. Fundamenta Informaticae 115(2–3), 233–246 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (2000). Kindly check the edit made in Ref. [25]

    Google Scholar 

  26. Leśniewski, S.: Grungzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae 14, 1–81 (1929)

    Article  Google Scholar 

  27. Li, Y., Shiu, S.C.-K., Pal, S.K., Liu, J.N.-K.: A rough set-based case-based reasoner for text categorization. Int. J. Approximate Reasoning 41(2), 229–255 (2006)

    Article  Google Scholar 

  28. Lingras, P.: Fuzzy - rough and rough - fuzzy serial combinations in neurocomputing. Neurocomputing 36(1–4), 29–44 (2001)

    Article  Google Scholar 

  29. Lingras, P., Peters, G.: Rough clustering. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1(1), 64–72 (2011)

    Google Scholar 

  30. Maji, P., Pal, S.: RFCM: a hybrid clustering algorithm using rough and fuzzy sets. Fundamenta Informaticae 80(4), 477–498 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Maji, P., Pal, S.: Rough set based generalized fuzzy c-means algorithm and quantitative indices. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(6), 1529–1540 (2007)

    Article  Google Scholar 

  32. Maji, P., Pal, S.K.: Rough-Fuzzy Pattern Recognition: Application in Bioinformatics and Medical Imaging. Wiley Series in Bioinformatics. Wiley, Hoboken (2012)

    Book  Google Scholar 

  33. Marszal-Paszek, B., Paszek, P.: Classifiers based on nondeterministic decision rules. Rough Sets Intell. Syst. 2, 445–454 (2013)

    MATH  Google Scholar 

  34. Mehera, S.K., Pal, S.K.: Rough-wavelet granular space and classification of multispectral remote sensing image. Applied Soft Comput. 11, 5662–5673 (2011)

    Article  Google Scholar 

  35. Mitra, P., Mitra, S., Pal, S.K.: Modular rough fuzzy MLP: evolutionary design. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 128–136. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-7_17

    Chapter  Google Scholar 

  36. Mitra, P., Mitra, S., Pal, S.K.: Evolutionary modular design of rough knowledge-based network using fuzzy attributes. Neurocomputing 36, 45–66 (2001)

    Article  Google Scholar 

  37. Mitra, P., Pal, S., Siddiqi, M.A.: Nonconvex clustering using expectation maximization algorithm with rough set initialization. Pattern Recogn. Lett. 24, 863–873 (2003)

    Article  Google Scholar 

  38. Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006). https://doi.org/10.1007/11847465_16

    Chapter  Google Scholar 

  39. Nguyen, H.S., Skowron, A.: Rough sets: from rudiments to challenges. In: Skowron, A., Suraj, Z. (eds.), vol. 71, pp. 75–173 (2013). https://doi.org/10.1007/978-3-642-30344-9_3

  40. Nguyen, S., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classification problems. In: Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 55–97 (1998). https://doi.org/10.1007/978-3-7908-1883-3_4

  41. Pal, S., Meher, S., Dutta, S.: Class-dependent rough-fuzzy granular space, dispersion index and classification. Pattern Recogn. 45, 2690–2707 (2012)

    Article  Google Scholar 

  42. Pal, S., Ray, S.S., Ganivada, A.: Granular Neural Networks, Pattern Recognition and Bioinformatics. Studies in Computational Intelligence, vol. 712. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57115-7

    Book  Google Scholar 

  43. Pal, S., Shiu, S.: Foundations of Soft Case-Based Reasoning. Wiley, Hoboken (2004)

    Book  Google Scholar 

  44. Pal, S.K.: Soft data mining, computational theory of perceptions, and rough-fuzzy approach. Inf. Sci. 163(1–3), 5–12 (2004)

    Article  Google Scholar 

  45. Pal, S.K., Mitra, P.: Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans. Geosci. Remote Sens. 40, 2495–2501 (2002)

    Article  Google Scholar 

  46. Pal, S.K., Mitra, P.: Case generation using rough sets with fuzzy representation. IEEE Trans. Knowl. Data Eng. 16(3), 292–300 (2004)

    Article  Google Scholar 

  47. Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (Eds.): Special volume: Rough-neuro computing. Neurocomputing 36(1–4), 1–262 (2001)

    Google Scholar 

  48. Pal, S.K., Peters, J.F. (eds.): Rough Fuzzy Image Analysis Foundations and Methodologies. Chapman & Hall/CRC, Boca Raton (2010)

    Google Scholar 

  49. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18859-6

  50. Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer, Singapore (1999)

    Google Scholar 

  51. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  52. Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets Syst. 17, 99–102 (1985)

    Article  MathSciNet  Google Scholar 

  53. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  54. Pawlak, Z.: Concurrent versus sequential - the rough sets perspective. Bull. EATCS 48, 178–190 (1992)

    MATH  Google Scholar 

  55. Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)

    Article  MathSciNet  Google Scholar 

  56. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)

    Article  MathSciNet  Google Scholar 

  57. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  58. Pedrycz, W., Skowron, S., Kreinovich, V. (eds.): Handbook of Granular Computing. Wiley, Hoboken (2008)

    Google Scholar 

  59. Peters, G., Crespo, F., Lingras, P., Weber, R.: Soft clustering - fuzzy and rough approaches and their extensions and derivatives. Int. J. Approximate Reasoning 54(2), 307–322 (2013)

    Article  MathSciNet  Google Scholar 

  60. Polkowski, L.: Rough mereology as a link between rough and fuzzy set theories. a survey. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 253–277. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27778-1_13

    Chapter  MATH  Google Scholar 

  61. Polkowski, L. (Ed.): Approximate Reasoning by Parts. An Introduction to Rough Mereology, Intelligent Systems Reference Library, vol. 20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5

  62. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. Int. J. Approximate Reasoning 15(4), 333–365 (1996)

    Article  MathSciNet  Google Scholar 

  63. Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. Wiley, New York (1985)

    Google Scholar 

  64. Shafer, G.: Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  65. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56804-2_28

    Chapter  Google Scholar 

  66. Skowron, A., Grzymała-Busse, J.W.: From rough set theory to evidence theory. In: Yager, R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 193–236. Wiley, New York (1994)

    Google Scholar 

  67. Skowron, A., Jankowski, A., Swiniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_21

    Chapter  Google Scholar 

  68. Skowron, A., Pal, S.K. (Eds.): Special volume: rough sets, pattern recognition and data mining. Pattern Recogn. Lett. 24(6), 829–831 (2003)

    Google Scholar 

  69. Skowron, A., Pal, S.K., Nguyen, H.S. (Eds.): Special issue on rough sets and fuzzy sets in natural computing. Theoret. Comput. Sci. 412(42), 5816–5819 (2011)

    Google Scholar 

  70. Skowron, A., Stepaniuk, J.: Rough sets and granular computing: toward rough-ranular computing. In: Pedrycz, et al., vol. 58, pp. 425–448

    Google Scholar 

  71. Skowron, A., Suraj, Z. (eds.): Rough Sets and Intelligent Systems, Professor Zdzislaw Pawlak in Memoriam. Series Intelligent Systems Reference Library. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30344-9

  72. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on Information Systems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-92673-3

  73. Stepaniuk, J. (ed.): Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70801-8

  74. Świniarski, R.W., Skowron, A.: Independent component analysis, principal component analysis and rough sets in face recognition. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 392–404. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27794-1_19

    Chapter  MATH  Google Scholar 

  75. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  76. Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. Int. J. Gen. Syst. 31(4), 405–430 (2002)

    Article  MathSciNet  Google Scholar 

  77. Yager, R., Liu, L. (eds.): Classic Works of the Dempster-Shafer Theory of Belief Functions, vol. 219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4

  78. Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. Inf. Sci. 109(1–4), 227–242 (1998)

    Article  MathSciNet  Google Scholar 

  79. Yao, Y.Y., Lingras, P.J.: Interpretations of belief functions in the theory of rough sets. Inf. Sci. 104, 81–106 (1998)

    Article  MathSciNet  Google Scholar 

  80. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37, 77–84 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Mihir Chakraborty for suggesting the problem considered in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Skowron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skowron, A., Dutta, S. (2018). Some Foundational Aspects of Rough Sets Rendering Its Wide Applicability. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99368-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99367-6

  • Online ISBN: 978-3-319-99368-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics