
ar
X

iv
:1

80
6.

07
18

6v
1 

 [
cs

.C
L

] 
 1

9 
Ju

n 
20

18

Recurrent DNNs and its Ensembles on the

TIMIT Phone Recognition Task ⋆

Jan Vaněk[0000−0002−2639−6731], Josef Michálek[0000−0001−7757−3163], and
Josef Psutka[0000−0002−0764−3207]

University of West Bohemia
Univerzitńı 8, 301 00 Pilsen, Czech Republic

{vanekyj,orcus,psutka}@kky.zcu.cz

Abstract. In this paper, we have investigated recurrent deep neural net-
works (DNNs) in combination with regularization techniques as dropout,
zoneout, and regularization post-layer. As a benchmark, we chose the
TIMIT phone recognition task due to its popularity and broad availabil-
ity in the community. It also simulates a low-resource scenario that is
helpful in minor languages. Also, we prefer the phone recognition task be-
cause it is much more sensitive to an acoustic model quality than a large
vocabulary continuous speech recognition task. In recent years, recur-
rent DNNs pushed the error rates in automatic speech recognition down.
But, there was no clear winner in proposed architectures. The dropout
was used as the regularization technique in most cases, but combination
with other regularization techniques together with model ensembles was
omitted. However, just an ensemble of recurrent DNNs performed best
and achieved an average phone error rate from 10 experiments 14.84 %
(minimum 14.69 %) on core test set that is slightly lower then the best-
published PER to date, according to our knowledge. Finally, in contrast
of the most papers, we published the open-source scripts to easily repli-
cate the results and to help continue the development.

Keywords: neural networks · acoustic model · TIMIT · LSTM · GRU
· phone recognition

1 Introduction

Phone recognition on the Texas Instruments/Massachusetts Institute of Tech-
nology (TIMIT) corpus of read speech [6] is very popular benchmark task. The
phone recognition is much more sensitive to quality of the acoustic model than a
large vocabulary continuous speech recognition (LVCSR). Therefore it is a good

⋆ Supported by Ministry of Education, Youth and Sports of the Czech Republic project
No. LO1506 and by the grant of the University of West Bohemia, project No. SGS-
2016-039. Access to computing and storage facilities owned by parties and projects
contributing to the National Grid Infrastructure MetaCentrum provided under the
programme ”Projects of Large Research, Development, and Innovations Infrastruc-
tures” (CESNET LM2015042), is greatly appreciated.

http://arxiv.org/abs/1806.07186v1


2 J. Vaněk, J. Michálek, J. Psutka

benchmark to test novel DNN architectures and training strategies. The TIMIT
corpus has defined training, development, and two test sets. It helped to achieve
results comparability over publications.

The first generation of DNNs was based on feed forward networks. Then
recurrent DNNs took the lead in the last few years. First, Mohamed at al. pre-
sented its monophone deep belief network (DBN) [10] with PER 20.7% on the
core test set. A triphone version of the DBN with a speaker adaptive training
and a fMLLR adaptation was developed by Bagher BabaAli and Karel Vesely
in the TIMIT Kaldi example s5 [8]. The Kaldi example achieved PER 18.5%
on the core test set. Better results were then obtained by DNNs with rectified
linear units (ReLU). The ReLU DNNs do not need the DBN pretraining and, if
dropout is applied, they perform well on held out data. Laszlo Toth reported a
PER 17.76% on the core test set with a convolutional bottle neck ReLU DNN in
[15] and a year later he reported PER 16.5% with a 2D convolutional bottleneck
maxout DNN in [16]. Vanek also reported PER 16.5% with an ensemble of DBN
DNNs augmented by regularization post-layer [17]. Taesup Moon then achieved
stable PER 16.9% with a dropout bi-directional long-short term memory recur-
rent DNN (DBLSTM) and a peak PER with a larger net up to 16.29% [11].
Ravanelli at al. presented the best actual result, to our knowledge, PER 14.9%
with a bi-directional modified gated recurrent unit (GRU) based DNN [13].

In this paper, we have investigated recurrent deep neural networks in combi-
nation with regularization techniques as dropout, zoneout, and regularization
post-layer (RPL). For comparison, we have evaluated a simple feed-forward
ReLU DNN also. Moreover, we published our scripts to easily repeat our work
and results. We followed the Kaldi s5 example and limit the experiments to a tri-
phone model obtained by the Kaldi example together with the fMLLR speaker
adapted training, development, and test data. Then, we have trained various
DNNs. Because of the common feature processing stage, we did not try any 2D
convolutional DNNs. We plan to investigate them as a future work.

2 Recurrent Neural Network Architectures

2.1 Long Short-Term Memory

Long short-term memory (LSTM) is a widely used type of recurrent neural net-
work (RNN). Standard RNNs suffer from both exploding and vanishing gradient
problems.

The exploding gradient problem can be solved simply by truncating the gra-
dient. On the other hand, the vanishing gradient problem is harder to overcome.
It does not simply cause the gradient to be small; the gradient components
corresponding to long-term dependencies are small while the components corre-
sponding to short-term dependencies are large.

The LSTM was proposed in 1997 by Hochreiter and Scmidhuber [7] as a
solution to the vanishing gradient problem. Let ct denote a hidden state of a
LSTM. The main idea is that instead of computing ct directly from ct−1 with



Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task 3

matrix-vector product followed by an activation function, the LSTM computes
∆ct and adds it to ct−1 to get ct. The addition operation is what eliminates the
vanishing gradient problem.

Each LSTM cell is composed of smaller units called gates, which control the
flow of information through the cell. The forget gate ft controls what information
will be discarded from the cell state, input gate it controls what new information
will be stored in the cell state and output gate ot controls what information from
the cell state will be used in the output.

The LSTM has two hidden states, ct and ht. The state ct fights the gradient
vanishing problem while ht allows the network to make complex decisions over
short periods of time. There are several slightly different LSTM variants. The
architecture used in this paper is specified by the following equations:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt +Whcht−1 + bc)

ht = ot ∗ tanh(ct)

2.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed in 2014 by Cho et al.[4] Similarly to
the LSTM unit, the GRU has gating units that modulate the flow of information
inside the unit, however, without having separate memory cells.

The update gate zt decides how much the unit updates its activation and
reset gate rt determines which information will be kept from the old state. GRU
does not have any mechanism to control what information to output, therefore
it exposes the whole state. The figure 1 shows the internal structure of LSTM
and GRU units.

The main differences between LSTM unit and GRU are:

– GRU has 2 gates, LSTM has 3 gates
– GRUs do not have an internal memory different from the unit output, LSTMs

have an internal memory ct and the output is controlled by an output gate
– Second nonlinearity is not applied when computing the output of GRUs

The GRU unit used in this work is described by the following equations:

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Wxt + U(rt ∗ ht−1) + bh)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t



4 J. Vaněk, J. Michálek, J. Psutka

σ σ tanh σ

×

+

×

tanh

ht−1 ht

xt

×ct−1 ct

ht

ft

it ot

(a) LSTM

σ σ tanh

×
1−

× +

×

xt

ht

ht

ht−1

rt
zt

h̃t

(b) GRU

Fig. 1: Structure of LSTM and GRU units[12]

3 Regularization Techniques

It is well know that proper regularization techniques are needed in deep neural
network systems. DNNs work very well on training data but performance on
held out data may be much worse. A proper combination of dropout, early stop-
ping, and L2 regularization has developed as a standard in feed forward DNNs.
Using of dropout in recurrent DNNs may be more tricky. An interesting analysis
focused on the acoustic modeling domain was published in [5]. An alternative
technique called zoneout was published in [9]. The per-network regularization
techniques may also be combined by using network ensembles. The techniques
used in this paper are described below, in more detail.

3.1 Dropout

Dropout [14] consists of multiplying neural net activations by random zero-one
masks during training. The dropout probability p determines what proportion
of the mask values are one. Usually, the dropout rate p = 0.5 and it works
well for a range of tasks. But it is not an ideal setup for acoustic modeling. In
contrast, for example, p = 0.2 was suggested in [17] and [15] for TIMIT phone
recognition task. In [5], a per epoch dynamic schedule was proposed. They used a
constant number of epochs. The training started with 20% of the epochs having
p = 0. Then, there was a peek of p = 0.1 to 0.15 in the middle of epochs and
the training ended again with p = 0. p-values for the intermediate epochs are
linearly interpolated.

3.2 Zoneout

The alternative technique for recurrent DNNs was published in [9]. At each
timestep, zoneout stochastically forces some hidden units to maintain their previ-



Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task 5

ous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble,
improving generalization. But by preserving instead of dropping hidden units,
gradient information and state information are more readily propagated through
time, as in feed forward stochastic depth networks. However, the technique was
tested on a permuted sequential MNIST image recognition task not the speech
or phone recognition.

3.3 Cross-Validation Aggregation - Crogging

In classification, cross-validation (CV) is widely employed to estimate the ex-
pected accuracy of a predictive algorithm by averaging predictive errors across
mutually exclusive sub-samples of the data. Similarly, bootstrapping (Bagging)
aims to increase the validity of estimating the expected accuracy by repeatedly
sub-sampling the data with replacement, creating overlapping samples of the
data [2]. Beyond error estimation, bootstrap aggregation or bagging is used to
make a NNs ensemble. Barrow et al. considered in [1] similar extensions of cross-
validation to create diverse models. By bagging, it was proposed to combine
the benefits of cross-validation and prediction aggregation, called crogging. In
[1], the crogging approach significantly improved prediction accuracy relative to
bagging.

3.4 Regularization Post-Layer (RPL)

The RPL technique is based on cross-validation aggregation [17]; however, it
is more advanced. Cross-validation ensures that all observations are used for
both training and validation, though not simultaneously, and each observation
is guaranteed to be used for model estimation and validation the same number
of times. Furthermore, the validation set available in CV can be used to control
for overfitting in neural network training using early stopping. A k-fold cross-
validation allows the use of all k validation sets in performing early stopping,
and this potentially further reduces the risk of overfitting. Moreover, prediction
values for all k folds can be obtained in validation mode. These validation-
predictions for all folds – all training data – make a new valuable training set for
an additional NN layer that is called regularization post-layer. The RPL input
dimension is equal to the number of classes, and the output dimension is the
same. The RPL uses log-softmax values of the main network softmax output and
ends also with softmax. Because of large number of classes in acoustic models,
the RPL with diagonal matrix only is preferred.

4 Experiments

The TIMIT corpus contains recordings of phonetically-balanced prompted En-
glish speech. It was recorded using a Sennheiser close-talking microphone at 16
kHz rate with 16 bit sample resolution. TIMIT contains a total of 6300 sentences



6 J. Vaněk, J. Michálek, J. Psutka

(5.4 hours), consisting of 10 sentences spoken by each of 630 speakers from 8 ma-
jor dialect regions of the United States. All sentences were manually segmented
at the phone level.

The prompts for the 6300 utterances consist of 2 dialect sentences (SA), 450
phonetically compact sentences (SX) and 1890 phonetically-diverse sentences
(SI).

The training set contains 3696 utterances from 462 speakers. The core test
set consists of 192 utterances, 8 from each of 24 speakers (2 males and 1 female
from each dialect region). The training and test sets do not overlap.

4.1 Speech Data, Processing, and Test Description

As mentioned above, we used TIMIT data available from LDC as a corpus
LDC93S1. Then, we ran the Kaldi TIMIT example script s5, which trained
various NN-based phone recognition systems with a common HMM-GMM tied-
triphone model and alignments. The common baseline system consisted of the
following methods: It started from MFCC features which were augmented by ∆

and ∆∆ coefficients and then processed by LDA. Final feature vector dimension
was 40. We obtained final alignments by HMM-GMM tied-triphone model with
1909 tied-states (may vary slightly if the script is re-run). We trained the model
with MLLT and SAT methods, and we used fMLLR for the SAT training and
a test phase adaptation. We dumped all training, development and test fMLLR
processed data, and alignments to disk. Therefore, it was easy to do compatible
experiments from the same common starting point. We employed a bigram lan-
guage/phone model for final phone recognition. A bigram model is a very weak
model for phone recognition; however, it forced focus to the acoustic part of the
system, and it boosted benchmark sensitivity. The training, as well as the recog-
nition, was done for 48 phones. We mapped the final results on TIMIT core test
set to 39 phones (as it is usual by processing TIMIT corpus), and phone error
rate (PER) was evaluated by the provided NIST script to be compatible with
previously published works. In contrast to the Kaldi recipe, we used a different
phone decoder. It is a standard Viterbi-based triphone decoder. It gives better
results than the Kaldi standard WFST decoder on the TIMIT phone recognition
task. We have used an open-source Chainer 3.0 DNNs Python tranining tool that
supports NVidia GPUs [3]. It is multiplatform and easy to use.

4.2 DNN Training and Results

First as a reference to RNNs, we trained feed-forward (FF) DNN with ReLU
activation function without any pre-training. We used dropout p = 0.2. We
stacked 11 input fMLLR feature frames to 440 NN input dimension, like in
Kaldi example s5. All the input vectors were transformed by an affine transform
to normalize input distribution. We have used a network with 8 hidden layers
and 2048 ReLU neurons, because it gave the best performance according to our
preliminary experiments. The final softmax layer had 1909 neurons. We used
SGD with momentum 0.9. The learning rate was three-times reduced according



Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task 7

to development data training criterion change. Together with the learning rate
reduction, the batch size was gradually increased from initial 256 to 1024, and
final 2048.

Table 1: DNN Phone Error Rate [%]

FF LSTM GRU Zoneout LSTM

Master 17.00 ± 0.23 15.30 ± 0.13 15.66 ± 0.19 21.73 ± 0.26
Master + RPL 17.09 ± 0.26 15.29 ± 0.21 15.71 ± 0.14 27.81 ± 0.40
Folds 17.14 ± 0.09 14.98 ± 0.10 15.12 ± 0.13 20.98 ± 0.19
Folds + RPL 17.27 ± 0.10 14.94 ± 0.12 15.27 ± 0.13 28.73 ± 0.20
Master + Folds 17.04 ± 0.10 14.84 ± 0.14 15.22 ± 0.11 20.81 ± 0.19
Master + Folds + RPL 17.17 ± 0.09 14.84 ± 0.12 15.22 ± 0.09 28.17 ± 0.24

Then we have trained LSTM, GRU and Zoneout LSTM networks. For all
of these recurrent networks, we have used identical training setup. The dropout
used was p = 0.2. We have used output time delay equal to 5 time steps. RNNs
were trained in 4 stages. The first stage used Adam optimization algorithm with
batch size 512. The other stages used SGD with momentum 0.9, batch size 128
and learning rate equal to 1e−3, 1e−4, and 1e−5 respectivelly. The training
in each stage was stopped when the development data criterion increased in
comparison to the last epoch. In zoneout LSTM case, we used parameters with
values dc = dh = 0.5.

We have trained each network in several scenarios. First, we have trained a
single network from the whole training set called Master network. Then, we have
used the crogging technique: we have divided the training set into 5 folds and
trained 5 networks for each set of all folds except one. In the evaluation phase,
we have used the average output of the ensemble of the 5 fold networks called
Folds in the result table. Also, we have evaluated the combination of the Master

and Folds network ensemble, with Master having weight 50 %. Finally, we have
then trained the RPL layer for the fold network ensemble and evaluated it with
all 3 variants (only Master, only Folds, and Master with Folds).

Each experiment was performed 10 times in total and the phone error rate
(PER) was then evaluated. Table 1 shows the average phone error rate and
standard deviation for each experiment. From the table, it is obvious that the
lowest PER in all scenarios was obtained with LSTM. GRU gave the second best
results, in average higher by 0.33 %. We have received the worst results with
zoneout LSTM. They are significantly worse than all other networks and we were
not able to improve them. In all RNNs used, Folds network ensemble gave better
performance than using only singleMaster network. Also, the combination of the
Master network and Folds network ensemble further improved the performance
in both LSTM and zoneout LSTM cases. Slight improvements were also obtained
in a few cases by employing RPL, most notably almost all LSTM scenarios and
some GRU experiments with Master and Folds. Although the best average PER



8 J. Vaněk, J. Michálek, J. Psutka

from all experiments we have obtained is 14.84 %, the best single experiment
was LSTM with Master, Folds and RPL, which resulted in 14.64 % PER.

From all our experiments, we have found that using Folds network ensemble
generally leads to better performance in RNNs, while RPL can give better results
only in some cases. Disadvantage of using Folds network ensemble is that it is
more computationally intensive, because several networks have to be evaluated,
while RPL gives almost no overhead once trained.

5 Conclusion

We have trained several neural network architectures and evaluated their perfor-
mance on the phone recognition task with or without model ensembles and reg-
ularization post-layer (RPL). We have evaluated feed-forward DNNs and RNNs
composed of LSTM, GRU, or zoneout LSTM units. Our experiments showed,
that model ensembles give better performance than using a single network in
all RNN cases. Also, the combination of a single Master network and model en-
sembles further improved performance in LSTM and zoneout LSTM networks.
Some improvements can also be gained from using RPL, although it led to better
phone error rate (PER) only in LSTM and some GRU scenarios. The best aver-
age PER we have obtained is 14.84 % in LSTM network with Master network
and ensemble models, which is slightly lower than the best-published PER to
date, according to our knowledge. The best single experiment resulted in 14.64 %
PER and it was the LSTM network with Master network, ensemble models and
RPL.

We have used Chainer 3.0 DNN training framework with Python program-
ming language and all our scripts used in this work are publicly available at
https://github.com/OrcusCZ/NNAcousticModeling.

References

1. Barrow, D.K., Crone, S.F.: Crogging (Cross-Validation Aggregation) for Forecast-
ing - A Novel Algorithm of Neural Network Ensembles on Time Series Subsam-
ples. Proceedings of the International Joint Conference on Neural Networks (2013).
https://doi.org/10.1109/IJCNN.2013.6706740

2. Breiman, L.: Bagging Predictors. Machine learning 24(2), 123–140 (1996)
3. A Flexible Framework of Neural Networks for Deep Learning.

https://chainer.org

4. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555
(2014)

5. Gaofeng Cheng, Vijayaditya Peddinti, Daniel Povey, Vimal Manohar, Sanjeev
Khudanpur, Yonghong Yan: An Exploration of Dropout with LSTMs. In: Inter-
speech2017. pp. 1586–1590 (2017). https://doi.org/10.21437/Interspeech.2017-129,
http://www.danielpovey.com/files/2017{_}interspeech{_}dropout.pdf

6. Garofolo, J.S.e.a.: TIMIT Acoustic-Phonetic Continuous Speech Corpus. Linguistic
Data Consortium LDC93S1 (1993)

https://github.com/OrcusCZ/NNAcousticModeling
https://doi.org/10.1109/IJCNN.2013.6706740
https://chainer.org
https://doi.org/10.21437/Interspeech.2017-129
http://www.danielpovey.com/files/2017{_}interspeech{_}dropout.pdf


Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task 9

7. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural computation
9(8), 1735–1780 (1997)

8. Kaldi Speech Recognition Toolkit. https://github.com/kaldi-asr/kaldi
9. Krueger, D., Maharaj, T., Kramár, J., Ballas, M.P.N., Ke, N.R., Goyal, A., Bengio,

Y., Courville, A., Pal, C.: Zoneout: Regularizing RNNs by Randomly Preserving
Hidden Activations. In: International Conference on Learning Representations 2017
(2017)

10. Mohamed, A.r., Dahl, G.E., Hinton, G.: Acoustic Modeling Using Deep Belief
Networks. IEEE Transactions on Audio, Speech, and Language Processing 20(1),
14–22 (Jan 2012). https://doi.org/10.1109/TASL.2011.2109382

11. Moon, T., Choi, H., Lee, H., Song, I.: RNNDROP : A Novel Dropout for RNNs in
ASR. Proceedings of the ASRU (2015)

12. Olah, C.: Understanding LSTM Networks (Aug 2015),
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

13. Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y., Kessler, F.B.: Improving
Speech Recognition by Revising Gated Recurrent Units. In: Interspeech2017. pp.
1308–1312 (2017). https://doi.org/10.21437/Interspeech.2017-775

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal
of Machine Learning Research 15(1), 1929–1958 (2014)

15. Tóth, L.: Convolutional Deep Rectifier Neural Nets for Phone Recognition. Pro-
ceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH pp. 1722–1726 (August 2013)

16. Tóth, L.: Convolutional Deep Maxout Networks for Phone Recog-
nition. Proceedings of the INTERSPEECH pp. 1078–1082 (2014).
https://doi.org/10.1186/s13636-015-0068-3

17. Vaněk, J., Zelinka, J., Soutner, D., Psutka, J.: A Regularization Post Layer: An
Additional Way How to Make Deep Neural Networks Robust. Statistical Language
and Speech Processing pp. 204–214 (2017)

https://github.com/kaldi-asr/kaldi
https://doi.org/10.1109/TASL.2011.2109382
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.21437/Interspeech.2017-775
https://doi.org/10.1186/s13636-015-0068-3

	Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task 

