Skip to main content

A Fock Space Toolbox and Some Applications in Computational Cognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11096))

Abstract

We present a Matlab toolbox, called “FockBox”, handling Fock spaces and objects associated with Fock spaces: scalars, ket and bra vectors, and linear operators. We give brief application examples from computational linguistics, semantics processing, and quantum logic, demonstrating the use of the toolbox.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here we adopt Dirac’s bra-ket-notation as “a neat and concise way of writing, in a single scheme, both the abstract quantities themselves and their coordinates.” [3].

  2. 2.

    This is an actual problem, e.g., for semantic modeling (see Sect. 4.2) where a ket representing a feature-value relation comprising a moderate number of \(2^8=256\) different feature and value symbols would already exceed \(2^{64}\) row indexes for depths \(>\!8\).

  3. 3.

    These operations are not “coordinate-free” in the sense that they are not compatible with a change of orthonormal basis of Hilbert space.

  4. 4.

    Note that the representation of a sparse matrix \(\mathbf {x}\) in memory is just a list containing the elements of set x.

  5. 5.

    The exact data are reported by Moore [13]. Busemeyer and Bruza use play data for their computations displaying only some tendency of the reported data.

  6. 6.

    A model for quantum measurement is just a projection followed by a preparation.

References

  1. Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53(5), 314–348 (2009)

    Article  MathSciNet  Google Scholar 

  2. Busemeyer, J.R., Bruza, P.D. (eds.): Quantum Models of Cognition and Decision. Cambridge University Press, New York (2012)

    Google Scholar 

  3. Dirac, P.A.M.: A new notation for quantum mechanics. Math. Proc. Camb. Philos. Soc. 35(3), 416–418 (1939). https://doi.org/10.1017/S0305004100021162

    Article  MathSciNet  MATH  Google Scholar 

  4. Fock, V.A.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932)

    Article  Google Scholar 

  5. Fréchet, M.: Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416 (1907)

    MATH  Google Scholar 

  6. beim Graben, P., Gerth, S.: Geometric representations for minimalist grammars. J. Logic Lang. Inf. 21(4), 393–432 (2012)

    Article  MathSciNet  Google Scholar 

  7. beim Graben, P., Huber, M., Römer, R., Schmitt, I., Wolff: M.: Der Fockraum als Labyrinth: Wissensrepräsentation und Sprachverarbeitung am Beispiel des Mouse-Maze-Problems. In: Berton, A., et al. (eds.) Elektronische Sprachsignalverarbeitung 2018, pp. 167–174. TUDpress (2018)

    Google Scholar 

  8. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992). https://doi.org/10.1007/978-3-642-61458-3

    Book  MATH  Google Scholar 

  9. Hale, J.T.: What a rational parser would do. Cogn. Sci. 35(3), 399–443 (2011)

    Article  Google Scholar 

  10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Menlo Park (1979)

    MATH  Google Scholar 

  11. Huber, M., Römer, R.: Agenten in höheren Sphären. Quantenmechanische Situationsmodellierung am Beispiel des Mouse-Maze-Problems. In: Berton, A., et al. (eds.) Elektronische Sprachsignalverarbeitung 2018, pp. 127–134. TUDpress (2018)

    Google Scholar 

  12. Lehrack, S., Schmitt, I.: QSQL: incorporating logic-based retrieval conditions into SQL. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 429–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12026-8_33

    Chapter  Google Scholar 

  13. Moore, D.W.: Measuring new types of question-order effects: additive and subtractive. Public Opin. Q. 66(1), 80–91 (2002)

    Article  Google Scholar 

  14. Riesz, F.: Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411 (1907)

    MATH  Google Scholar 

  15. Schmitt, I.: QQL: a DB&IR query language. VLDB J. 17(1), 39–56 (2008)

    Article  Google Scholar 

  16. Schmitt, I., Römer, R., Wirsching, G., Wolff, M.: Denormalized quantum density operators for encoding semantic uncertainty in cognitive agents. In: 8th IEEE International Conference on Cognitive Infocommunications CogInfoCom 2017 Proceedings, 11–14 September 2017, Debrecen, Hungary, pp. 165–170 (2017)

    Google Scholar 

  17. Smolensky, P.: Symbolic functions from neural computation. Philos. Trans. A Math. Phys. Eng. Sci. 370(1971), 3543–3569 (2012)

    Article  MathSciNet  Google Scholar 

  18. Smolensky, P., Legendre, G.: The Harmonic Mind. From Neural Computation to Optimality-Theoretic Grammar Volume I: Cognitive Architecture. MIT Press, Cambridge (2006)

    Google Scholar 

  19. Wirsching, G., Huber, M., Kölbl, C., Lorenz, R., Römer, R.: Semantic dialogue modeling. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 104–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_8

    Chapter  Google Scholar 

  20. Wolff, M., Römer, R., Wirsching, G.: Towards coping and imagination for cognitive agents. In: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Györ (Hungary), 9–21 October 2015, pp. 307–312 (2015). https://doi.org/10.1109/CogInfoCom.2015.7390609

  21. Wolff, M., Wirsching, G., Huber, M., beim Graben, P., Römer, R., Schmitt, I.: FockBox - a Fock space toolbox for computational cognition. https://github.com/matthias-wolff/FockBox. Accessed 20 June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolff, M., Wirsching, G., Huber, M., beim Graben, P., Römer, R., Schmitt, I. (2018). A Fock Space Toolbox and Some Applications in Computational Cognition. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99579-3_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99578-6

  • Online ISBN: 978-3-319-99579-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics