Skip to main content

Design and Operation Principles of the Magnetomechanical Connector of the Module of the Mobile Autonomous Reconfigurable System

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Abstract

The object of this research is a multifunctional modular robot that can reconfigure the nodes and operatively change their position in the process of operation depending on the current task. The purpose of work is to study and develop homogeneous groups of robots capable of moving autonomously and forming various structures by connecting separate modules to each other. The novelty consists in the design of a module for mobile autonomous reconfigurable system (MARS), which differs from the analogues by the presence of a hybrid coupling mechanism embedded into the motor-wheel module. The developed magnetomechanical connector provides for positioning of the robotic modules relative to each other at the coupling stage and the connection of blocks of complex structures. Control of the polarity of the magnetic circuit, which is part of the connector, is carried out by the supply of short-term pulses that perform the coupling and decoupling of the units. In the course of experiments, we determined the parameters of the magnetic circuit and the principles of the functioning of the combined magnetic circuit ensuring the energy efficiency of the connector. The module moves along surfaces by means of motor wheels which comprise the coupling system of the modules. This approach allows one to save space in the robotics module and efficiently use its main part for the arrangement of power supplies and control devices. Two schemes for placing sets of magneto-mechanical connectors in the basic module were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivanov, A.A., Shmakov, O.A.: An algorithm for defining the inner geometry of a snakelike manipulator in case of leading link movements along the incremental trajectory. SPIIRAS Proc. 49(6), 190–207 (2016). https://doi.org/10.15622/sp.49.10

    Article  Google Scholar 

  2. Dashevskiy, V., Budkov, V., Ronzhin, A.: Survey of modular robots and developed embedded devices for constructive and computing components. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 50–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_6

    Chapter  Google Scholar 

  3. Nakagaki, K., et al.: ChainFORM: a linear integrated modular hardware system for shape changing interfaces. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 87–96. ACM (2016). https://doi.org/10.1145/2984511.2984587

  4. Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots. In: IEEE International Conference on Intelligent Robots and Systems, vol. 6696971, pp. 4288–4295. IEEE (2013). https://doi.org/10.1109/iros.2013.6696971

  5. Belke, C.H., Paik, J.: Mori: a modular origami robot. IEEE/ASME Trans. Mechatron. 22(5), 2153–2164 (2017)

    Article  Google Scholar 

  6. Murata, S., et al.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002). https://doi.org/10.1109/TMECH.2002.806220

    Article  Google Scholar 

  7. Saab, W., Ben-Tzvi, P.: Development of a novel coupling mechanism for modular self-reconfigurable mobile robots. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V05BT08A007 (2015). https://doi.org/10.1115/detc2015-46659

  8. Chennareddy, S., Agrawal, A., Karuppiah, A.: Modular self-reconfigurable robotic systems: a survey on hardware architectures. J. Robot. (2017). https://doi.org/10.1155/2017/5013532

    Article  Google Scholar 

  9. Saab, W., Ben-Tzvi, P.: A genderless coupling mechanism with six-degrees-of-freedom misalignment capability for modular self-reconfigurable robots. J. Mech. Robot. 8(6), 061014 (2016). https://doi.org/10.1115/1.4034014

    Article  Google Scholar 

  10. Escalera, J.A., Mondada, F., Groß, R.: Evo-bots: a modular robotics platform with efficient energy sharing. In: Modular and Swarm Systems Workshop at IROS (2014)

    Google Scholar 

  11. Moubarak, P.M., Ben-Tzvi, P.: A tristate rigid reversible and non-back-drivable active docking mechanism for modular robotics. IEEE/ASME Trans. Mechatron. 19(3), 840–851 (2014). https://doi.org/10.1109/TMECH.2013.2261531

    Article  Google Scholar 

  12. Liu, J., Zhang, X., Hao, G.: Survey on research and development of reconfigurable modular robots. Adv. Mech. Eng. 8(8) (2016). https://doi.org/10.1177/1687814016659597

  13. Reddy, C.S.S., et al.: HexaMob — a hybrid modular robotic design for implementing biomimetic structures. Robotics 6(4), 27 (2017). https://doi.org/10.3390/robotics6040027

    Article  MathSciNet  Google Scholar 

  14. Lee, J.Y., Cho, K.J.: Development of magnet connection of modular units for soft robotics. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 65–67. IEEE (2017). https://doi.org/10.1371/journal.pone.0169179

  15. Won, P., Biglarbegian, M., Melek, W.: Development of an effective docking system for modular mobile self-reconfigurable robots using extended Kalman filter and particle filter. Robotic 4(1), 25–49 (2015). https://doi.org/10.3390/robotics4010025

    Article  Google Scholar 

  16. Andreev, V., Kim, V.: Control system and design of the motion module of a heterogeneous modular mobile robot. Ann. DAAAM Proc. 586–595 (2016)

    Google Scholar 

  17. Castillo, R.A., Gómez, D.J., Vargas, G.A.: Implementation and assembly of a robotic module for the MECABOT-3 reconfigurable system. Int. J. Appl. Eng. Res. 11(21), 10681–10684 (2016)

    Google Scholar 

  18. Motienko, A., Dorozhko, I., Tarasov, A., Basov, O.: Proactive robotic systems for effective rescuing sufferers. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS (LNAI), vol. 9812, pp. 172–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43955-6_21

    Chapter  Google Scholar 

  19. Baca, J., et al.: Modred: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration. Robot. Auton. Syst. 62(7), 1002–1015 (2014). https://doi.org/10.1016/j.robot.2013.08.008

    Article  Google Scholar 

  20. Wenzel, W., Cordes, F., Kirchner, F.: A robust electro-mechanical interface for cooperating heterogeneous multi-robot teams. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1732–1737. IEEE (2015). https://doi.org/10.1109/iros.2015.7353601

  21. Kumar, P., Saab, W., Ben-Tzvi, P.: Design of a multi-directional hybrid-locomotion modular robot with feedforward stability control. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V05BT08A010 (2017). https://doi.org/10.1115/detc2017-67436

  22. Ronzhin, A.L., et al.: O sposobah kontaktnogo soedinenija gruppy modul’’nyh robotov. Robototehnika i tehnicheskaja kibernetika 3(12), 34–41 (2016)

    Google Scholar 

  23. Ronzhin, A., Vatamaniuk, I., Pavluk, N.: Automatic control of robotic swarm during convex shape generation. In: Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering, EPE 2016, vol. 9, pp. 675–680 (2016)

    Google Scholar 

  24. Shljahov, N.E., Vatamanjuk, I.V., Ronzhin, A.L.: Obzor metodov i algoritmov agregacii roja robotov. Mehatronika, avtomatizacija, upravlenie 18(1), 22–29 (2017)

    Article  Google Scholar 

  25. Devochkin, O.V., et al.: Jelektricheskie apparaty: ucheb. posobie dlja stud. uchrezhdenij sred. prof. obrazovanija. Electrical apparatus: training. Allowance for stud. Establishments of environments. Prof. of education, Moskva (2010)

    Google Scholar 

  26. Lomonosov, V., Polivanov, K.M., Mihajlov, O.P.: Jelektrotehnika. Jenergoatomizdat, Moskva (1990)

    Google Scholar 

  27. Flynn, C.J.: Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same. US Patent No: US 6,246,561 B1 (2001)

    Google Scholar 

  28. Flynn, J.C., et al.: Path Magnetic Technology for High Efficiency Power Generators and Motor Drives (2006). https://doi.org/10.1063/1.2169303

  29. Kodyakov, A.S., et al.: Stability study of anthropomorphic robot antares under external load action. IOP Conf. Ser. J. Phys. Conf. Ser. 803, 012074 (2017). https://doi.org/10.1088/1742-6596/803/1/012074

    Article  Google Scholar 

Download references

Acknowledgement

The research was carried out with the support of the Russian Foundation for Basic Research (No. 16-29-04101 ofi_m; â„– 16-37-60085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Pavliuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavliuk, N., Krestovnikov, K., Pykhov, D., Budkov, V. (2018). Design and Operation Principles of the Magnetomechanical Connector of the Module of the Mobile Autonomous Reconfigurable System. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics