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Abstract

A numerical irreducible decomposition for a polynomial system pro-

vides representations for the irreducible factors of all positive dimensional

solution sets of the system, separated from its isolated solutions. Homo-

topy continuation methods are applied to compute a numerical irreducible

decomposition. Load balancing and pipelining are techniques in a parallel

implementation on a computer with multicore processors. The applica-

tion of the parallel algorithms is illustrated on solving the cyclic n-roots

problems, in particular for n = 8, 9, and 12.

Keywords and phrases. Homotopy continuation, numerical irreducible

decomposition, mathematical software, multitasking, pipelining, polyhe-

dral homotopies, polynomial system, shared memory parallel computing.

1 Introduction

Almost all computers have multicore processors enabling the simultaneous exe-
cution of instructions in an algorithm. The algorithms considered in this paper
are applied to solve a polynomial system. Parallel algorithms can often deliver
significant speedups on computers with multicore processors.

A blackbox solver implies a fixed selection of algorithms, run with default
settings of options and tolerances. The selected methods are homotopy continu-
ation methods to compute a numerical irreducible decomposition of the solution
set of a polynomial system. As the solution paths defined by a polynomial homo-
topy can be tracked independently from each other, there is no communication
and no synchronization overhead. Therefore, one may hope that with p threads,
the speedup will be close to p.

∗This material is based upon work supported by the National Science Foundation under

Grant No. 1440534.

1

http://arxiv.org/abs/1804.03807v2
http://www.math.uic.edu/~jan


The number of paths that needs to be tracked to compute a numerical ir-
reducible decomposition can be a multiple of the number of paths defined by a
homotopy to approximate all isolated solutions. Nevertheless, in order to prop-
erly distinguish the isolated singular solutions (which occur with multiplicity
two or higher) from the solutions on positive dimensional solutions, one needs
a representation for the positive dimensional solution sets.

On parallel shared memory computers, the work crew model is applied. In
this model, threads are collaborating to complete a queue of jobs. The pointer
to the next job in the queue is guarded by a semaphore so only one thread can
access the next job and move the pointer to the next job forwards. The design
of multithreaded software is described in [17].

The development of the blackbox solver was targeted at the cyclic n-roots
systems. Backelin’s Lemma [2] states that, if n has a quadratic divisor, then
there are infinitely many cyclic n-roots. Interesting values for n are thus 8, 9,
and 12, respectively considered in [4], [7], and [16].
Problem Statement. The top down computation of a numerical irreducible
decomposition requires first the solving of a system augmented with as many
general linear equations as the expected top dimension of the solution set. This
first stage is then followed by a cascade of homotopies to compute candidate
generic points on lower dimensional solution sets. In the third stage, the output
of the cascades is filtered and generic points are classified along their irreducible
components. In the application of the work crew model with p threads, the
problem is to study if the speedup will converge to p, asymptotically for suffi-
ciently large problems. Another interesting question concerns quality up: if we
can afford the same computational time as on one thread, then by how much
can we improve the quality of the computed results with p threads?
Prior Work. The software used in this paper is PHCpack [20], which provides
a numerical irreducible decomposition [18]. For the mixed volume computation,
MixedVol [8] and DEMiCs [14] are used. An introduction to the homotopy
continuation methods for computing positive dimensional solution sets is de-
scribed in [19]. The overhead of double double and quad double precision [9] in
path trackers can be compensated on multicore workstations by parallel algo-
rithms [21]. The factorization of a pure dimensional solution set on a distributed
memory computer with message passing was described in [10].
Related Work. A numerical irreducible decomposition can be computed by a
program described in [3], but that program lacks polyhedral homotopies, needed
to efficiently solve sparse polynomial systems such as the cyclic n-roots prob-
lems. Parallel algorithms for mixed volumes and polyhedral homotopies were
presented in [5, 6]. The computation of the positive dimensional solutions for
the cyclic 12-roots problem was reported first in [16]. A recent parallel imple-
mentation of polyhedral homotopies was announced in [13].
Contributions and Organization. The next section proposes the applica-
tion of pipelining to interleave the computation of mixed cells with the tracking
of solution paths to solve a random coefficient system. The production rate
of mixed cells relative to the cost of path tracking is related to the pipeline
latency. The third section describes the second stage in the solver and exam-
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ines the speedup for tracking paths defined by sequences of homotopies. In
section four, the speedup of the application of the homotopy membership test
is defined. One outcome of this research is free and open software to compute
a numerical irreducible decomposition on parallel shared memory computers.
Computational experiments with the software are presented in section five.

2 Solving the Top Dimensional System

There is only one input to the blackbox solver: the expected top dimension of
the solution set. This input may be replaced by the number of variables minus
one. However, entering an expected top dimension that is too high may lead to
a significant computational overhead.

2.1 Random Hyperplanes and Slack Variables

A system is called square if it has as many equations as unknowns. A system is
underdetermined if it has fewer equations than unknowns. An underdetermined
system can be turned into square system by adding as many linear equations
with randomly generated complex coefficients as the difference between the num-
ber of unknowns and equations. A system is overdetermined if there are more
equations than unknowns. To turn an overdetermined system into a square
one, add repeatedly to every equation in the overdetermined system a random
complex constant multiplied by a new slack variable, repeatedly until the total
number of variables equals the number of equations.

The top dimensional system is the given polynomial system, augmented with
as many linear equations with randomly generated complex coefficients as the
expected top dimension. To the augmented system as many slack variables
are added as the expected top dimension. The result of adding random linear
equations and slack variables is called an embedded system. Solutions of the
embedded system with zero slack variables are generic points on the top di-
mensional solution set. Solutions of the embedded system with nonzero slack
variables are start solutions in cascades of homotopies to compute generic points
on lower dimensional solution sets.

Example 2.1. (embedding a system) The equations for the cyclic 4-roots prob-
lem are

f(x) =















x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0.

(1)

The expected top dimension equals one. The system is augmented by one linear
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equation and one slack variable z1. The embedded system is then the following:

E1(f(x), z1) =























x1 + x2 + x3 + x4 + γ1z1 = 0
x1x2 + x2x3 + x3x4 + x4x1 + γ2z1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 + γ3z1 = 0
x1x2x3x4 − 1 + γ4z1 = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 + z1 = 0.

(2)

The constants γ1, γ2, γ3, γ4 and c0, c1, c2, c3, c4 are randomly generated complex
numbers.

The system E1(f(x), z1) = 0 has 20 solutions. Four of those 20 solutions
have a zero value for the slack variable z1. Those four solutions satisfy thus the
system

E1(f(x), 0) =























x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 = 0.

(3)

By the random choice of the constants c0, c1, c2, c3, and c4, the four solutions
are generic points on the one dimensional solution set. Four equals the degree
of the one dimensional solution set of the cyclic 4-roots problem.

For systems with sufficiently general coefficients, polyhedral homotopies are
generically optimal in the sense that no solution path diverges. Therefore, the
default choice to solve the top dimensional system is the computation of a mixed
cell configuration and the solving of a random coefficient start system. Tracking
the paths to solve the random coefficient start system is a pleasingly parallel
computation, which with dynamic load balancing will lead to a close to optimal
speedup.

2.2 Pipelined Polyhedral Homotopies

The computation of all mixed cells is harder to run in parallel, but fortunately
the mixed volume computation takes in general less time than the tracking of
all solution paths and, more importantly, the mixed cells are not obtained all at
once at the end, but are produced in sequence, one after the other. As soon as
a cell is available, the tracking of as many solution paths as the volume of the
cell can start. Figure 1 illustrates a 2-stage pipeline with p threads.

Figure 2 illustrates the application of pipelining to the solving of a random
coefficient system where the subdivision of the Newton polytopes has six cells.
The six cells are computed by the first thread. The other three threads take
the cells and run polyhedral homotopies to compute as many solutions as the
volume of the corresponding cell.

Counting the horizontal span of time units in Figure 2, the total time equals
9 units. In the corresponding sequential process, it takes 24 time units. This
particular pipeline with 4 threads gives a speedup of 24/9 ≈ 2.67.
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P0
✲

Pp−1

...

P2

P1

✲g(x) = 0 ✲ g−1(0)

Figure 1: A 2-stage pipeline with thread P0 in the first stage to compute the
cells to solve the start systems with paths to be tracked in the second stage by
p−1 threads P1, P2, . . ., Pp−1. The input to the pipeline is a random coefficient
system g(x) = 0 and the output are its solutions in the set g−1(0).

✻
p

✲ t
C1 C2

S1

C3

S1

S2

C4

S1

S2

S3

C5

S4

S2

S3

C6

S4

S5

S3

S4

S5

S6

S5

S6 S6

Figure 2: A space time diagram for a 2-stage pipeline with one thread to produce
6 cells C1, C2, . . ., C6 and 3 threads to solve the corresponding 6 start systems
S1, S2, . . ., S6. For regularity, it is assumed that solving one start system takes
three times as many time units as it takes to produce one cell.

2.3 Speedup

As in Figure 1, consider a scenario with p threads:

• the first thread produces n cells; and

• the other p− 1 threads track all paths corresponding to the cells.

Assume that tracking all paths for one cell costs F times the amount of time
it takes to produce that one cell. In this scenario, the sequential time T1, the
parallel time Tp, and the speedup Sp are defined by the following formulas:

T1 = n+ Fn, Tp = p− 1 +
Fn

p− 1
, Sp =

T1

Tp

=
n(1 + F )

p− 1 + Fn
p−1

. (4)

The term p − 1 in Tp is the pipeline latency, the time it takes to fill up the
pipeline with jobs. After this latency, the pipeline works at full speed.

The formula for the speedup Sp in (4) is rather too complicated for direct
interpretation. Let us consider a special case. For large problems, the number
n of cells is larger than the number p of threads, n ≫ p. For a fixed number p
of threads, let n approach infinity. Then an optimal speedup is achieved, if the
pipeline latency p− 1 equals the multiplier factor F in the tracking of all paths
relative to the time to produce one cell. This observation is formalized in the
following theorem.

5



Theorem 2.2. If F = p− 1, then Sp = p for n → ∞.

Proof. For F = p− 1, T1 = np and Tp = n+ p− 1. Then, letting n → ∞,

lim
n→∞

Sp = lim
n→∞

T1

Tp

= lim
n→∞

np

n+ p− 1
= p. (5)

In case the multiplier factor is larger than the pipeline latency, if F > p− 1,
then the first thread will finish sooner with its production of cells and remains
idle for some time. If p ≫ 1, then having one thread out of many idle is not
bad. The other case, if tracking all paths for one cell is smaller than the pipeline
latency, if F < p − 1, is worse as many threads will be idle waiting for cells to
process.

The above analysis applies to pipelined polyhedral homotopies to solve a
random coefficient system. Consider the solving of the top dimensional system.

Corollary 2.3. Let F be the multiplier factor in the cost of tracking the paths to
solve the start system, relative to the cost of computing the cells. If the pipeline
latency equals F , then the speedup to solve the top dimensional system with p
threads will asymptotically converge to p, as the number of cells goes to infinity.

Proof. Solving the top dimensional system consists in two stages. The first
stage, solving a random coefficient system, is covered by Theorem 2.2. In the
second stage, the solutions of the random coefficient system are the start so-
lutions in a homotopy to solve the top dimensional system. This second stage
is a pleasingly parallel computation as the paths can be tracked independently
from each and for which the speedup is close to optimal for sufficiently large
problems.

3 Computing Lower Dimensional Solution Sets

The solution of the top dimensional system is an important first stage, which
leads to the top dimensional solution set, provided the given dimension on input
equals the top dimension. This section describes the second stage in a numerical
irreducible decomposition: the computation of candidate generic points on the
lower dimensional solution sets.

3.1 Cascades of Homotopies

The solutions of an embedded system with nonzero slack variables are regular
solutions and serve as start solutions to compute sufficiently many generic points
on the lower dimensional solution sets. The sufficiently many in the sentence
above means that there will be at least as many generic points as the degrees
of the lower dimensional solution sets.
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Example 3.1. (a system with a 3-stage cascade of homotopies) Consider the
following system:

f(x) =















(x1 − 1)(x1 − 2)(x1 − 3)(x1 − 4) = 0
(x1 − 1)(x2 − 1)(x2 − 2)(x2 − 3) = 0
(x1 − 1)(x1 − 2)(x3 − 1)(x3 − 2) = 0
(x1 − 1)(x2 − 1)(x3 − 1)(x4 − 1) = 0.

(6)

In its factored form, the numerical irreducible decomposition is apparent. First,
there is the three dimensional solution set defined by x1 = 1. Second, for
x1 = 2, observe that x2 = 1 defines a two dimensional solution set and four
lines: (2, 2, x3, 1), (2, 2, 1, x4), (2, 3, 1, x4), and (2, 3, x3, 1). Third, for x1 =
3, there are four lines: (3, 1, 1, x4), (3, 1, 2, x4), (3, 2, 1, x4), (3, 3, 1, x4), and
two isolated points (3, 2, 2, 1) and (3, 3, 2, 1). Fourth, for x1 = 4, there are
four lines: (4, 1, 1, x4), (4, 1, 2, x4), (4, 2, 1, x4), (4, 3, 1, x4), and two additional
isolated solutions (4, 3, 2, 1) and (4, 2, 2, 1).

Sorted then by dimension, there is one three dimensional solution set, one
two dimensional solution set, twelve lines, and four isolated solutions.

The top dimensional system has three random linear equations and three
slack variables z1, z2, and z3. The mixed volume of the top dimensional system
equals 61 and this is the number of paths tracked in its solution. Of those
61 paths, 6 diverge to infinity and the cascade of homotopies starts with 55
paths. The number of paths tracked in the cascade is summarized at the right
in Figure 3.

55
✄

✂

�

✁
55

❄

✲ 6 at ∞
1 z3 = 0 ✲ 1
54 z3 6= 0

❄
54

✄

✂

�

✁
54

❄

✲ 2 at ∞
2 z2 = 0 ✲ 2
50 z2 6= 0

❄
50

✄

✂

�

✁
54

❄

✲ 6 at ∞
18 z1 = 0 ✲ 18
26 z1 6= 0

❄
26

✄

✂

�

✁
26✲ 18 at ∞

8 finite ✲ 8

Figure 3: At the left are the numbers of paths tracked in each stage of the
computation of a numerical irreducible decomposition of f(x) = 0 in (6). The
numbers at the right are the candidate generic points on each positive dimen-
sional solution set, or in case of the rightmost 8 at the bottom, the number of
candidate isolated solutions. Shown at the farthest right is the summary of the
number of paths tracked in each stage of the cascade.
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The number of solutions with nonzero slack variables remains constant in
each run, because those solutions are regular. Except for the top dimensional
system, the number of solutions with slack variables equal to zero fluctuates,
each time different random constants are generated in the embedding, because
such solutions are highly singular.

The right of Figure 3 shows the order of computation of the path tracking
jobs, in four stages, for each dimension of the solution set. The obvious parallel
implementation is to have p threads collaborate to track all paths in that stage.

3.2 Speedup

The following analysis assumes that every path has the same difficulty and
requires the same amount of time to track.

Theorem 3.2. Let Tp be the time it takes to track n paths with p threads. Then,
the optimal speedup Sp is

Sp = p−
p− r

Tp

, r = n mod p. (7)

If n < p, then Sp = n.

Proof. Assume it takes one time unit to track one path. The time on one thread
is then T1 = n = qp+ r, q = ⌊n/p⌋ and r = n mod p. As r < p, the tracking of
r paths with p threads takes one time unit, so Tp = q + 1. Then the speedup is

Sp =
T1

Tp

=
qp+ r

q + 1
=

qp+ p− p+ r

q + 1
=

qp+ p

q + 1
−

p− r

q + 1
= p−

p− r

Tp

. (8)

If n < p, then q = 0 and r = n, which leads to Sp = n.

In the limit, as n → ∞, also Tp → ∞, then (p − r)/Tp → 0 and so Sp → p.
For a cascade with D + 1 stages, Theorem 3.2 can be generalized as follows.

Corollary 3.3. Let Tp be the time it takes to track with p threads a sequence
of n0, n1, . . ., nD paths. Then, the optimal speedup Sp is

Sp = p−
dp− r0 − r1 − · · · − rD

Tp

, rk = nk mod p, k = 0, 1, . . .D. (9)

Proof. Assume it takes one time unit to track one path. The time on one thread
is then

T1 = n0 + n1 + · · ·+ nD = q0p+ r0 + q1p+ r1 + · · ·+ qDp+ rD, (10)

where qk = ⌊nk/p⌋ and rk = nk mod p, for k = 0, 1, . . . , D. As rk < p, the
tracking of rk paths with p threads takes D + 1 time units, so the time on p
threads is

Tp = q0 + q1 + · · ·+ qD +D + 1. (11)
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Then the speedup is

Sp =
T1

Tp

=
pTp − dp+ r0 + r1 + · · ·+ rD

Tp

(12)

= p−
dp− r0 − r1 − · · · − rD

Tp

. (13)

If the length D+1 of the sequence of paths is long and the number of paths
in each stage is less than p, then the speedup will be limited.

4 Filtering Lower Dimensional Solution Sets

Even if one is interested only in the isolated solutions of a polynomial system,
one would need to be able to distinguish the isolated multiple solutions from so-
lutions on a positive dimensional solution set. Without additional information,
both an isolated multiple solution and a solution on a positive dimensional set
appear numerically as singular solutions, that is: as solutions where the Jaco-
bian matrix does not have full rank. A homotopy membership test makes this
distinction.

4.1 Homotopy Membership Tests

Example 4.1. (homotopy membership test) Consider the following system:

f(x) =

{

(x1 − 1)(x1 − 2) = 0
(x1 − 1)x2

2 = 0.
(14)

The solution consists of the line x1 = 1 and the isolated point (2, 0) which occurs
with multiplicity two. The line x1 = 1 is represented by one generic point as
the solution of the embedded system

E(f(x), z1) =







(x1 − 1)(x1 − 2) + γ1z1 = 0
(x1 − 1)x2

2 + γ2z1 = 0
c0 + c1x1 + c2x2 + z1 = 0,

(15)

where the constants γ1, γ2, c0, c1, and c2 are randomly generated complex
numbers. Replacing the constant c0 by c3 = −2c1 makes that the point (2, 0, 0)
satisfies the system E(f(x), z1) = 0. Consider the homotopy

h(x, z1, t) =







(x1 − 1)(x1 − 2) + γ1z1 = 0
(x1 − 1)x2

2 + γ2z1 = 0
(1− t)c0 + tc3 + c1x1 + c2x2 + z1 = 0.

(16)

For t = 0, there is the generic point on the line x1 = 1 as a solution of the
system (15). Tracking one path starting at the generic point to t = 1 moves the
generic point to another generic point on x1 = 1. If that other generic point at
t = 1 coincides with the point (2, 0, 0), then the point (2, 0) belongs to the line.
Otherwise, as is the case in this example, it does not.
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In running the homotopy membership test, a number of paths need to be
tracked. To identify the bottlenecks in a parallel version, consider the output
of Figure 3 in the continuation of the example on the system in 6.

Example 4.2. (Example 3.1 continued) Assume the spurious points on the
higher dimensional solution sets have already been removed so there is one
generic point on the three dimensional solution set, one generic point on the
two dimensional solution set, and twelve generic points on the one dimensional
solution set.

At the end of the cascade, there are eight candidate isolated solutions. Four
of those eight are regular solutions and are thus isolated. The other four so-
lutions are singular. Singular solutions may be isolated multiple solutions, but
could also belong to the higher dimensional solution sets. Consider Figure 4.

8 candidate isolated solutions
✘✘✘✘✾

4 regular

❄
4 regular isolated solutions

❳❳❳❳③
4 singular

❄
on 3D? track 4 paths

3 on three dimensional set
1 singular

❄
on 2D? track 1 path

0 on two dimensional set
1 singular

❄
on 1D? track 12 paths

1 on one dimensional set
0 singular

❄
no isolated singular solutions

Figure 4: Stages in testing whether the singular candidate isolated points belong
to the higher dimensional solution sets.

Executing the homotopy membership tests as in in Figure 4, first on 3D, then
on 2D, and finally on 1D, the bottleneck occurs in the middle, where there is
only one path to track.

Figure 5 is the continuation of Figure 3: the output of the cascade shown
in Figure 3 is the input of the filtering in Figure 5. Figure 4 explains the last
stage in Figure 5.

4.2 Speedup

The analysis of the speedup is another consequence of Theorem 3.2.
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❄

✲ 1 ✄

✂

�

✁
1

❄
✲ 2 ✲ 1

✄

✂

�

✁
6 ✲

✄

✂

�

✁
3

❄
✲ 18 ✲ 15 ✲ 12

✄

✂

�

✁
4 ✲

✄

✂

�

✁
1 ✲

✄

✂

�

✁
12✲ 8 ✲ 5 ✲ 5 ✲ 4

Figure 5: On input are the candidate generic points shown as output in Figure 3:
1 point at dimension three, 2 points at dimension two, 18 points at dimension
one, and 8 candidate isolated points. Points on higher dimensional solution sets
are removed by homotopy membership filters. The numbers at the right equal
the number of paths in each stage of the filters. The sequence 4, 1, 12 at the
bottom is explained in Figure 4.

Corollary 4.3. Let Tp be the time it takes to filter nD, nD−1, . . ., nℓ+1 singular
points on components respectively of dimensions D, D−1, . . ., ℓ+1 and degrees
dD, dD−1, . . ., dℓ+1. Then, the optimal speedup is

Sp = p−
(D − ℓ)p− rD − rD−1 − · · · − rℓ+1

Tp

, rk = (nkdk) mod p, (17)

for k = ℓ+ 1, . . . , D − 1, D.

Proof. For a component of degree dk, it takes nkdk paths to filter nk singular
points. The statement in (17) follows from replacing nk by nkdk in the statement
in (9) of Corollary 3.3.

Although the example shown in Figure 5 is too small for parallel compu-
tation, it illustrates the law of diminishing returns in introducing parallelisms.
There are two reasons for a reduced parallelism:

1. The number of singular solutions and the degrees of the solution sets could
be smaller than the number of available cores.

2. In a cascade of homotopies, there are as many steps as D+ 1, where D is
the expected top dimension. To filter the output of the cascade, there are
D(D + 1)/2 stages, so longer sequences of homotopies are considered.

Singular solutions that do not lie on any higher positive dimensional solu-
tion set need to be processed further by deflation [11, 12], not available yet
in a multithreaded implementation. Parallel algorithms to factor the positive
dimensional solutions into irreducible factors are described in [10].
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5 Computational Experiments

The software was developed on a Mac OS X laptop and Linux workstations. The
executable for Windows also supports multithreading. All times reported below
are on a CentOS Linux 7 computer with two Intel Xeon E5-2699v4 Broadwell-
EP 2.20 GHz processors, which each have 22 cores, 256 KB L2 cache and 55
MB L3 cache. The memory is 256 MB, in 8 banks of 32 MB at 2400 MHz. As
the processors support hyperthreading, speedups of more than 44 are possible.

On Linux, the executable phc is compiled with the GNAT GPL 2016 edition
of the gnu-ada compiler. The thread model is posix, in gcc version 4.9.4. The
code in PHCpack contains an Ada translation of the MixedVol Algorithm [8],
The source code for the software is at github, licensed under GNU GPL version
3. The blackbox solver for a numerical irreducible decomposition is called as
phc -B and with p threads: as phc -B -tp. With phc -B2 and phc -B4, com-
putations happen respectively in double double and quad double arithmetic [9].

5.1 Solving Cyclic 8 and Cyclic 9-Roots

Both cyclic 8 and cyclic 9-roots are relatively small problems, relative com-
pared to the cyclic 12-roots problem. Table 1 summarizes wall clock times and
speedups for runs on the cyclic 8 and 9-roots systems. The wall clock time is
the real time, elapsed since the start and the end of each run. This includes
the CPU time, system time, and is also influenced by other jobs the operating
system is running.

cyclic 8-roots cyclic 9-roots
p seconds speedup seconds speedup

1 181.765 1.00 2598.435 1.00
2 167.871 1.08 1779.939 1.46
4 89.713 2.03 901.424 2.88
8 47.644 3.82 427.800 6.07

16 32.215 5.65 267.838 9.70
32 22.182 8.19 153.353 16.94
64 20.103 9.04 150.734 17.24

Table 1: Wall clock times in seconds with phc -B -tp for p threads.

With 64 threads the time for cyclic 8-roots reduces from 3 minutes to 20
seconds and for cyclic 9-roots from 43 minutes to 2 minutes and 30 seconds.
Table 2 summarizes the wall clock times with 64 threads in higher precision.

5.2 Solving Cyclic 12-Roots on One Thread

The classical Bézout bound for the system is 479,001,600. This is lowered to
342,875,319 with the application of a linear-product start system. In contrast,
the mixed volume of the embedded cyclic 12-roots system equals 983,952.
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cyclic 8-roots cyclic 9-roots
seconds = hms format seconds = hms format

dd 53.042 = 53s 498.805 = 8m19s
qd 916.020 = 15m16s 4761.258 = 1h19m21s

Table 2: Wall clock times with 64 threads in double double and quad double
precision.

The wall clock time on the blackbox solver on one thread is about 95 hours
(almost 4 days). This run includes the computation of the linear-product bound
which takes about 3 hours. This computation is excluded in the parallel version
because the multithreaded version overlaps the mixed volume computation with
polyhedral homotopies. While a speedup of about 30 is not optimal, the time
reduces from 4 days to less than 3 hours with 64 threads, see Table 3.

The blackbox solver does not exploit symmetry, see [1] for such exploitation.

5.3 Pipelined Polyhedral Homotopies

This section concerns the computation of a random coefficient start system
used in a homotopy to solve the top dimensional system, to start the cascade
homotopies for the cyclic 12-roots system. Table 3 summarizes the wall clock
times to solve a random coefficient start system to solve the top dimensional
system.

p seconds hms format speedup total seconds hms format percentage

2 62812.764 17h26m52s 1.00 157517.816 43h45m18s 39.88%

4 21181.058 5h53m01s 2.97 73088.635 20h18m09s 28.98%

8 8932.512 2h28m53s 7.03 38384.005 10h39m44s 23.27%

16 4656.478 1h17m36s 13.49 19657.329 5h27m37s 23.69%

32 4200.362 1h10m01s 14.95 12154.088 3h22m34s 34.56%

64 4422.220 1h13m42s 14.20 9808.424 2h43m28s 45.08%

Table 3: Times of the pipelined polyhedral homotopies versus the total time in
the solver phc -B -tp, for increasing values 2, 4, 8, 16, 32, 64 of the tasks p.

For pipelining, we need at least 2 tasks: one to produce the mixed cells and
another to track the paths. The speedup of p tasks is computed over 2 tasks.
With 16 threads, the time to solve a random coefficient system is reduced from
17.43 hours to 1.17 hour. The second part of Table 3 lists the time of solving the
random coefficient system relative to the total time of the solver. For 2 threads,
solving the random coefficient system takes almost 40% of the total time and
then decreases to less than 24% of the total time with 16 threads. Already for
16 threads, the speedup of 13.49 indicates that the production of mixed cells
cannot keep up with the pace of tracking the paths.
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Dynamic enumeration [15] applies a greedy algorithm to compute all mixed
cells and its implementation in DEMiCs [14] produces the mixed cells at a faster
pace than MixedVol [8]. Table 4 shows times for the mixed volume computation
with DEMiCs [14] in a pipelined version of the polyhedral homotopies.

p seconds = hms format speedup

2 56614 = 15h43m34s 1.00
4 21224 = 5h53m44s 2.67
8 9182 = 2h23m44s 6.17

16 4627 = 1h17m07s 12.24
32 2171 = 36m11s 26.08
64 1989 = 33m09s 28.46

Table 4: Times of the pipelined polyhedral homotopies with DEMiCs, for in-
creasing values 2, 4, 8, 16, 32, 64 of tasks p. The last time is an average over 13
runs. With 64 threads the times ranged between 23 minutes and 47 minutes.

5.4 Solving the Cyclic 12-Roots System in Parallel

As already shown in Table 3, the total time with 2 threads goes down from more
than 43 hours to less than 3 hours, with 64 threads. Table 5 provides a detailed
breakup of the wall clock times for each stage in the solver.

solving top system cascade and filter grand

p start contin total cascade filter total total speedup

2 62813 47667 110803 44383 2331 46714 157518 1.00

4 21181 25105 46617 24913 1558 26471 73089 2.16

8 8933 14632 23896 13542 946 14488 38384 4.10

16 4656 7178 12129 6853 676 7529 19657 8.01

32 4200 3663 8094 3415 645 4060 12154 12.96

64 4422 2240 7003 2228 557 2805 9808 16.06

Table 5: Wall clock times in seconds for all stages of the solver on cyclic 12-
roots. The solving of the top dimension system breaks up in two stages: the
solving of a start system (start) and the continuation to the solutions of the the
top dimensional system (contin). Speedups are good in the cascade stage, but
the filter stage contains also the factorization in irreducible components, which
does not run in parallel.

A run in double double precision with 64 threads ends after 7 hours and 37
minutes. This time lies between the times in double precision with 8 threads, 10
hours and 39 minutes, and with 16 threads, 5 hours and 27 minutes (Table 3).
Confusing quality with precision, from 8 to 64 threads, the working precision
can be doubled with a reduction in time by 3 hours, from 10.5 hours to 7.5
hours.
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