
This item is the archived peer-reviewed author-version of:

From exponential analysis to Padé approximation and Tensor decomposition, in one and more dimensions

Reference:
Cuyt Annie A.M., Knaepkens Ferre, Lee Wen-Shin.- From exponential analysis to Padé approximation and Tensor decomposition, in one and more dimensions
Lecture notes in computer science - ISBN 978-3-319-99638-7 - Cham, Springer, (2018), p. 116-130 
Full text (Publisher's DOI): https://doi.org/10.1007/978-3-319-99639-4_8

Institutional repository IRUA

http://anet.uantwerpen.be/irua


From exponential analysis to Padé
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Abstract. Exponential analysis in signal processing is essentially what
is known as sparse interpolation in computer algebra. We show how
exponential analysis from regularly spaced samples is reformulated as
Padé approximation from approximation theory and tensor decomposi-
tion from multilinear algebra.
The univariate situation is briefly recalled and discussed in Section 1. The
new connections from approximation theory and tensor decomposition
to the multivariate generalization are the subject of Section 2. These
connections immediately allow for some generalization of the sampling
scheme, not covered by the current multivariate theory.
An interesting computational illustration of the above in blind source
separation is presented in Section 3.

Keywords: Exponential analysis, parametric method, multivariate, Padé
approximation, tensor decomposition.

1 The univariate connections

Let us first introduce the problem statement of exponential analysis, which is
known in the computer algebra community as sparse interpolation [4, 10]. Af-
terwards we rewrite it as a rational approximation problem and as a tensor
decomposition problem. In this section we restrict ourselves to the univariate
case.

Let the signal f(t) be given by

f(t) =

n∑
j=1

αj exp(φjt), αj , φj ∈ C, (1)

where the objective is to recover the values of the coefficients αj , j = 1, . . . , n
and the mutually distinct exponents φj , j = 1, . . . , n. Already in 1795 de Prony
[14] proved that the problem can be solved from 2n equidistant samples if the
sparsity n is known, as we assume in the sequel.
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In the following we choose a real ∆ 6= 0 such that |=(φj)| < π/|∆|, in order
to comply with [12, 17], where =(·) denotes the imaginary part of a complex
number. The value ∆ denotes the sampling step in the equidistant sampling
scheme

fk := f(k∆) =

n∑
j=1

αj exp(φjk∆) =

n∑
j=1

αjΦ
k
j , Φj = exp(φj∆). (2)

With the samples fk, k = 0, . . . , 2n− 1 we fill the Hankel matrices

H(m)
n := (fm+i+j−2)

n
i,j=1 =


fm fm+1 . . . fm+n−1
fm+1 fm+2 . . . fm+n

...
...

. . .
...

fm+n−1 fm+n . . . fm+2n−2

 , m ≥ 0.

From the expression (2) for the samples fk we immediately find that H
(m)
n can

be factored as

H(m)
n = VnDαD

m
Φ V

T
n ,

where Vn is the Vandermonde matrix

Vn =
(
Φi−1j

)n
i,j=1

and Dα and DΦ are diagonal matrices respectively filled with the vectors (α1,
. . . , αn) and (Φ1, . . . , Φn) on the diagonal. So the Φj , j = 1, . . . , n can be found
as the generalized eigenvalues λj , j = 1, . . . , n of the problem [11]

H(1)
n vj = λjH

(0)
n vj , (3)

where the vj , j = 1, . . . , n are the right generalized eigenvectors. From the gen-
eralized eigenvalues Φj = exp(φj∆) the complex values φj can be extracted
uniquely because |=(φj)∆| < π. After recovering the Φj , the αj can be com-
puted from the Vandermonde structured linear system

n∑
j=1

αjΦ
k
j = fk, k = 0, . . . , 2n− 1. (4)

In a noisefree mathematical context, n equations of (4) are linearly dependent
because of the relationship (3) between the Φj . How to proceed in a noisy con-
text is analyzed in great detail and including several variations in a forthcoming
paper and is outside the scope of the current presentation, where we focus on the
mathematical interrelationship between seemingly disconnected problem state-
ments.
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1.1 From exponential analysis to Padé approximation in 1-D

Instead of filling Hankel matrices with the samples fk, we construct a formal
power series expansion

F (z) =
∑
k

fkz
k.

The Padé approximant [m/n]F for F (z) of degree m in the numerator and n
in the denominator is defined as the irreducible form of the rational function
pm,n(z)/qm,n(z), with

pm,n(z) :=

m∑
j=0

ajz
j ,

qm,n(z) :=

n∑
j=0

bjz
j ,

that satisfies
F (z)qm,n(z)− pm,n(z) =

∑
k≥m+n+1

ckz
k.

The computation of Padé approximants is closely connected to the solution of
Toeplitz structured linear systems. The [m/n]F is computed from putting to
zero the terms of degree 0 to m+ n in (Fqm,n − pm,n)(z):

n∑
j=0

fk−jbj = ak, k = 0, . . . ,m,

where fk = 0 if k < 0, and

n∑
j=0

fm+k−jbj = 0, k = 1, . . . , n.

Again using the expression (2) for the fk and under the assumption that the
Φj are mutually distinct, it is not difficult to see that [2]

F (z) =
∑
k

fkz
k

=
∑
k

 n∑
j=1

αjΦ
k
j

 zk

=

n∑
j=1

αj

(∑
k

Φkj z
k

)

=

n∑
j=1

αj
1− Φjz

.
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So the function F (z) is itself a rational function of degree n− 1 in the numera-
tor and n in the denominator. The consistency property of Padé approximants
guarantees that a rational function like F (z) is reconstructed from its formal
series expansion by its [n− 1/n]F Padé approximant, thereby needing only the
series coefficients f0, . . . , f2n−1. So we can also obtain the Φj from the Padé
denominator

n∏
j=1

(1− Φjz) (5)

and the αj from the partial fraction decomposition of the approximant [n−1/n]F ,
through

Pn−1,n(z) =

n∑
j=1

αjLj(z), Lj(z) =

n∑
i=1
i 6=j

(1− Φiz).

The poles 1/Φj of F (z) can even directly be computed from the fk, in the order
of increasing magnitude, using the qd-algorithm [1].

1.2 From exponential analysis to tensor decomposition in 1-D

With the samples fk we can also fill an order N tensor T ∈ Cn1×···×nN where

2 ≤ nj ≤ n, 1 ≤ j ≤ N, 3 ≤ N ≤ 2n− 1,

N∑
j=1

nj = 2n+N − 1

and
Tk1,...,kN := fk1+···+kN−N , 1 ≤ kj ≤ nj . (6)

The tensor of smallest order N = 3 is for instance of size n× n× 2 [13] and the
one of largest order N = 2n− 1 is symmetric and of size 2× · · · × 2 [6]. For the
sequel we generalize the definition of the square Hankel matrix above to cover
rectangular Hankel structured matrices

H(m)
n1,n2

=


fm fm+1 . . . fm+n2−1
fm+1 fm+2 . . . fm+n2

...
...

. . .
...

fm+n1−1 fm+n1
. . . fm+n1+n2−2

 .
The tensor slices T·,·,k3,...,kN equal

T·,·,k3,...,kN = H(k3+···+kN−N+2)
n1,n2

and so are Hankel structured. The tensor T decomposes as

T =

n∑
j=1

αj


1
Φj
...

Φn1−1
j

 ◦ · · · ◦


1
Φj
...

ΦnN−1
j

 , (7)
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where still the Φj = exp(φj∆) are mutually distinct and ◦ denotes the outer
product. The decomposition (7) is easily verified by checking the element at
position (k1, . . . , kN ) in (7):

Tk1,...,kN =

n∑
j=1

αjΦ
k1−1
j · · ·ΦkN−1j

=

n∑
j=1

αjΦ
k1+···+kN−N
j

= fk1+···+kN−N .

The factor matrices are the rectangular Vandermonde structured matrices

Vnk,n =
(
Φi−1j

)nk,n

i=1,j=1
, 1 ≤ k ≤ N.

Because of the Vandermonde structure of the factor matrices with nk ≤ n, k =
1, . . . , N , their Kruskal rank equals nk for all k. Since n1 + · · ·+nN = 2n+N−1
we find that the sum of the Kruskal ranks of the N factor matrices of the rank
n tensor T is bounded below by 2n + N − 1. Hence the Kruskal condition is
satisfied and the unicity of the decomposition is guaranteed.

2 The multivariate connections

The result from de Prony that (1) can be solved from only 2n samples if the
sparsity n is known and that the recovery of the linear coefficients αj and the
nonlinear parameters φj can be separated, is only recently truely generalized [5]
to d-variate functions of the form

f(x1, . . . , xd) =

n∑
j=1

αj exp (φj1x1 + · · ·+ φjdxd) , αj , φj` ∈ C. (8)

In [5] is proved that the αj , j = 1, . . . , n and φj`, j = 1, . . . , n, ` = 1, . . . , d can be
recovered from (d + 1)n samples in the absence of collisions or cancellations of
terms when sampling. In the latter case the problem is still solvable but requires
some additional samples to untangle the collisions or cancellations [5]. For the
sequel we also introduce the vectors x = (x1, . . . , xd) and φj = (φj1, . . . , φjd)
where it is clear from the context whether φj refers to a complex value as in the
previous section or a vector of complex values. Using the vector notation, (8)
becomes

f(x) =

n∑
j=1

αj exp (〈φj , x〉) .

The way to achieve the generalization (8) is by falling back on a one-dimensional
projected generalized eigenvalue problem requiring 2n samples, complemented
with d−1 structured linear systems each requiring n samples along linearly inde-
pendent directions to cover the additional dimensions, and one more structured
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linear system set up from the first 2n samples to recover the linear coefficients
αj .

We introduce the real linearly independent d-dimensional vectors ∆`, ` =
1, . . . , d satisfying |=(〈φj , ∆`〉)| < π, j = 1, . . . , n, ` = 1, . . . , d. We further collect
the samples

fk := f(k∆1), 0 ≤ k ≤ 2n− 1,

fk` := f(k∆1 +∆`), 0 ≤ k ≤ n− 1, 2 ≤ ` ≤ d

and denote Φj` := exp(〈φj , ∆`〉).
We assume now that all the values Φj1 are mutually distinct so that the

Φj1, j = 1, . . . , n can be obtained as the generalized eigenvalues of a generalized
eigenvalue problem of the form (3) where the Hankel matrices are filled with
the samples fk. Subsequently the αj are the solution of the Vandermonde linear
system

n∑
j=1

αjΦ
k
j1 = fk, k = 0, . . . , 2n− 1. (9)

Of course, from 〈φj , ∆1〉 extracted from Φj1, the individual φj` cannot yet be
identified. For that purpose we need the additional (d − 1)n samples fk` which
we reinterpret for each 2 ≤ ` ≤ d as

n∑
j=1

(αjΦj`)Φ
k
j1 = fk`, k = 0, . . . , n− 1. (10)

In other words, with the samples fk` as right hand side for ` fixed and with the
first n rows of the same Vandermonde coefficient matrix as in (9), we obtain the
unknown coefficients αjΦj` and subsequently the values Φj` from

αjΦj`
αj

, j = 1, . . . , n, 2 ≤ ` ≤ d

and 〈φj , ∆`〉 from Φj`. We remark that Φj` is easily paired to its associated
generalized eigenvalue Φj1 through the structured linear systems (9) and (10), a
problem that remained unsolved in various other approaches [15, 9].

We now have extracted all the inner products 〈φj , ∆`〉, j = 1, . . . , n, ` =
1, . . . , d for linearly independent vectors ∆` and so for each 1 ≤ j ≤ n the
individual φj` can be retrieved as the solution of the following regular linear
system: ∆11 . . . ∆1d

...
...

∆d1 . . . ∆dd


φj1...
φjd

 =

〈φj , ∆1〉
...

〈φj , ∆d〉

 .
In [6] some preliminary work was done leading to a novel technique based

on the use of multivariate Padé approximation, but a proper rewrite of the
problem statement (8) in terms of Padé approximants was still lacking. We fill
this gap here by turning our attention to the concept of simultaneous Padé
approximant. We continue along the same lines with a reformulation into a
tensor decomposition problem of smaller order than in [6].
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2.1 From exponential analysis to Padé approximation in d-D

Instead of one formal power series, we now set up d formal power series, namely

F1(z) =
∑
k

fkz
k,

F`(z) =
∑
k

fk`z
k, 2 ≤ ` ≤ d.

Making use of the expressions (9) and (10) for fk and fk` respectively, we again
find that the functions

F1(z) =

n∑
j=1

αj
1− Φj1z

,

F`(z) =

n∑
j=1

αjΦj`
1− Φj1z

, 2 ≤ ` ≤ d

are rational functions, each of degree n−1 in the numerator and degree n in the
denominator. Note that for all ` = 1, . . . , d the denominator of F`(z) is the same
and reveals the generalized eigenvalues Φj1 which are assumed to be mutually
distinct.

The rational functions F`(z), 1 ≤ ` ≤ d can be recovered from the multivari-
ate samples fk, 0 ≤ k ≤ 2n−1 and fk`, 0 ≤ k ≤ n−1, 2 ≤ ` ≤ d by computing the
simultaneous Padé approximant [(n− 1, . . . , n− 1)/n](F1,...,Fd) for the vector of
functions (F1(z), . . . , Fd(z)) [3, pp. 415–417], defined more precisely as the vec-
tor of irreducible forms of the rational functions pn−1,n,`(z)/qn−1,n(z), 1 ≤ ` ≤ d
satisfying

(F`qn−1,n − pn−1,n,`) (z) =


∑
k≥2n

ckz
k, ` = 1,

∑
k≥n

ck`z
k, 2 ≤ ` ≤ d.

(11)

So the denominator polynomial qn−1,n(z) = b0 + · · · + bnz
n is computed from

the Toeplitz structured linear system

n∑
j=0

fn+k−jbj = 0, k = 0, . . . , n− 1,

arising from the accuracy-through-order conditions (11) for F1(z). We remark
that again the αj and Φj`, 2 ≤ ` ≤ d are naturally paired to the poles 1/Φj1
of each rational function pn−1,n,`(z)/qn−1,n(z), which can be computed directly
from the samples using the qd-algorithm [1] applied to the formal series F1(z).
This pairing is essential to recover the individual φj`.

It is worthwhile to note that the Padé formulation of (8) allows a slight gener-
alization compared to the generalized eigenvalue formulation of the multivariate
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problem. The simultaneous Padé approximant [(n−1, . . . , n−1)/n](F1,...,Fd) can
also be computed from ν1 samples fk and ν` samples fk` for 2 ≤ ` ≤ d, where
the total number of samples equals

d∑
`=1

ν` = (d+ 1)n, ν` ≥ n,

instead of 2n samples fk and n samples fk` for 2 ≤ ` ≤ d. In that setting (11)
becomes

(F`qn−1,n − pn−1,n,`)(z) =
∑
k≥ν`

ck`z
k, 1 ≤ ` ≤ d

and the common denominator qn−1,n(z) is computed from the linear system

n∑
j=0

fn+k−jbj = 0, k = 0. . . . , ν1 − n− 1,

n∑
j=0

fn+k−j,`bj = 0, k = 0, . . . , ν` − n− 1, 2 ≤ ` ≤ d.

2.2 From exponential analysis to tensor decomposition in d-D

Along the same lines as above, a connection to a so-called coupled tensor de-
composition problem can be made. With the samples fk, k = 0, . . . , 2n − 1 a
first order N tensor T (1) of dimension n1 × · · · × nN is defined as in (6), which
decomposes as in (7), but with Φj replaced by Φj1:

T (1) =

n∑
j=1

αj


1
Φj1

...

Φn1−1
j1

 ◦ · · · ◦


1
Φj1

...

ΦnN−1
j1

 .
As explained in Section 1.2 this decomposition is unique as long as the Φj1 are
mutually distinct. Remains to recover the Φj`, 2 ≤ ` ≤ d.

To this end we construct another d − 1 order N tensors T (`), 2 ≤ ` ≤ d of
dimension n1` × · · · × nN`, where

2 ≤ nj` ≤ n,
N∑
j=1

nj` = n+N − 1,

with tensor elements

T
(`)
k1,...,kN

:= fk1+···+kN−N,`, 2 ≤ ` ≤ d,
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of which the slices T
(`)
·,·,k3,...,kN are still Hankel structured. With

H(m,`)
n1,n2

=


fm,` fm+1,` . . . fm+n2−1,`
fm+1,` fm+2,` . . . fm+n2,`

...
...

. . .
...

fm+n1−1,` fm+n1,` . . . fm+n1+n2−2,`


the tensor slices T

(`)
·,·,k3,...,kN equal

T
(`)
·,·,k3,...,kN = H(k3+···+kN−N+2,`)

n1,n2
.

The tensors T (`) decompose as

T (`) =

n∑
j=1

αjΦj`


1
Φj1

...

Φn1`−1
j1

 ◦ · · · ◦


1
Φj1

...

ΦnN`−1
j1

 ,
where the entries in the factor matrices from T (`) can all be obtained from the
decomposition of T (1), hence the term coupled tensor decomposition. Only the
sizes nj` × n of the factor matrices may be smaller as the sum of the nj` is
bounded by n+N −1 instead of 2n+N −1. The decomposition of the T (`) only
serves the purpose of recovering the αjΦj`, j = 1, . . . , n, 2 ≤ ` ≤ d. Note again
the natural pairing of the αj and αjΦj`, 2 ≤ ` ≤ d to the Φj1, which is required
to recover the individual φj` in (8).

A similar generalization as in Section 2.1 where now

N∑
j=1

nj +

d∑
`=2

N∑
j=1

nj` = (d+ 1)n+ d(N − 1)

is obviously also possible. Then the order N tensor T (1) of dimension n1×· · ·×nN
is such that

2 ≤ nj ≤ n,
N∑
j=1

nj = ν1 +N − 1

and decomposes in the same way as T (1) above (only the sum of the dimensions
is bounded differently). Similarly T (`), 2 ≤ ` ≤ d of dimension n1` × · · · × nN`
obeys

2 ≤ nj` ≤ n,
N∑
j=1

nj` = ν` +N − 1

and decomposes as T (`) above. Note that Kruskal’s condition only guarantees
a unique decomposition if ν1 ≥ 2n. However, the unicity is guaranteed through
the other formulations of the problem statement, be it as a simultaneous Padé
approximation problem or a multivariate exponential analysis.
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3 Illustration: blind source separation

We now illustrate the connections between exponential analysis or sparse inter-
polation with on the one hand Padé approximation and on the other hand tensor
decomposition. The emphasis is on the mathematical reformulations of the prob-
lem statement and not on the numerical aspects of the various algorithms that
can be used in either of the three settings.

We analyze a demo signal consisting of some wild bird chirps mixed with the
whistle of a passing train (the original signal is available at our website1). The
signal is graphed in Figure 1: it lasts somewhat longer than 1.5 seconds and con-
sists of 12850 samples collected at a rate of 8192 samples per second with a high
signal-to-noise ratio. In Figure 2 the signal’s spectrogram is given, put together
by applying the short-time Fourier transform to 257 non-overlapping frames of
each 50 consecutive samples multiplied by a rectangular window function. It
exhibits clearly the Fourier transform’s typical leakage. Also the resolution is
poor as we consider windows of only 50 samples. The horizontal stripes in the
spectrogram represent the train whistle while the bird chirps are found in the
higher frequency flame-like elements.

0 0.5 1 1.5

Time (secs)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
ig

n
a
l

Fig. 1. Real-valued demo signal.

The objective now is to identify the bird chirps and the train whistle using
a sparse technique instead of the fast Fourier transform, thereby avoiding the
leakage and limited resolution. So we recover each contributing αj and φj in (1)
from the signal samples following the outline of Section 1. To this end we again
divide the full data set into 257 non-overlapping windows of 50 samples. In each
window we take the sparsity n = 20, meaning that we choose a model consisting
of 20 exponential terms, that we fit to 50 samples, in the least squares sense
since 50 > 2n. For the practical computation use was made of:

1 http://cma.uantwerpen.be/publications
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Fig. 2. Spectrogram of the demo signal.

– the ESPRIT algorithm from [16] for the exponential analysis,
– the qd-algorithm as in [1] for the rational function reformulation,
– Tensorlab from [18] for the tensor decomposition.

Complexitywise the Fourier analysis and exponential analysis of each window
compare as follows. A Fourier analysis of M samples is O(M logM) while an
exponential analysis using the Hankel structured generalized eigenvalue problem
(3) and the Vandermonde structured linear system (4) is O(n2 log n). When
solving (3)-(4) in a least squares sense from m > 2n samples then the complexity
increases to O((m−n)n2) [7, 8]. Note that in practical applications usually M �
m and hence also M � n.

In the Figures 3, 4 and 5 at the top, we show the computed φj , j = 1, . . . , 20
from window number 88 (samples number 4351 till 4400), where only the blue
coloured φj are retained, for the exponential analysis, Padé approximation and
tensor decomposition respectively. The φj indicated in red are discarded because
either their imaginary part was (numerically) zero or their modulus was too large
(| · | > 1.05). The former does not contribute to a sound signal, while the latter
may cause ill-conditioning when setting up the Vandermonde matrices involved.

In the same figures at the bottom, the spectrogram results for each of expo-
nential analysis, Padé approximation and tensor decomposition is shown. It is
clear that the sparse technique of exponential analysis and its reformulations do
not suffer from the undesirable leakage and limited resolution, as they identify
the frequency content in the signal f(t).
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From exponential analysis to Padé approximation and tensor decomposition 13

-1.5 -1 -0.5 0 0.5 1 1.5

Real part

-1.5

-1

-0.5

0

0.5

1

1.5

Im
a
g

in
a
ry

 p
a
rt

Fig. 3. Extracted φj , j = 1, . . . , 20 using (3) (top) and spectrogram based on retained
φj (bottom).
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Fig. 4. Extracted φj , j = 1, . . . , 20 using (5) (top) and spectrogram based on retained
φj (bottom).
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Fig. 5. Extracted φj , j = 1, . . . , 20 using (7) (top) and spectrogram based on retained
φj (bottom).


