
Restricted Preference Domains in Social Choice:
Two Perspectives

Edith Elkind

University of Oxford, UK

Abstract. Preference aggregation is a challenging task: Arrow’s famous impos-
sibility theorem [1] tells us that there is no perfect voting rule. One of the best-
known ways to circumvent this difficulty is to assume that voters’ preferences
satisfy a structural constraint, such as, e.g, being single-peaked. Indeed, under
this assumption many impossibility results in social choice disappear. Restricted
preference domains also play an important role in computational social choice:
for instance, there are voting rules that are NP-hard to compute in general, but
admit efficient winner determination algorithms when voters’ preferences belong
to a restricted domain. However, restricted domains that have nice social choice-
theoretic properties are not necessarily attractive from an algorithmic perspective,
and vice versa. In this note, we will discuss some domain restrictions that have
proved to be useful from a computational perspective, and compare the use of
restricted domains in computational and classic social choice theory.

1 Introduction

A family of three—Alice, Bob, and their daughter Claire—would like to decide what
to do on a hot Sunday morning. They are choosing among a bike ride, a trip to the pool,
and a visit to the farmers’ market, and they only have time for one activity. Bob prefers
the bike ride to the pool, and the pool to the farmers’ market. Alice prefers the farmers’
market to the bike ride, and the bike ride to the pool. Finally, Claire prefers the pool to
the farmers’ market, and the market to the bike ride.

Aggregating these preferences into a decision that will be accepted by all family
members is not easy: whichever option is chosen, there will be another option that
would be preferred by a majority of the family members to the original choice. More-
over, the collective preferences exhibit a cyclic structure: a majority (Bob and Alice)
prefer the bike ride to the pool, a majority (Bob and Claire) prefer the pool to the farm-
ers’ market, and a majority (Alice and Claire) prefer the farmers’ market to the bike
ride.

This simple example illustrates a fundamental difficulty in preference aggregation,
and underpins a classic result in social choice: Arrow’s impossibility theorem [1], which
tells us that there is no universally acceptable way of aggregating individual preferences
into a collective decision. Indeed, social choice theory is unable to help Alice, Bob and
Claire in this scenario unless they are willing to use randomization.

Suppose, on the other hand, that Alice, Bob and Claire decide to stop fighting, stay
home, turn on the air conditioner and watch a movie. There is still a decision to be
made, namely, how to set the room temperature. Alice’s preferred option is +21, Bob



favors +23, and Claire is happy with +25. It is then safe to assume that Alice also prefers
+23 to +25, and Claire prefers +23 to +21. Hence, if we select +23, a majority of the
voters would prefer that choice to +21, and a majority of the voters would prefer it to
+25. Thus, it makes sense for them to agree on +23.

Why was it easier for Alice, Bob, and Claire to decide on the room temperature,
compared to selecting a joint activity? Were they lucky, or was there something funda-
mental about the structure of the problem that ensured the existence of an acceptable
alternative? Perhaps there is always a good solution for a family of three, but a big-
ger family would struggle to identify a majority-supported alternative? In turns out that
there is a fundamental difference between the two examples, which was identified by
Black back in 1948 [3]: temperature is, fundamentally, a one-dimensional concept, so
anyone whose top choice is xwould prefer x+1 to x+2, and x−1 to x−2. As demon-
strated by Black, this rules out the possibility that collective preferences are cyclic, for
any number of voters. Moreover, there always exist a choice that is preferred to any
other choice by at least half of the voters.

The preferences studied by Black are formally known as single-peaked preferences:
the space of alternatives can be viewed as a line, and when we graph each voter’s in-
tensity of preferences, the resulting curve has a single peak. There are other preference
restrictions with similar properties, though the single-peaked domain is perhaps the
most famous one. Restricted preference domains that circumvent Arrow’s impossibil-
ity result and other similar impossibility theorems have long been a subject of study in
social choice theory.

Now, in the examples considered so far, computation was not an issue: with just
three voters and three alternatives one can easily implement any reasonable choice
mechanism. However, as the number of voters and alternatives increases, algorithmic
considerations become important. Consider, for instance, a student computer club that
needs to decide on the slate of seminar speakers. There is a limited number of slots, and
each club member has ranked all potential speakers; the goal is then to select a subset
of speakers so that there is something in the seminar program for every student. One
can formalize this goal and define a voting rule that selects an optimal set of speakers
according to it; this rule is known as the Chamberlin–Courant rule [4]. However, winner
determination under this rule is known to be NP-hard [9]. Inspired by Black’s results
we can then ask: does this hardness result survive if voters’ preferences are single-
peaked? It turns out that the answer is no: for single-peaked preferences, the output of
the Chamberlin–Courant rule and other similar rules can be computed in polynomial
time using a dynamic programming approach [2].

Inspired by this and similar observations, the computational social choice commu-
nity began to systematically investigate whether existing hardness results in computa-
tional social choice still hold when voters’ preferences belong to a restricted domain,
with a focus on domains defined in the social choice literature. The answer to this
question turned out to be more nuanced than one might expect: while classic domain
restrictions, such as single-peaked or single-crossing preferences, turn out to be incred-
ibly useful from an algorithmic perspective, there are other domains that have some
appealing social choice properties, but do not enable efficient algorithms for important
social choice problems, as well as domains that do not rule out cyclic preferences, but



are nevertheless algorithmically useful. In this talk, we will consider several such exam-
ples, including, in particular, preferences single-peaked on trees [5, 13, 11], preferences
single-peaked on a circle [12], and single-peaked preferences in the approval setting [6].

2 Preliminaries and Notation

For every positive integer n, set [n] = {1, . . . , n}. Let C be a finite set of alternatives,
or candidates, and let m = |C|. A linear order over C is a binary relation over C that
is complete, transitive and antisymmetric. Given a linear order v over C, we denote the
top alternative in v by top(v).

Definition 1. A profile P = (v1, . . . , vn) over a set of alternatives C is a list of linear
orders over C. We associate P = (v1, . . . , vn) with a set of voters N = [n]; the order
vi is called the vote of voter i. For convenience, we write a �i b whenever (a, b) ∈ vi,
i.e., when voter i strictly prefers a to b.

Given a profile C over A, we define its weak majority relation �maj as a binary
relation over C such that

a �maj b ⇐⇒ |{i ∈ N : a �i b}| ≥ |{i ∈ N : b �i a}|.

We write a �maj b if a �maj b, but not b �maj a. Alternative a is a weak Condorcet
winner if a �maj b for all b ∈ C; it is a Condorcet winner is a �maj b for all b ∈ C.

Single-Peaked Preferences Let � be a linear order over the set of alternatives C. A vote
v over C is single-peaked with respect to � if for every pair of candidates a, b ∈ C with
top(v)� b� a or a� b� top(v) it holds that v ranks b above a. A profile P over C is
single-peaked with respect to � if every vote in P is single-peaked with respect to �;
P is single-peaked if there exists a linear order � over C such that P is single-peaked
with respect to �. We refer to any such order � as an axis for P .

It is known that if voters’ preferences are single-peaked then the weak majority
relation is transitive; in particular, this means that single-peaked profiles always have
weak Condorcet winners.

The Chamberlin–Courant rule We will now describe a family of voting rules that will
be used to illustrate the algorithmic properties of various restricted preference domains
considered in this note.

Rules in this family take a candidate set C, a profile P over this set and a target
committee size k as an input, and output a subset of candidates (committee) of size
k. Given a candidate set C, |C| = m, every vector s = (s1, . . . , sm) of non-negative
integers with 0 = s1 ≤ · · · ≤ sm defines a positional misrepresentation function
µs : P × 2C → Z as follows: µs(v, C

′) = si if v ranks her most preferred candidate in
C ′ in position i. The (utilitarian version of the) Chamberlin–Courant rule outputs some
committee C ′ of size k that minimizes the quantity

∑
v∈P µs(v, C

′) (which we call the
s-score of C ′) over all size-k subsets of C. The misrepresentation function associated
with the vector s = (0, 1, . . . ,m−1) is known as the Borda misrepresentation function.



Finding a winning committee under the Chamberlin–Courant rule is known to be
NP-hard, even for the Borda misrepresentation function [9]. In contrast, this problem
can be solved in polynomial time for an arbitrary misrepresentation function if the in-
put profile is single-peaked [2]. The algorithm of Betzler et al. [2] proceeds by dynamic
programming: it considers the single-peaked ordering � of the set of alternatives C,
and, for every m′ ∈ [m] and every k′ ∈ [k], identifies the minimum misrepresentation
among all committees of size k′ that are contained in them′-prefix of � and contain the
m′-th candidate. This approach works, because it is easy to measure to benefit accom-
plished by adding candidate m′ to a committee whose rightmost member is r, r < m′.

In what follows, we will consider several extensions of the concept of single-peaked
preferences, and analyze the complexity of computing the Chamberlin–Courant win-
ners for preferences belonging to these domains.

3 Preferences Single-Peaked on a Tree

. The domain of preferences single-peaked on a tree was introduced by Demange [5].
Consider a profile P over a set of candidates C and a tree T with vertex set C. The
profile P is said to be single-peaked on T if it is single-peaked on every path in T .
Equivalently, for every vote v ∈ P and every s ∈ [m] it holds that the set of top s
candidates in v is a connected subset of vertices of T . Clearly, a single-peaked profile is
single-peaked on a tree (namely, the path associated with the underlying order �), but
the converse is not true.

Demange [5] has shown that if a profile is single-peaked on some tree then it has a
weak Condorcet winner. However, its weak majority relation need not be transitive. In
fact, it is not hard to see that for every tree that is not a path there exists a profile that
is single-peaked on that tree, but whose majority relation is not transitive. Indeed, if a
tree T is not a path, it has a vertex a with three neighbors b, c, and d. If a voter ranks a
first, followed by b, c, and d (in any order), followed by all other candidates, then her
preferences are single-peaked on T . Thus, we can construct a profile single-peaked on
T where a majority of the voters prefers b to c, a majority prefers c to d and a majority
prefers d to b. Hence, from a social choice perspective profiles that are single-peaked on
trees have some desirable properties; however, there is a clear boundary between paths
and other kinds of trees.

However, from a computational social choice perspective, the picture is very differ-
ent. The dynamic programming algorithm of Betzler et al. [2] can be extended to trees,
but its running time then becomes exponential in the number of leaves [13]: intuitively,
whenever we try to compute an optimal committee of size k′ contained in a subtree
rooted at a, we have to consider the subtrees rooted at children of a, and, for each
child, guess the topmost committee member in its subtree. Indeed, it can be shown that
computing Chamberlin–Courant winners remains NP-hard when preferences are single-
peaked on a tree, for a large class of misrepresentation functions. The hardness result
holds even if the underlying tree is a star or has maximum degree 3. Thus, computing
the Chamberlin–Courant winners is easy for long skinny trees, but not for bushy trees.
However, this hardness result does not apply to the Borda misrepresentation function;
indeed, for this misrepresentation function computing the Chamberlin–Courant winners



is easy if the profile is single-peaked on a star, or, more generally, on a tree with a small
number of internal vertices [11].

Thus, for a social choice theorist all trees that are not stars have the same properties,
whereas a computational social choice theorist distinguishes between ‘nice’ trees and
arbitrary trees.

4 Preferences Single-Peaked on a Circle

Peters and Lackner [12] extend the notion of single-peaked preferences from paths to
circles: under their definition, a profile P over a set of candidates C is single-peaked
on a circle with vertex set C if for each voter v ∈ P the circle C could be cut so
that v is single-peaked on the resulting path. We immediately note that the preferences
of Alice, Bob and Claire over morning activities are single-peaked on a circle, and
hence we cannot expect profiles that are single-peaked on a circle to always have weak
Condorcet winners or to guarantee the transitivity of weak majority preferences. This
explains why this model has not been considered in the social choice literature.

On the other hand, preferences single-peaked on a circle turn out to be simple
enough to be algorithmically useful: Peters and Lackner establish that for such pref-
erences one can compute a winning committee under the Chamberlin–Courant rule in
polynomial time. However, it is not clear how to use Betzler et al.’s dynamic program-
ming algorithm for this purpose: instead, Peters and Lackner build on the techniques
developed by Peters [10] to argue that the problem of finding Chamberlin–Courant
winners in this scenario can be encoded as an integer linear program whose constraint
matrix is totally unimodular.

5 Single-Peaked Preferences in the Approval Setting

So far, we assumed that voters’ preferences are expressed by linear orders over alter-
natives. Instead, one can consider a simpler scenario: each voter approves a subset of
alternatives and disapproves the remaining alternatives. Such preferences are known as
approval preferences. The setting of approval preferences is considered to be fairly sim-
ple from a social choice perspective: if the goal is to select a single winner, the rule that
selects an alternative with the highest number of approvals has a number of attractive
normative properties (see, e.g., [8] and the references therein). Thus, domain restrictions
in the context of approval preferences have not been considered in the social choice lit-
erature. However, voting with approval preferences still presents interesting algorithmic
challenges; in particular, a natural adaptation of the Chamberlin–Courant rule for this
setting remains NP-hard. On the other hand, for single-peaked approval profiles (where
alternatives can be placed on a line so that each voter approves a contiguous segment
of this line) Chamberlin–Courant winners can be computed efficiently by dynamic pro-
gramming [6].



6 Conclusion

We have seen three examples of restricted domains that would be viewed very dif-
ferently by a social choice theorist and an algorithms researcher: in the first case, the
algorithmic approach offers a more fine-grained view of the domain, and in the second
and third case, a domain restriction that is seen as not particularly useful from a so-
cial choice perspective (either because it does not eliminate violations of the Condorcet
principle or because the underlying domain is considered to be simple enough to start
with) turns out to be useful from an algorithmic perspective. In this note, we focused on
the Chamberlin–Courant rule; one can consider other computationally challenging vot-
ing rules, in which case the picture becomes even more complicated. For more details,
we refer the reader to the recent survey [7].
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