
HAL Id: hal-02171119
https://hal.science/hal-02171119

Submitted on 2 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Communication Burden of Single Transferable Vote,
in Practice

Manel Ayadi, Nahla Ben Amor, Jérôme Lang

To cite this version:
Manel Ayadi, Nahla Ben Amor, Jérôme Lang. The Communication Burden of Single Transferable
Vote, in Practice. 11th International Symposium on Algorithmic Game Theory (SAGT 2018), Sep
2018, Beijing, China. pp.251-255, �10.1007/978-3-319-99660-8_23�. �hal-02171119�

https://hal.science/hal-02171119
https://hal.archives-ouvertes.fr

The Communication Burden of Single Transferable
Vote, in Practice

Manel Ayadi, Nahla Ben Amor and Jérôme Lang

Abstract

Single Transferable Vote (STV) is of particular interest for voting, for cognitive reasons (it is
easy to understand) and normative reasons (it is clone-proof). However, assuming that voters
have to report full rankings sometimes makes it highly unpractical. We study single-winner
STV from the point of view of communication. In the first part of the paper, we assume that
voters give, in a single shot, their top k alternatives; we define a version of STV that works for
such k-truncated votes, and we evaluate empirically (on randomly generated profiles, and on
real data) the extent to which it approximates the standard STV rule. In the second part of the
paper, we start from the protocol used by Conitzer and Sandholm (2005) for assessing the com-
munication complexity of STV. We give an improvement of it, and then we study empirically
the average communication complexity of these protocols, based on the one hand on randomly
generated profiles, and on the other hand on real data. We also first give a polynomial-time
computable characterization of possible winners at each step of this protocol. Our conclusion
is that STV needs, in practice, much less information than in the worst case.

1 Introduction
There has been a significant attention these last fifteen years about incomplete information and
communication issues on voting; the most complete reference to date on the topic is the handbook
chapter [4]. There are (at least) two paths of work in this area: one focusing on computing partial
or approximate outcomes from partial information about the votes, and the other one focusing on
communication protocols. For the first path, one natural solution to the impracticality of submitting
complete orders is to allow the voters to cast truncated ballots. The advantage of doing so is that
not only it saves communication effort, but it is also often easier for voter to submit a partial ranking
when the total amount of preference information is too large to communicate.

We focus on a specific, but particularly important, single-winner voting rule: single transferable
vote (STV).1 Out of all the common voting rules of the zoo, STV is among the few ones that is
used in political elections, both for single-winner voting and multi-winner voting.2 There are good
reasons for that. First, it is relatively easy to understand. Second, it is hard to manipulate. Third, it
enjoys a very important normative property: clone-proofness. On the other hand, it fails to satisfy a
number of other important properties, such as monotonicity, participation, or Condorcet-consistency,
but in many contexts, being sensitive to cloning balances the failure of these other properties. To
give a simple example: at the 2002 French presidential, it has been argued that sensitivity to cloning
was the cause of the socialist candidate Lionel Jospin not to go to the second round (which he would
probably have won). Sensitivity to cloning is of primary importance not only for political elections,
but also for low-stake collective decision making [19, 10].

On the other hand, when compared to other rules that are widely used in practice (such as plural-
ity, k-approval for small k, approval, or plurality with runoff), STV suffers from a significant draw-
back: its direct implementation requires an important amount of information to be communicated
from the voters in order the outcome to be determined, because its input consists of a collection of
complete rankings over candidates. Our aim is to get a more accurate idea of the precise amount of

1For single-winner elections, STV is often called instant runoff voting (IRV). We keep however the terminology STV,
which seems to more popular among the community, even for single-winner elections.

2See https://en.wikipedia.org/wiki/Single_transferable_vote.

1

information that we need from the voters to compute or approximate STV. We consider successively
two contexts, and their associated questions.

For the first context, we assume that the information from the voters has to be communicated in
a single shot. In this context, computing the exact winner may need, in the worst case, all the voters’
rankings. We suggest instead to use truncated ballots: each voter reports only their top k candidates,
for a fixed (voter-independent) k, an we use an approximation of STV which needs only these top-k
ballots as input. The key question is then: how often will this approximation of STV lead a mistake
and output a different winner than we would have obtained with complete ballots under STV?

Using truncated ballots as a way of reducing the amount of information in voting has been
considered in a few earlier works, especially [2, 20, 18, 9, 17]. In the same spirit, we focus on
STV and show that, in practice (on randomly generated profiles using classical distributions, and on
real data), even for a small value of k, the approximation of STV outputs the correct winner quite
frequently. We complete our study by examining how frequently the approximation of STV will be
sensitive to cloning, and how often the winner will coincide with the winner of plurality with runoff.

For the second context, we consider interactive elicitation: a communication protocol is run
between the central authority and the voters, until the outcome of the vote is eventually determined.
The goal is to find a cheap protocol, where the cost of a protocol is the worst-cased number of bits
transmitted. The (deterministic) communication complexity of a voting rule is the minimum, over
all protocols that compute this rule, of the cost of the protocol.

This line of research has been initiated by Conitzer and Sandholm [6], who study the commu-
nication complexity of STV (among other common voting rules) and gave a (worst-case) almost
optimal protocol. For other rules than STV, Kalech et al. [11] give a protocol that proceeds in
rounds, considering top-k ballots with increasing k until the winner is determined. Lu and Boutilier
[14, 13] and Dery et al. [7] also study elicitation protocols based on top-k ballots.

We start from Conitzer and Sandholm’s protocol [6]. We give a practical improvement of it.
These protocols work by asking, at each step, some selected voters to give their next preferred
candidate among some specified set of candidates, when their currently preferred candidate has just
been eliminated. We give a characterization of possible winners in that particular context (that is,
candidates that win for at least one way of completing the current truncated ballots). The next
question we are interested in is what is the sufficient number of bits (on average) that must be
communicated by the voters to the central authority so that the winner is determined? We study
empirically the average communication complexity of these protocols, based on the one hand on
randomly generated profiles, and their practical communication complexity, based on real data sets
from PrefLib.

The remainder of this paper is structured as follows: Section 2 gives basic background on voting.
Section 3 defines the k-truncated approximation of STV and addresses its empirical evaluation.
Section 4 focuses on communication protocols for STV, studies their communication complexity in
average and in practice, and characterizes possible winners along the execution of the protocols.

2 Preliminaries

2.1 Single Transferable Vote
An election is a triple E = (N,A, P) where: N = {1, ..., n} is the set of voters, A = {a, b, ...} is
the set of candidates, with |A| = m; and P = (�1, ...,�n) is the (preference) profile of voters in
N , where for each i, �i ∈ P , the preference relation of voter i, is a linear order over A. P is said to
be complete if and only if �i is complete for each 0 ≤ i ≤ n. (We will refer to this order either as a
preference order or a vote; we use these terms essentially interchangeably.)

An irresolute voting rule is a function which, for each election, outputs a non-empty subset ofA,
whose elements are called the (co-)winners. A resolute voting rule is a function f : E 7→ A, which
for each election outputs a single winner.

2

Given a prespecified linear order B over the candidates, called tie-breaking priority, the STV B

rule proceeds in (up to m − 1) rounds. (For brevity notation we will simply write STV , leaving
B implicit.) In each round, the candidate with the smallest number of voters ranking them first is
eliminated (using the tie-breaking priority if necessary),3 and the votes who supported it now support
their preferred candidate among those that remain.

STV is known to be clone-proof [21]: whenever a candidate x is cloned into several candidates
(ranked contiguously in every vote), then either the winner was x, in which case the winner in the
profile where x has been cloned is one of the clones of x; or the winner was y 6= x, and in that
case the winner after x has been cloned is still y. Most voting rules with ordinal input fail to be
clone-proof.4

Freeman et al. [10] give an axiomatisation of STV, and show that STV is the only rule in a large
family of iterative elimination rules that satisfies clone-proofness. STV is NP-hard to manipulate,
even for one voter [1], although this worst-case difficulty does not really carry on to real-world
instances [22].

2.2 Incomplete preferences and communication protocols in voting
When the votes are partly known, the outcome can generally not be determined. In this case, a
candidate c is a possible winner for partial profile P (considered to be a collection of partial votes,
that is, partial orders over candidates) and voting rule f if c wins for at least one complete extension
of the partial votes in P . A particularly intuitive way of expressing partial preferences is to make
use of truncated ballots. Given k ≤ m, a top-k ballot is a linear order of k among the m candidates
in A. A top-k profile is a collection of n top-k ballots.

A voting rule does not specify how the votes are elicited from the voters by the central authority
(these rules are just functions mapping the preferences of all the voters to a winner). Different ways
of determining the winner of an election by eliciting preferences from voters are based on specific
protocols. A protocol is similar to an algorithm, with instructions replaced by communication ac-
tions; such actions specify bits that the voter should communicate, depending on her knowledge
[12]. Formally, a protocol for a voting rule f is a protocol that computes f(�1, ...,�n), given that
�i is the private information of voter i. The (deterministic) communication complexity of a voting
rule f is the minimum cost of a protocol for f . At each step of a protocol, the voters have reported
a partial information about their vote (consisting of the sequence of bits they have sent until then).
Therefore, the notion of possible winner makes sense at any step of a voting protocol.

3 Approximating STV with Truncated Ballots

3.1 STVk

For each k ≤ m, STVk is defined similarly as STV, but with top-k ballots as input. In each round, the
candidate ranked first by the smallest number of voters is eliminated (using tie-breaking if needed).
The difference with STV is that when all k candidates in a vote have been eliminated, the vote is
ignored in later rounds (such a vote will be said to be exhausted). We repeat this process until there
exists a candidate ranked first by the majority of non-exhausted truncated votes. STV1 coincides
with plurality, and STVm−1 (and STVm) with STV .

In this Section we consider only one-shot protocols where all the information of a voter is trans-
mitted once.

3This way of breaking ties in STV is called immediate tie-breaking. One may choose instead to consider all the possible
ways of breaking ties, and then use the tie-breaking in the very end to choose between the winners obtained this way: this is
called “parallel universe” STV [5]. We will not consider it here.

4Apart of STV, other noticeable exceptions are Ranked Pairs and Schulze. Among rules where the input does not consist
of rankings over candidates, we find other clone-proof rules, especially approval voting and range voting.

3

Example 1. Let A = {a, b, c, d, e} and the following 21 top-2 ballots: 6 votes a � e, 5 votes d � e,
4 votes c � e and 6 votes b � c, with tie-breaking priority a B b B c B d B e. Under STV2, e
is eliminated first, then c. The votes c � e are now exhausted, and will be ignored. d is eliminated
next; a and b are then tied, and a is the STV2 winner thanks to tie-breaking.

Although STVk can be seen as a voting rule on its own, we choose to see it as an approximation
of STV and we evaluate its accuracy in this context. For this we start by defining voting distributions
on which our study will be based. We focus on the Mallows φ model [15] because of its flexibility
and ability to represent a wide class of preferences (including impartial culture when φ = 1). We
will also discuss experiments using real data sets.

When a voting rule is defined via the maximization (or minimization) of a score, it makes sense
to measure the quality of its approximations using score ratios. However, STV is not based on
score maximization (see [5] for a discussion), and the only reasonable way we see of measuring the
quality of an approximation is to measure the frequency with which the approximation outputs the
true winner. Our main practical objective is to obtain, depending on the parameters of the setting,
the minimal value of k such that the probability of obtaining the true winner from STVk is high
enough.

As a side result, mainly out of curiosity, we will study the probability that STVk outputs the
same winner as plurality with runoff, depending on k. Finally, we study empirically the resistance
of STVk to cloning, given that we already know that for k = 1, STV1 coincides with plurality,
which is highly sensitive to cloning, and for k = m− 1, with STV , which is clone-proof. We will
see that, while in theory STVk fails to satisfy clone-proofness for each k ≤ m − 2, in practice, it
resists quite well to cloning even with small values of k.

Next, we consider real data sets (n,m) with small and large number of voters from Preflib [16]:
Sushi (5000,10), Dublin (3662,12), Electoral Reform Society(ERS) (43,10), Glasgow City Council
(548,9) and Debian 2005 (327,7).

3.2 Evaluation of the Accuracy of STVk

In order to measure experimentally the probability that the output of the STVk coincides with the
true STV winner, we repeatedly do the following: (1) generate a complete profile P (with n voters
and m candidates); (2) for k = 1, . . . ,m − 2, we compare STVk(P) to STV (P). Step (1) varies
according to whether we are in the random generation setting or the real world data setting. For
the former, we draw a profile according to a given distribution. For the latter, we draw a profile by
selecting n votes at random in the database. These two steps are then iterated a sufficient number
of times so as to obtain meaningful results.5 Iterating this process a number of times allows us to
evaluate the quality of the top-k approximation for different values of k.

3.2.1 Mallows φ

In this set of experiments, we use realistic parametrized families of probability distributions over
rankings, namely, the Mallows φ-model [15], parametrized by a modal or reference ranking σ and
a dispersion parameter φ ∈ [0, 1], and for any ranking r we define the probability of selecting r
given σ and φ as follows: P (r;σ, φ) = 1

Zφ
d(r,σ), where d is the Kendall tau distance and Z =∑

r′ φ
d(r,σ) = 1 · (1 + φ) ·

(
1 + φ+ φ2

)
· ... ·

(
1 + ...+ φm−1

)
is a normalization constant. With

small values of φ, the mass is concentrated around σ, while φ = 1 gives the uniform distribution
impartial culture (IC), where all profiles are equiprobable.

5Note that we cannot simply stop the process if we reach a k such that STVk(P) = STV (P), because there is no
guarantee that STVk′ (P) will still be equal to STV (P) for k′ > k. For instance, consider the profile composed of 5 votes
b � a � c � d, 4 votes a � b � c � d, 3 votes c � d � b � a and one vote d � a � b � c: the STV winner is b. For
STV1, it is b too. However, for STV2, it is a.

4

For each experiment, we draw 1000 random profiles. In the first set of experiments, we present
simulation results with m = 7 candidates and varying the number of voters n and the dispersion
parameter φ. We simulate the elicitation of top-k (k ∈ {1 . . . 6}) preferences for n = {100, ..., 500}
with different values of φ ∈ {0.7, 0.8, 0.9, 1}. Figure 1 shows results reflecting success probabilities
for which eliciting top-k truncated ballots could predict the true winner.

1 2 3 4 5 6

k
 (a) φ= 0. 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty

n= 100

n= 200

n= 300

n= 400

n= 500

1 2 3 4 5 6

k
 (b) φ= 0. 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n= 100

n= 200

n= 300

n= 400

n= 500

1 2 3 4 5 6

k
 (c) φ= 0. 9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty

n= 100

n= 200

n= 300

n= 400

n= 500

1 2 3 4 5 6

k
 (d) φ= 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n= 100

n= 200

n= 300

n= 400

n= 500

Figure 1: Success probabilities of top-k voting for STVk: m = 7 varying n, k and φ.

From the results, we see that when φ ≤ 0.7 and n ≥ 500, the true winner is always predicted
correctly with all values of k. For n ≥ 200 and φ ≤ 0.7, top-2 truncated ballots are always
sufficient to determine the correct STV winner. As we increase the value of dispersion parameter
φ ∈ {0.8, 0.9}, good results are depicted with a great number of voters i.e. For φ = 0.8 (resp.
φ = 0.9) and n ≥ 400 (resp. n ≥ 500), the accuracy reaches 99% (resp. 95%) with top-3 (resp.
top-4) truncated ballots. When φ = 1, the success rate is 82% (resp. 91%) when considering top-4
(resp. top-5) truncated ballots of 500 voters. In all cases, top-2 truncated ballots seems to be always
sufficient to predict the correct STV winner with 100% accuracy with small values of φ and high
number of voters.

3.2.2 Real Data

With all real data sets, STVk when k ∈ {1, . . . ,m− 1} converges quickly to the correct prediction
with 100% accuracy with all values of k for increasing n. Now we are interested in predicting the
result for small and large elections. We consider Dublin data with samples of n∗ voters among n
(n∗ < n), starting by n∗ = 10 voters and incrementing each time the number of voters by 10. In
each experiment, 1000 random profiles are constructed with n∗ voters; then we consider the top-k
ballots of these latter, where k ∈ {1, 2, 3}, and we compute the probability of selecting the correct
winner (the winner of the complete profile of the n∗ sampled votes). Figure 5 shows results for
Dublin data with small (n∗ ∈ {10, ..., 100}) and large elections (n∗ ∈ {110, ..., 2000}).

20 30 40 50 60 70 80 90

voters
 (a) n∗ ∈

{
10, , 100

}
0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

STV1

STV2

STV3

500 1000 1500 2000

voters
 (b) n∗ ∈

{
110, , 2000

}
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1120830710

STV1

STV2

STV3

Figure 2: Success probabilities of STVk with Dublin data: varying k ∈ {1, 2, 3} and n∗ (n∗ < n).

Our results suggest that predicting the correct winner with a small number of voters fails signif-
icantly often when k is too small (k ≤ 1

4m). For instance, when k = 3 and n∗ = 100, the correct
winner is predicted only with frequency 87%. We also see that performance increases with the num-
ber of voters. Indeed, eliciting one candidate for each voter (k = 1) is sufficient to predict the correct

5

winner when n∗ ≥ 1120. Obviously, increasing the value of k leads to a decrease in the number of
voters needed for correct winner selection with 100% accuracy: for instance, when k = 1

6m (resp.
k = 1

4m) over 12 candidates, n∗ ≥ 830 (resp. n∗ ≥ 710) are needed to always output the correct
result. We simulated the same experiments on Sushi data, we find that a very small number of voters
(n∗ ≥ 160) reporting their top-1 ballots are sufficient to determine the winner correctly.

3.3 Plurality with Runoff and STVk

Plurality with runoff is a widely used rule that proceeds in two rounds: the two candidates ranked
first by the largest number of voters go to the second round, and majority is used to determine the
winner. STV and plurality with runoff belong to the same family of elimination-based rules. Also,
whenm = 3, STV coincides with plurality with runoff. On the other hand, plurality with runoff also
shares a lot with plurality. Now, our family of STVk rule has plurality at one extremity and STV at
the other extremity. It is therefore an interesting question (at least out of curiosity) to know where
in this spectrum we have an output that is likely to coincide with the output of plurality with runoff.

We answer this question empirically. For each experiment, we generate 1000 random profiles
according to a Mallows distribution, for m = 7 candidates, and we vary the number of voters
n ∈ {100, ..., 500} and the dispersion parameter φ ∈ {0.9, 1}. We simulate the elicitation of top-k
(k ∈ {1 . . . 6}) preferences where for each value of k, we compare the winner of STVk with the
winner of plurality-with-runoff. Figure 3 shows the probability that the STVk’s winner coincides
with the winner of plurality with runoff.

1 2 3 4 5 6

k
 (a) φ= 0. 9

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty

n= 100

n= 200

n= 300

n= 400

n= 500

1 2 3 4 5 6

k
 (b) φ= 1

0.5

0.6

0.7

0.8

0.9

1.0
n= 100

n= 200

n= 300

n= 400

n= 500

Figure 3: Probability that STVk coincides with plurality with runoff: m = 7, vary n, k and φ.

With small values of φ (i.e., φ ≤ 0.8) and k = 2, STVk and plurality with runoff always
coincide, which is explained by the fact that the distributions are concentrated then the winner is the
same for most common rules. Unsurprisingly, with greater values of dispersion parameter φ ≥ 0.9,
the probability decreases, since all profiles are equiprobable, and good results are obtained with large
number of voters. Perhaps more surprisingly, for impartial culture, the closeness between STVk and
plurality with runoff starts by decreasing from k = 1 to k = 2 or k = 3 (depending on n) and
beyond that, increases with k. We do not observe this phenomenon with smaller values of φ.

3.4 STVk and Resistance to Cloning
While STV is clone-proof, unfortunately this does not carry on to STVk for k ≤ m − 2 (and for
k = 1, STV1 is plurality, which is extremely sensitive to cloning). We may wonder whether for
sufficiently large values of k, the occurrences of profiles in which cloning makes a difference for
STVk is small enough.

In order to evaluate the resistance of STVk to cloning, we propose an empirical approach where
we clone one candidate and we measure experimentally the probability that cloning significantly
changes the outcome. For doing so we repeatedly generate a complete profile P (with n vot-
ers and m candidates), and then for each k ∈ {1, . . .m} (a) we construct a profile P ′ obtained
from P by cloning a candidate (note that there are m + 1 candidates in P ′), and (b) we compare

6

STVk(P) to STVk(P
′). These steps are then iterated a sufficient number of times so as to obtain

meaningful results.

Example 2. Let P contain 4 votes a � c � b, 3 votes b � a � c, and 2 votes c � b � a. The STV2
(= STV) winner is b. Let us clone c in {c, c′}. A possible profile P ′ obtained is {a � c � c′ �
b, c′ � c � b � a, b � a � c � c′}. For k = 2, the k-truncated profile is {a � c, c′ � c, b � a}
and the STV2 winner is a.

3.4.1 Mallows φ

For each experiment we draw 1000 profiles. We present simulation results for small
and large elections when m = 5 as we vary φ. We simulate the elicitation of
top-k preferences where k ∈ {1, . . . , 5} for n ∈ {30, 500} with different values of
φ ∈ {0.7, 0.8, 0.9, 1}. We say that cloning sensitivity does not occur if the win-
ner after cloning is the same as before, or a clone of the winner before cloning.

1 2 3 4 5

k
(a) n= 30, m= 5

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

φ= 0. 7

φ= 0. 8

φ= 0. 9

φ= 1

1 2 3 4 5

k
(b) n= 500, m= 5

0.0

0.2

0.4

0.6

0.8

1.0

φ= 0. 7

φ= 0. 8

φ= 0. 9

φ= 1

Figure 4: Resistance to cloning, winner cloned.

We give the probability that clone
sensitivity does not occur under
STVk, when we clone the STVk win-
ner (Figure 4). Unsurprisingly, re-
sistance to cloning increases rapidly
with k and decreases with φ. Also, it
significantly increases with the num-
ber of voters.

3.4.2 Real Data

1 2 3 4 5 6 7 8 9 10 11 12

k
(a)Dublin

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

Clone the winner

Clone one candidate

1 2 3 4 5 6 7 8 9 10

k
(b)ERS

0.0

0.2

0.4

0.6

0.8

1.0

Clone the winner

Clone one candidate

1 2 3 4 5 6 7

k
(c)Debian

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

Clone the winner

Clone one candidate

1 2 3 4 5 6 7 8 9

k
(d)Glasgow city

0.0

0.2

0.4

0.6

0.8

1.0

Clone the winner

Clone one candidate

Figure 5: Resistance to cloning: winner and one candidate at random cloned.

We test the resistance of STVk to cloning using real data sets. In a first series of experiments,
we clone one random candidate; in a second one, we clone the STVk winner (Figure 5). Again,
sensitivity to cloning increases rapidly with k, even more rapidly than when randomly generated
profiles.

4 Communication Protocols for STV
We now take a different path: we now allow for more sophisticated, interactive protocols where
voters may report their preferences incrementally, when the central authority asks them to do so;
on the other hand, we are not any longer interested in computing an approximation of STV, but in
computing the real STV winner.

4.1 Conitzer and Sandholm’s Protocol
With the aim of assessing the communication complexity of STV, Conitzer and Sandholm [6] give
the following protocol for STV, illustrated in Protocol 1 which we call P1.

7

Protocol 1: P1

1 foreach voter i, i ∈ N do
2 P = (a1, ..., an) where ai contains only the top candidate of each voter i

3 repeat
4 d← candidate ranked first by the fewest voters
5 Remove d from the set of available candidates (A← A \ {d})
6 foreach voter i, i ∈ N do
7 if the preference ai of voter i starts with d then
8 ai ← Next preferred candidate of voter i

9 Votes for d transferred to the next best remaining candidate
10 until There exists a candidate d ranked first by a majority or |A| = 1

In [6] it is shown that the communication complexity of P1 is in O(n(logm)2). The key argu-
ment is that at a step where there remain k candidates, the number of voters who rank the eliminated
candidate first is at most nk , therefore, the number of such messages received by voters is at most
n
m + n

m−1 + . . .+ n, which is in the order of n logm. We can actually say something more precise
: the worst case occurs when, in each step, all candidates are tied for elimination; in this case, when
k candidates remain, exactly m

k voters will send log k bits, and this goes on until k = 3. This gives

an exact worst case cost of n
(
logm+

∑m−1
k=1

log k
k+1

)
. However the actual cost can be significantly

smaller for small values of m: for instance, for m = 7, the real worst-case cost is approximately
4.69n whereas (log 7)2n ≈ 7.88n.6

Example 3. Let A = {a, b, c, d} and the following eight votes P = {3 : a � c � d � b, 3 : c �
a � b � d, 1 : d � b � a � c, 1 : b � d � c � a} with tie-breaking priority a B b B c B d.
Following P1, given the top candidate of each vote, d is eliminated in the first round. We ask the
voter who supports d for her next preference among A = {a, b, c}. Now, P = {3 : a, 3 : c, 1 :
b, 1 : b} and b is eliminated next. Then, we ask the voters supporting b for their next preference i.e.
P = {3 : a, 3 : c, 1 : a, 1 : c}. Finally, a wins thanks to the tie-breaking priority.

4.2 Possible Winners along Conitzer and Sandholm’s Protocol
At each step in the execution of the protocol, the central authority has partial knowledge of the votes.
Therefore, it makes sense to identify those candidates that can still win (the possible winners) and
those that cannot (the necessary losers). This is especially useful when interaction with the voters
takes time: assume that the vote is about a meeting date; the execution of the protocol can take
several days (due to some voters reacting slowly to their emails). If at some point in the execution of
the protocol, we know that for sure the meeting will not be on November 22 nor November 24, this
is useful information for voters, who can plan something else on these two days, and for the central
authority, which does not have to pre-book a room for these days.

We start by noticing that at each step of the protocol, the reduced profile obtained after removal of
the eliminated candidates is a tops-only profile: the central authority knows only the top candidate of
each voter. Therefore, without loss of generality for computing possible winners along the protocol,
it is enough to give a characterization of possible winners for STV and for tops-only profiles.7

6Note that we don’t know whether this protocol is asymptotically optimal: the best known lower bound on the communi-
cation complexity of STV is Ω(n logm) [6].

7Note that the characterization of necessary winners (winning for any possible completion of the current partial profile)
is trivial: x is the (only) necessary winner if it is top-ranked by a majority of voters, or if it is top-ranked by exactly half of
the votes and has priority over other remaining candidates.

8

Proposition 1. Let P be a tops-only profile over a set of candidates A. Let S(x, P) be the plurality
score of x in P , that is, the number of votes in P ranking x on top. Consider the following algorithm:

1. reorder the candidates in A in ascending order of S(., P), breaking ties when necessary (lower-
priority candidates being listed before those with higher priority). Let x1, . . . , xm be the obtained
reordering of the candidates.

2. For each i ≤ m do

(a) Smax(xi, P)←
∑
{S(xj , P), j ≤ i};

(b) k ← i+ 1

(c) While (Smax(xi) > S(xk) or (Smax(xi) = S(xk) and xi B xk)) and k ≤ m do

i. Smax(xi, P)← Smax(xi, P) + S(xk, P)

ii. k ← k + 1

Then x is an STVB necessary loser for P if and only if there is some candidate y ∈ A such that one
of these two conditions is satisfied:

1. S(y, P) > Smax(x, P), and S(y, P) > S(x, P).

2. S(y, P) ≥ Smax(x, P), S(y, P) > S(x, P), and y B x.

Proof. The key element is that Smax(xi, P) is the maximum plurality score that xi can obtain before
being eliminated: as long as the condition of the loop is satisfied, in the best case where all votes for
the candidates eliminated until xk−1 are transferred to xi, then the next eliminated candidate is xk,
and xi continues to the next round. Note that Smax(xm) = n, since it is initialized to this value and
the loop is not executed.

Assume (1) holds. Then all candidates z such that S(z, P) < S(y, P) will be eliminated before
z, because, as long as z has not been eliminated, the maximum value of S(z, PU) they can reach is
Smax(y, P). Therefore, x will be eliminated before y and is a necessary loser.

Assume (2) holds. The maximum value that S(x, PU) can reach is Smax(y, P). If
Smax(y, P) > S(x, P), we are in case (1). Assume now Smax(y, P) = S(x, P). If S(x, PU)
never reaches Smax(y, P), then x will be eliminated before y. If S(x, PU) reaches Smax(y, P),
then x will also be eliminated before y, because y B x. Therefore, x is a necessary loser.

Finally, if neither (1) nor (2) holds, then letting y = xm, we get Smax(x, P) = n, which means
that in the best case (for x) where all votes for all eliminated candidates go to x, x will be the
winner.

Example 4. Let P be such that S(x1, P) = 1, S(x2, P) = 2, S(x3, P) = 4, S(x4, P) = 6 and
S(x5, P) = 12. Then, the maximal scores of different candidates are as follows: Smax(x1, P) =
1, Smax(x2, P) = 3, Smax(x3, P) = Smax(x4, P) = Smax(x5, P) = 25. Let us give a few
comments: in the best case for x2, the unique vote for x1 is transferred to it; at the second round, it
has 3 votes, but is eliminated right after that because S(x3, P) = 4 > 3. In the best case for x3, at
the end of the second round, all votes for x1 and x2 have been transferred to it and it gets 7 votes.
Since 7 > S(x4, P) = 6, in this case x4 is eliminated next and if all its votes are transferred to
x3, then x3 gets 13 votes and wins against x5. In conclusion: x1 and x2 are necessary losers and
x3, x4, x5 are possible winners.

As a corollary, possible winners for STV for tops-only ballots (and therefore, possible winners
for STV along the Conitzer-Sandholm protocol) are polynomial-time computable, while the possi-
ble winner problem for STV is NP-complete in the general case, since it is NP-complete for the
particular case of constructive manipulation [1]. What we do not know, however, is the complexity
of the possible winner problem for STV and top-k ballots for a fixed (voter-independent) k.

9

4.3 Immediate Necessary Losers, and an Improved Protocol
Knowing who are the possible winners (and the necessary losers) at each step of the protocol is a
useful information, but it is not a good idea to eliminate a candidate as soon as it becomes a necessary
loser, because it can change the final outcome, as shown on the following example.

Example 5. Let us consider an election with 10 voters and 5 candidates with the following profile
P = {5 : c � a � d � e � b, 1 : a � e � b � d � c, 2 : e � b � d � a � c, 2 : b � a � e � c �
d}. The winner for P is c. Smax(d, P) = 0, Smax(a, P) = 1, Smax(e, P) = 5, Smax(b, P) = 10
and Smax(c, P) = 10, therefore, the necessary losers given tops-only ballots are a, d and e. If we
eliminate those three candidates, the winner is b.

The reason is that although we know that a necessary loser x will be eliminated at some point
before the end, we do now know exactly when, and depending on when it will be eliminated, the
final winner can change. However, if we know exactly when it will be eliminated, then we can safely
eliminate it during the execution of the protocol.

We now define a stronger notion of a necessary loser, which only applies to rules that proceed
by sequential elimination: x ∈ A is an immediate loser if we know that x will be the next candidate
eliminated after the currently eliminated one. In Example 3, at the time where a is being eliminated,
the central authority already knows that b will be the next eliminated candidate: b is an immediate
loser, and it is useless to keep b in the candidate list when asking the voter who supported d who she
ranks next. On the other hand, in Example 5, while a is a immediate loser when d is eliminated, e is
not an immediate loser when a is eliminated: it can be the case that the voter supporting a transfers
her vote to e, and b will then be eliminated before e.

Formally, let d be the candidate which is about to be eliminated, and U the set of remain-
ing candidates (including d); candidate x is an immediate loser if for every y 6= x, d, either (1)
S(y, PU) > S(x, PU) + S(d, PU), or (2) S(y, PU) = S(x, PU) + S(d, PU) and y B x.

While eliminating a necessary loser in the course of the protocol may change the final outcome,
this can never be the case with an immediate loser. This is the key property used in the next protocol,
which is an improvement over protocol P1: in Protocol 2 (which we call P2), each voter first submits
her most preferred candidate over the set of all available ones to the central authority (C) (lines 2-3);
let d be the candidate with the fewest number of votes (with use of tie-breaking if necessary); if there
is an immediate loser at this point, it is eliminated as well, together with d, from the set of available
candidates. After d is eliminated, there may be another immediate loser; the process is repeated
until there is no immediate loser (lines 9-12). Let IL be the set of the immediate losers in PU .

After removing all immediate losers in PU , we select a voter i ∈ N such that her top-1 candidate
ai starts with d or ai ∈ IL. We ask the selected voter to report her next preferred candidate among
the available ones in U (lines 15-16). Indeed, when considering P2, not all voters (with current
best candidate among candidates in IL) are asked to submit their next preferred candidate after an
immediate loser’s elimination, at once. However, we select one voter at a time, we ask her to send
her next preferred candidate and we re-compute the immediate losers given the new preference. We
repeat this process (lines 8-15) until we obtain a top-only profile P with candidates among U for
each voter. The advantage of doing so is that asking the voters one by one, can save communication
costs since the new voter’s preference may help to detect another immediate losers, thus reduce
the set of available candidates. Finally, the process in lines (4-16) is repeated until there exists a
candidate ranked first by more than 50% of the votes or only one candidate remains in the set of
available candidates U .

Example 6. We take the same profile as in Example 3. The initial tops-only profile gives 3 votes
to a, 3 c, one to b and one to d. Using the tie-breaking priority, the first eliminated candidate is d;
now, b is an immediate loser. Therefore, before querying anyone, we remove d and b. Then we select
one voter among the two who supported b or d, assume we take the voter supporting d. She now
supports a, and there is no need to go further: c is now an immediate loser and a is the winner.

10

Protocol 2: P2

1 Initialize: A, IL = ∅
2 foreach voter i, i ∈ N do
3 P = (a1, ..., an) where ai contains only the top candidate of each voter i

4 repeat
5 d← candidate ranked first by the fewest voters in P
6 Remove d from the set of available candidates, U ← A \ {d}
7 Remove d from all ballots in P (we obtain PU)
8 repeat
9 repeat

10 Remove the immediate loser x (if it exists) from U ← U \ IL where, IL = IL ∪ {x}
11 Remove x from all ballots in PU

12 until There is no immediate losers
13 Select a voter i ∈ N where ai ∈ IL or ai = d
14 ai ← Next preferred candidate of voter i among candidates in U

15 until We have tops-only profile with candidates among U for each voter
16 until There exists a candidate ranked first by more than 50% or |U | = 1

4.4 Evaluation of the Communication Protocols
This section presents the evaluation of the average communication complexity of P1 and P2. We
discuss experiments using data generated from the Mallows φ model and real data. Our main prac-
tical objective is to determine the average communication complexity reported from voters in order
to overturn the winner. We refer to PWorst as the theoretical communication complexity.

4.4.1 Mallows φ

100 200 300 400 500

voters
 (a) φ= 0. 7

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f

Q
u
e
st

io
n
s

4
6

9

9
3
8

1
4

0
7

1
8
7

7

2
3
4
6

1
5

0 3
0

4 4
5
9 6

1
2 7

6
8

1
3

7 2
7

3 4
1

0 5
4

5 6
8

1

PWorst

P1

P2

100 200 300 400 500

voters
 (b) φ= 0. 8

0

500

1000

1500

2000

2500

4
6

9

9
3
8

1
4

0
7

1
8
7

7

2
3
4
6

1
6

8 3
4

1 5
1
3 6

8
3 8

5
6

1
5
6 3

1
6 4

7
5 6

3
3 7

9
2

PWorst

P1

P2

100 200 300 400 500

voters
 (c) φ= 0. 9

0

500

1000

1500

2000

2500

4
6

9

9
3
8

1
4

0
7

1
8
7

7

2
3
4
6

1
8
3 3

7
4 5

6
4 7

5
4 9

4
4

1
7
4 3

5
9 5

4
2 7

2
6 9

1
0

PWorst

P1

P2

100 200 300 400 500

voters
 (d) φ= 1(IC)

0

500

1000

1500

2000

2500

4
6

9

9
3
8

1
4

0
7

1
8
7

7

2
3
4
6

1
8

9 3
8
9 5

9
2 7

9
4 9

9
9

1
8
2 3

7
9 5

7
9 7

7
9 9

8
1

PWorst

P1

P2

Figure 6: Average communication cost with P1, P2 and PWorst

For each experiment, we draw 1000 random profiles. In the first set of experiments, we present
simulation results with m = 7 candidates and let n and φ vary. We simulate the number of bits
transferred between the central authority and the voters when n = {100, ..., 500} with different
values of φ = {0.7, 0.8, 0.9, 1}. Figure 6 shows the average communication cost with P1, P2

and PWorst. Results suggest that in practice, we can save a lot in communication costs for STV
compared to the theoretical communication complexity. From the results, P2 seems to be the best
protocol to determine the STV winner with the lowest amount of information about preferences that
is needed to accurately decide an election. Even with high dispersion parameter, using P2 protocol,
we can save almost 50% of bits communicated between the voters and the central authority e.g.
when n = 500 and φ = 1, only 981 bits are needed to determine the winner against 2346 bits in the
worst case.

Now, we summarize the above results by measuring the normalized communication cost. Indeed,
we compute the ratio of the number of bits elicited from voters using a specific protocol by the

11

number of bits elicited in the worst case. Figure 7 presents the obtained results as we vary φ.

P1 P2

0

20

40

60

80

100

R
a
ti

o
 %

 (
In

fo
rm

a
ti

o
n
 N

e
e
d
e
d
)

3
2
%

2
9
%3

6
%

3
3
%3
9
%

3
8
%4
1
%

4
0
%

φ= 0. 7

φ= 0. 8

φ= 0. 9

φ= 1

Figure 7: The percentage of communication
needed with P1 and P2.

Depicted results suggest that with small values
of φ, P2 is efficient to reduce the communication
cost e.g. for φ = 0.7, only 29% (resp. 32%) of
voters’ preferences are needed to output the winner
under P2 (resp. P1) protocol. As we increase φ
(φ ≥ 0.9), more information is needed from voters
and from the results we can detect that P1 and P2

become closer in communication cost e.g. when
φ = 1, 40% of preferences are elicited under P2

against 41% when using P1.

4.4.2 Real Data

Now, we propose to evaluate P2 protocol using different real data sets. Figure 8 presents the average
communication cost when considering data sets with small (n < 1000) and large (n > 1000)
elections for P1 and P2. Then, Figure 9 summarizes the latter results by measuring the normalized
communication cost. Consistent with the Mallows φ experiments, our results suggest that, in real
vote situations, P2 protocol presents the lowest communication cost for all real data sets. Indeed,
when n < 1000, we save about 70% (resp. 77%) in communication when we use P2 with Glasgow
city and Debian data (resp. ERS). For n > 1000 and when we consider P2, only 24% (resp. 26%)
of preferences are needed to be communicated under Sushi (resp. Dublin) data.

Glosgow city Debian ERS

(a) Real Data (n < 1000)

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f

Q
u
e
st

io
n

3
1
4

5

1
5
3

4

2
6
6

9
9

8

4
8

7

7
2

9
5
9

4
5

1

6
3

PWorst

P1

P2

Sushi Dublin

(b) Real Data (n > 1000)

0

5000

10000

15000

20000

25000

30000

35000

7
5

9
6

7
1
5

5

7
5

2
3

6
7

4
7

PWorst

P1

P2

Figure 8: Average communication cost with P1,
P2 and PWorst using real data

Glosgow city Debian ERS

(a) Real Data (n < 1000)

0

10

20

30

40

50

60

70

80

R
a
ti

o
 %

 (
In

fo
rm

a
ti

o
n
 N

e
e
d
e
d
)

3
2
%

3
2
%

2
7
%3
0
%

2
9
%

2
3
%

P1 P2

Sushi Dublin

(b) Real Data (n > 1000)

0

10

20

30

40

50

60

70

80

2
5
% 2
8
%

2
4
%

2
6
%

P1 P2

Figure 9: The percentage of communication
needed with P1 and P2 using real data

5 Conclusion
In any context where applying STV would be a good idea if it was not unreasonable to ask voters to
rank all candidates, one may think of using the STVk rules of Section 3, or the protocols of Section
4 (for those, one may think of implementing a smartphone application that sends a message to a
voter each time her currently supported candidate has just been eliminated). An idea that we did not
have time to develop is to consider STV in another incomplete information context, namely vote
streams, where voters come one at a time in a streaming fashion (note that the recent work on vote
streams [3, 8] do not consider STV); the key practical question is to decide when we have enough
information to eliminate one more candidate, so that the next voters will have less information to
communicate.

Acknowledgments. The authors are very grateful to the reviewers for providing useful and
supportive feedback.

12

References
[1] John J. Bartholdi and James B. Orlin. Single transferable vote resists strategic voting. Social

Choice and Welfare, 8(4):341–354, Oct 1991.

[2] Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, and Jörg Rothe. Campaigns for lazy
voters: truncated ballots. In International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 Volumes), pages 577–584, 2012.

[3] Arnab Bhattacharyya and Palash Dey. Fishing out winners from vote streams. Electronic
Colloquium on Computational Complexity (ECCC), 22:135, 2015.

[4] Craig Boutilier and Jeffrey S. Rosenschein. Incomplete information and communication in
voting. In Handbook of Computational Social Choice, pages 223–258. 2016.

[5] Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score rankings
and maximum likelihood estimation. In IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages
109–115, 2009.

[6] Vincent Conitzer and Tuomas Sandholm. Communication complexity of common voting rules.
In Proceedings of the 6th ACM conference on Electronic commerce, pages 78–87. ACM, 2005.

[7] Lihi Naamani Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Reaching a joint decision
with minimal elicitation of voter preferences. volume 278, pages 466–487. Elsevier, 2014.

[8] Palash Dey, Nimrod Talmon, and Otniel van Handel. Proportional representation in vote
streams. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages 15–23, 2017.

[9] Yuval Filmus and Joel Oren. Efficient voting via the top-k elicitation scheme: a probabilistic
approach. In ACM Conference on Economics and Computation, EC ’14, Stanford , CA, USA,
June 8-12, 2014, pages 295–312, 2014.

[10] Rupert Freeman, Markus Brill, and Vincent Conitzer. On the axiomatic characterization of
runoff voting rules. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 675–681, 2014.

[11] Meir Kalech, Sarit Kraus, Gal A Kaminka, and Claudia V Goldman. Practical voting rules
with partial information. volume 22, pages 151–182. Springer, 2011.

[12] Eyal Kushilevitz. Communication complexity. Advances in Computers, 44:331–360, 1997.

[13] Tyler Lu and Craig Boutilier. Robust approximation and incremental elicitation in voting
protocols. In Proceedings of IJCAI International Joint Conference on Artificial Intelligence,
volume 22, pages 287–293, 2011.

[14] Tyler Lu and Craig Boutilier. Vote elicitation with probabilistic preference models: Empirical
estimation and cost tradeoffs. In Algorithmic Decision Theory, pages 135–149. Springer, 2011.

[15] Colin L Mallows. Non-null ranking models. i. Biometrika, pages 114–130, 1957.

[16] Nicholas Mattei and Toby Walsh. Preflib: A library for preferences http://www. preflib. org.
In Algorithmic Decision Theory, pages 259–270. Springer, 2013.

[17] Lihi Naamani-Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Reducing preference
elicitation in group decision making. Expert Systems with Applications, 61:246–261, 2016.

13

[18] Joel Oren, Yuval Filmus, and Craig Boutilier. Efficient vote elicitation under candidate uncer-
tainty. In Proceedings of the Twenty-Third international joint conference on Artificial Intelli-
gence, pages 309–316. AAAI Press, 2013.

[19] Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-
consistent single-winner election method. Social Choice and Welfare, 36(2):267–303, 2011.

[20] Piotr Skowron, Piotr Faliszewski, and Arkadii Slinko. Achieving fully proportional represen-
tation: Approximability results. Artificial Intelligence, 222:67–103, 2015.

[21] T. N. Tideman. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3):185–206, Sep 1987.

[22] Toby Walsh. An empirical study of the manipulability of single transferable voting. In ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20,
2010, Proceedings, pages 257–262, 2010.

Manel Ayadi
LARODEC, Institut Supérieur de Gestion (Université de Tunis)
Tunis, Tunisie
LAMSADE, Université Paris-Dauphine
Paris, France
Email: manel.ayadi@hotmail.com

Nahla Ben Amor
LARODEC, Institut Supérieur de Gestion (Université de Tunis)
Tunis, Tunisie
Email: nahla.benamor@gmx.fr

Jérôme Lang
LAMSADE, Université Paris-Dauphine
Paris, France
Email: lang@lamsade.dauphine.fr

14

