
Coreness of Cooperative Games with Truncated
Submodular Profit Functions

Wei Chen1, Xiaohan Shan2, Xiaoming Sun2, and Jialin Zhang2

1Microsoft Research
2Institute of Computing Technology, Chinese Academy of Sciences

June 29, 2018

Abstract

Coreness represents solution concepts related to core in cooperative
games, which captures the stability of players. Motivated by the scale ef-
fect in social networks, economics and other scenario, we study the coreness
of cooperative game with truncated submodular profit functions. Specifi-
cally, the profit function f(·) is defined by a truncation of a submodular
function σ(·): f(·) = σ(·) if σ(·) ≥ η and f(·) = 0 otherwise, where η is a
given threshold. In this paper, we study the core and three core-related con-
cepts of truncated submodular profit cooperative game. We first prove that
whether core is empty can be decided in polynomial time and an allocation
in core also can be found in polynomial time when core is not empty. When
core is empty, we show hardness results and approximation algorithms for
computing other core-related concepts including relative least-core value,
absolute least-core value and least average dissatisfaction value.

1 Introduction

With the wide popularity of social media and social network sites such as Face-
book, Twitter, WeChat, etc., social networks have become a powerful platform
for spreading information among individuals. Thus, influential users always play
important role in a social network. Motivated by this background, influence diffu-
sion in social networks has been extensively studied [9, 17, 4]. Most of previous

1

ar
X

iv
:1

80
6.

10
83

3v
1

 [
cs

.G
T

]
 2

8
Ju

n
20

18

works focus on exploring influential nodes. To the best of our knowledge, there
is no study about the “stability” of influential nodes (seed set) when they are
treated as a coalition.

Consider the following scenario. A group of influential people in a social net-
work are considering forming a coalition so that they can better serve many ad-
vertisers through viral marketing in the social network. To make the coalition
stable, we need to design a fair profit allocation scheme among the members of
the coalition, such that no individual or a subset of people have incentive to de-
viate from this coalition, thinking that the allocation to them is unfair and they
could earn more by the deviation and forming an alliance by themselves. A useful
and mature framework of studying such incentives for stable coalition formation
is the cooperative game theory, and in particular the coreness (core and its related
concepts) of the cooperative games [7, 20].

First we will motivate our consideration of the truncated submodular functions
here. In the above social influence scenario, the typical way of measuring the con-
tribution of any set S of influential people is by its influence spread function σ(S),
which measures the expected number of people in the social network that could
be influenced by S under some stochastic diffusion model. Extensive researches
have been done on stochastic diffusion models, and it has been shown that under
a large class of models σ(S) is both monotone and submodular1 [17, 22, 4]. How-
ever, the advertisers would only be interested in the coalition as a viral marketing
platform when the influence spread reaches certain scale level. In other words, the
coalition can only receive profit after the influence spread is above a certain scale
threshold η. Therefore, the true profit function for the coalition is f(S) = σ(S)
when σ(S) ≥ η, and f(S) = 0 otherwise. We call such f truncated submodular
functions.

Both submodularity and scale effect are common in economic behaviors beyond
the above example of viral marketing in social networks. Therefore, considering
truncated submodular functions as the profit functions is reasonable. In this
paper, we study the computational issues related to the coreness of cooperative
games with truncated submodular profit functions.

Solution Concepts in Cooperative Games. A cooperative game Γ =
(V, γ) consists of a player set V = {1, 2, · · · , n} and a profit function γ : 2V → R
with γ(∅) = 0. A subset of players S ⊆ V is called a coalition and V is called the
grand coalition. For each coalition S, γ(S) represents the profit obtained by S
without help of other players. An allocation over the players is denoted by a vector

1A set function f is monotone if f(S) ≤ f(T) for all S ⊆ T , and is submodular if f(S ∪
{u})− f(S) ≥ f(T ∪ {u})− f(T) for all S ⊆ T and u 6∈ T .

2

x = (x1, x2, · · · , xn) ∈ R|V | whose components are one-to-one associated with
players in V , where xi ∈ R is the value received by player i ∈ V under allocation
x. For any player set S ⊆ V , we use the shorthand notation x(S) =

∑
i∈S xi.

A set of all allocations satisfying some specific requirements is called a solution
concept.

The core [12, 25] is one of the earliest and most attractive solution concepts
that directly addresses the issue of stability. The core of a game is the set of
allocations ensuring that no coalition would have an incentive to split from the
grand coalition, and do better on its own. More precisely, the core of a game Γ
(denoted by C(Γ)), is the following set of allocations: C(Γ)={x ∈ R|V | : x(V) =
γ(V), x(S) ≥ γ(S), ∀ S ⊆ V }. In practice, core is very strict and may be even
empty in some cases. When C(Γ) is empty, there must be some coalitions becoming
dissatisfaction since they can obtain more benefits if they leave the grand coalition
and work as a separated team. In this case, we use the dissatisfaction degree (or
dissatisfaction value), defined as dv(S, x) = max{γ(S)− x(S), 0}, to capture the
instability of player set S with respect to the allocation x. Then, the overall
stability of the game can be measured as either the worst-case or average-case
dissatisfaction degree, for which we consider the following three versions.

The first one is the relative least-core value (RLCV) [11], which reflects the
relative stability, i.e. the minimum value of the maximum proportional difference
between the profits and the payoffs among all coalitions.

Definition 1 Given a cooperative game Γ, the relative least-core value of Γ (RLCV(Γ))

is minx maxS
dv(S,x)
γ(S)

. Technically, RLCV(Γ) is the optimal solution of the follow-
ing linear programming:

min r

s.t.

x(V) = γ(V)
x(S) ≥ (1− r)γ(S) ∀ S ⊆ V
x({i}) ≥ 0 ∀ i ∈ V

(1)

The second one is the absolute least-core value (ALCV) [19] which reflects the
absolute stability, i.e. the minimum value of the maximum difference between the
profits and the payoffs among all coalitions. The formal definition is as following.

Definition 2 Given an cooperative game Γ, the absolute least-core value of Γ
(ALCV(Γ)) is minx maxS dv(S, x). Technically, ALCV(Γ) is the optimal solution

3

of the following linear programming:

min ε

s.t.

x(V) = γ(V)
x(S) ≥ γ(S)− ε ∀ S ⊆ V
x({i}) ≥ 0 ∀ i ∈ V

(2)

The above two classical least-core values capture the stability from the perspec-
tive of the most dissatisfied coalition i.e. the worst case of stability. Sometimes
the worst case is too extreme to reflect the real stability. Thus, we introduce the
least average dissatisfaction value (LADV) which reflects the minimum value of
average dissatisfaction degree among all coalitions.

Definition 3 Given a cooperative game Γ, the least average dissatisfaction value
of Γ (LADV(Γ)) is minx ES(dv(S, x)). Technically, LADV(Γ) is the optimal value
of the following linear programming:

min 1
2n

∑
S⊆V max{γ(S)− x(S), 0}

s.t.

{
x(V) = γ(V)
x({i}) ≥ 0 ∀ i ∈ V

(3)

In this paper, we consider the following computational problems in the context
of truncated submodular functions: (a) Whether the core of a given cooperative
game is empty? (b) How to find an allocation in core if the core is not empty?
(c) If the core is empty, how to compute the relative least-core value, the absolute
least-core value and the least average dissatisfaction value of a cooperative game?

Contributions. We study coreness (solution concepts related to core) of
truncated submodular profit cooperative game Γf . We consider computational
properties of the core, the relative least-core value, the absolute least-core value
and the least average dissatisfaction value of Γf , which are denoted by C(Γf),
RLCV(Γf), ALCV(Γf) and LADV(Γf), respectively.

We first prove that checking the non-emptiness of C(Γf) can be done in poly-
nomial time. Moreover, we can find an allocation in the core if the core is not
empty. Next, we consider the case when the core is empty. For the problem of
computing the relative least-core value (RLCV(Γf)), we show that it is in gen-
eral NP-hard, but when truncation threshold η = 0, there is a polynomial time
algorithm. Along the way, we also find an interesting partial result showing that
there is no polynomial time separation oracle for the RLCV(Γf)’s linear program
unless P=NP, which is of independent interest since it reveals close connections
with a new class of combinatorial problems. For the absolute least-core value

4

problem ALCV(Γf), we prove that finding ALCV(Γf) is APX-hard even when
σ(·) is defined as the influence spread under the classical independent cascade
(IC) model in social network. We also prove that there exists a polynomial time
algorithm which can guarantee an additive term approximation. Finally, for the
least average dissatisfaction value problem LADV(Γf), we show that we can use
the stochastic gradient descent algorithm to compute LADV(Γf) to an arbitrary
small additive error.

Related Work. Cooperative game theory is a branch of (micro-)economics
that studies the behavior of self-interested agents in strategic settings where bind-
ing agreements between agents are possible [3]. Numerous classical studies about
cooperative game provide rich mathematical framework to solve issues related to
cooperation in multi-agent systems [8, 16, 6]. [23] studies the approximation of
the absolute least core value of supermodular cost cooperative games, the results
in this paper can be generalized to submodular profit cooperative games. An
important application of our study is to analyze the stability of influential peo-
ple in social networks. Almost all the existing studies focus on selecting seed set
[5, 13, 26]. To the best of our knowledge, there is no literature considering the
stability of the selected seed set. We utilize cooperative game theory to analyse
the stability of seed set, and generalize it to a generic cooperative game with trun-
cated submodular functions. The truncated operation represents the “threshold
effect” which has been studied widely in literature[14, 1].

2 Model and Problems

2.1 Cooperative Games with Truncated Submodular Profit
Functions

A truncated submodular profit cooperative game is denoted by Γf = (V, f(·)). In
Γf , V is the player set and f(·) is the profit function which is defined as follows:

f(S) =

{
σ(S), if σ(S) ≥ η

0, if σ(S) < η

Note that σ(·) is a nonnegative monotone increasing submodular function with
σ(∅) = 0 and 0 ≤ η ≤ σ(V) is a nonnegative threshold. To express clearly, in the
left of this paper, a truncated submodular profit cooperative game is denoted by
a triple form (V, σ(·), η).

5

Note that the explicit representation of σ(·) might be exponential in the size
of V . The standard way to bypass this difficulty is to assume that σ(·) is given
by a value oracle.

2.2 Computational Problems on the Coreness

Given an truncated submodular profit cooperative game Γf , we focus on the
following problems:
CORE: Is C(Γf) 6= ∅ and how to find an allocation in C(Γf) when C(Γf) 6= ∅?
ALCV: When C(Γf) = ∅, how to compute ALCV(Γf)?
RLCV: When C(Γf) = ∅, how to compute RLCV(Γf)?
LADV: When C(Γf) = ∅, how to compute LADV(Γf)?

Before we analyze the above problems, we introduce a specific instance of
truncated submodular profit cooperative game (see Section 2.3).

2.3 Influence Cooperative Game (Γinf)

As the description in our introduction, an important motivation of our model is
influence in social networks. In this section, we introduce a specific instance of
truncated submodular profit cooperative game, influence cooperative game.

Social graph. A social graph is a directed graph G = (V ∪ U,E;P), where
V ∪U is the vertex set and E is the edge set. P = {pe}e∈E and pe is the influence
probability on each edge e ∈ E. Note that, V and U denote the vertex set of
influential people and target people in G, respectively.

Influence diffusion model. The information diffusion process follows the
independent cascade (IC) model proposed by [17]. In the IC model, discrete
time steps t = 0, 1, 2, · · · are used to model the diffusion process. Each node in
G has two states: inactive or active. At step 0, nodes in seed set S are active
and other nodes are inactive. For any step t ≥ 1, if a node u is newly active at
step t − 1, u has a single chance to influence each of its inactive out-neighbor v
with independent probability puv to make v active. Once a node becomes active,
it will never return to the inactive state. The diffusion process stops when there
is no new active nodes at a time step. For any S ⊆ V , we use σIC(S) to denote
the influence spread of S, the expected number of activated nodes in U from seed
set S ⊆ V , at the end of an IC diffusion. According to [17], σIC(·) is a monotone
submodular function.

Definition 4 An influence cooperative game Γinf = (V, σIC(·), η) is a special form
of the truncated cooperative game, with V as the player set, and the truncation of

6

influence spread function σIC(·) as the profit function.

In the rest of this paper, we analyze problems defined in Section 2.2 one by one.
Note that our positive results (properties and algorithms) could apply to all trun-
cated submodular profit cooperative games including influence cooperative game.
Our hardness results are established for the influence cooperative games, so it is
stronger than the hardness results for general truncated submodular cooperative
games.

3 Computing Core

We start by considering the core of Γf (C(Γf)). In Γf , we say a player i ∈ V is a
veto player if σ(S) < η for any S ⊆ V \ {i}. That is to say, a successful coalition
must include all veto players.

Lemma 1 C(Γf) 6= ∅ if and only if:
(i) There exists at least one veto player in Γf , or
(ii) σ(S) =

∑
i∈S σ({i}), for any S ⊆ V .

Proof. Suppose the player set of Γf is V = {1, 2, · · · , n}. We first prove the
sufficiency of Lemma 1. On one hand, suppose i is a veto player of Γf , then
we can find a trivial allocation x in C(Γf): x({i}) = σ(V) and x({j}) = 0,
∀ j ∈ V \ {i}. On the other hand, x({i}) = σ({i}) (∀i ∈ V) is an allocation in
C(Γf) if σ(S) =

∑
i∈S σ({i}).

Now we prove the necessity. Suppose C(Γf) 6= ∅ and x ∈C(Γf). Let σ(V) =∑n
i=1Mi, where Mi = σ({1, 2, · · · , i}) − σ({1, 2, · · · , i − 1}) is the marginal in-

creasing of player i. If there is no veto player, then for any i ∈ V , σ(V \ {i}) ≥ η
since σ(S) is monotone. Thus, f(V \ {i}) = σ(V \ {i}), ∀ i ∈ V . Suppose
σ(V \{i}) =

∑i−1
j=1Mj+

∑n
j=i+1M

′
ij, where M ′

ij = σ({1, 2, · · · , i−1, i+1, · · · , j})−
σ({1, 2, · · · , i−1, i+1, · · · , j−1}). Note that M ′

ij ≥Mj since σ(S) is submodular.
By the definition of the core, for any i ∈ {1, 2, · · · , n}, we have: x(V \ {i}) ≥
f(V \ {i}) = σ({V \ {i}}). That is,x(V) − x({i}) ≥

∑i−1
j=1Mj +

∑n
j=i+1M

′
ij,

∀i ∈ V .
Summing up these inequalities for all i ∈ V , we have, (n − 1)

∑n
i=1 x({i}) ≥∑n

i=1(
∑i−1

j=1Mj +
∑n

j=i+1M
′
ij) ≥

∑n
i=1(
∑i−1

j=1Mj +
∑n

j=i+1Mj) =
∑n

i=1(σ(V) −
Mi) = (n− 1)σ(V).

We have known that
∑n

i=1 x({i}) =
∑n

j=1Mj = σ(V) and then Mj = M ′
ij,

∀i, j ∈ V . Thus, σ(S) =
∑

i∈S σ({i}). � An important application of Lemma 1

7

is Theorem 1.

Theorem 1 Deciding whether C(Γf) is empty can be done in polynomial time
and an allocation in C(Γf) can be computed in polynomial time if C(Γf) is not
empty.

Proof. [Sketch] First, it takes polynomial time to check the non-emptiness of
C(Γf). When C(Γf) is not empty, then (xj = σ(V),0{i:i 6=j}) ∈ C(Γf) when j is a
veto player and (σ({1}), · · · , σ({n})) ∈ C(Γf) when (ii) satisfies. � The detail

proof of Theorem 1 is shown in the appendix.

4 Computing Relative Least-Core Value

From Lemma 1, C(Γf) may be empty in many cases. It is obvious that RLCV(Γf)
> 0 if C(Γf) = ∅ and RLCV(Γf) = 0 otherwise. In this section, we study compu-
tational properties of RLCV problem. The linear programming corresponding to
RLCV(Γf) (LP-RLCV) is as follows:

min r

s.t.

x(V) = σ(V)
x(S) ≥ (1− r)σ(S) ∀ S ⊆ V, σ(S) ≥ η
x({i}) ≥ 0 ∀ i ∈ V

(4)

A special case of computing RLCV(Γf) is when η = 0. It captures the sce-
nario that the profit of any coalition exactly equals to its influence spread under
influence cooperative game. In Theorem 2 we show that, although there are ex-
ponential number of constraints, LP-RLCV can be solved in polynomial time by
providing a polynomial time separation oracle when η = 0. A separation oracle
for a linear program is an algorithm that, given a putative feasible solution, checks
whether it is indeed feasible, and if not, outputs a violated constraint. It is known
that a linear program can be solved in polynomial time by the ellipsoid method
as long as it has a polynomial time separation oracle [15].

Theorem 2 There exists a polynomial time separation oracle of LP-RLCV when
η = 0. Therefore, RLCV can be solved in polynomial time when η = 0.

Proof. Given any solution candidate of LP-RLCV (x′, r′), we need to either
assert (x′, r′) is a feasible solution or find a constraint in LP-RLCV such that
(x′, r′) violates it. Note that, checking x′(V) = σ(V) and x′({i}) ≥ 0 (∀ i ∈ V)

8

can be done in polynomial time. Thus, we only need to check whether g(S) ,
1− x′(S)/σ(S) ≤ r′, ∀S ⊆ V .

An important property is g(S) achieves its maximum value when S contains

only one single player. This is because g(S) = 1 − x′(S)
σ(S)

≤ 1 −
∑

i∈S x
′
i∑

i∈S σ({i})
≤

1 − mini:i∈S{ x′i
σ({i})} = maxi:i∈S{g({i})}. The first inequality is due to the sub-

modularity of σ(S) and the second inequality is due to mini:i∈[n]{aibi } ≤
∑n

i=1 ai∑n
i=1 bi

,

∀ai, bi ∈ R. Thus, the exponential number of constraints can be simplified to n
constraints on all single players. Then, we can find a polynomial time separation
oracle of LP-RLCV directly. �

When η = 0, RLCV can be solved in polynomial time is mainly because the
most dissatisfaction coalition is a single player. However, when η 6= 0, it becomes
intractable to find the most dissatisfaction coalition.

Theorem 3 There is no polynomial time separation oracle of LP-RLCV for some
η > 0, unless P=NP.

Theorem 3 can not imply the NP-hardness of RLCV. However, the proof of
Theorem 3 reveals an interesting connection between RLCV problem and a series
of well defined combinatorial problems. We will report the proof of Theorem 3
and the generalized combinatorial problems in the appendix.

In the left of this section, we prove the NP-hardness of RLCV, a stronger
hardness result than which in Theorem 3.

Theorem 4 It is NP-hard to compute RLCV(Γf), even under influence cooper-
ative game.

Proof. [Sketch] We construct a reduction from the SAT problem. A boolean
formula is in conjunctive normal form (CNF) if it is expressed as an AND of
clauses, each of which is the OR of one or more literals. The SAT problem is
defined as follows: given a CNF formula F , determine whether F has a satisfiable
assignment. Let F be a CNF formula with m clauses C1, C2, · · · , Cm, over n
literals z1, z2, · · · , zn. Without loss of generality, we set m > 4n.

We construct a social graph G as follows: G = (V1 ∪ V2 ∪ V3, E) is a tripartite
graph (see the sketch graph in Figure 1). In the first layer (V1), there are two nodes
Si and Ti corresponding to each i ∈ {1, 2, · · · , n}, n + 1 dummy nodes labeled
as u1, u2, · · · , un+1 and n dummy nodes labeled as v1, v2, · · · , vn. In the second
layer (V2), there are two nodes xi and xi corresponding to each i ∈ {1, 2, · · · , n},
one node cj for each j ∈ {1, 2, · · · ,m} and a dummy node w. The third layer

9

Figure 1: The reduction from SAT to RLCV(Γf)

(V3) contains only node Q. Edges exist only between the adjacent layers. For
each i ∈ {1, 2, · · · , n}, Si sends an edge to every node in {xi, xi} ∪ {cj : clause
Cj contains literal zi, j ∈ {1, 2, · · · ,m}}. Similarly, for each i ∈ {1, 2, · · · , n}, Ti
sends an edge to every node in {xi, xi} ∪ {cj : clause Cj contains literal zi, j ∈
{1, 2, · · · ,m}}. The probabilities on edges sent form Si and Ti are 1. There is an
edge with influence probability 1 from ui to ci for any i ∈ {1, 2, · · · , n} and m−n
edges form un+1 to cn+1, cn+2, · · · , cm. There is an edge from ui to w with influence
probability 1− n+1

√
1/2 for any i ∈ {1, 2, · · · , n+ 1}. There is also exists an edge

from vi to w with influence probability 1− n
√

1/2 for any i ∈ {1, 2, · · · , n}. The left
edges are fromQ to all nodes in the second layer. The influence probability on edge
(Q,w) is 1/2 and all other probabilities on edges sent from Q is 1. The influence
cooperative game defined on G is Γ(G) = (V = V1∪V3, σIC(·), η = 2n+m+ 1/2).
For convenient, we set N = 2n+m.

Suppose r∗ is the optimal solution of the relative least-core value of Γ(G) We
can prove that r∗ ≥ 1− 1

3
(N + 7

8
)/(N + 1

2
) if F is satisfiable and r < 1− 1

3
(N +

7
8
)/(N + 1

2
) if F is un-satisfiable. The proof of this part is shown in the appendix.

�

5 Computing Absolute Least-Core Value

5.1 Hardness of ALCV

Theorem 5 ALCV problem of influence cooperative game cannot be approxi-
mated within 1.139 under the unique games conjecture.

Proof. [Sketch] We construct a reduction from MAX-CUT problem. Under
our construction, for any instance of MAX-CUT problem, we can construct an

10

instance of ALCV problem such that the optimal solution of these two instances
are equal. The detail proof is shown in our appendix. �

5.2 Approximating ALCV(Γf)

In this section, we approximate ALCV(Γf) by approximating the following linear
programming (LP-PRIME):

min ε

s.t.

x(V) = σ(V)
x({S}) ≥ σ({S})− ε ∀S ⊆ V, σ(S) ≥ η
x({u}) ≥ 0 ∀u ∈ V

The intractability of LP-PRIME lies on the exponential number of constraints
and the hardness of identifying all successful coalitions. We use a relaxed version
LP-RE and a strengthen version LP-STR of LP-PRIME to design an approxima-
tion algorithm of ALCV(Γf). (5) and (6) are formal definitions of LP-RE and
LP-STR, respectively.

min ε

s.t.

x(V) = σ(V)
x(S) ≥ η − ε ∀ S ⊆ V, σ(S) ≥ η
x({u}) ≥ 0 ∀ u ∈ V

(5)

min ε

s.t.

x(V) = σ(V)
x(S) ≥ σ(S)− ε ∀ S ⊆ V
x({u}) ≥ 0 ∀ u ∈ V

(6)

Intuitively, LP-RE and LP-STR denote absolute least-core values of two co-
operative games with new profit functions. Specifically, LP-RE relaxes the con-
straints in LP-PRIME by reducing the profits of all successful coalitions excepting
V to η. Formally, the profit function in LP-RE is g(S): g(V) = σ(V), ∀ S ⊂ V ,
g(S) = η if σ(S) ≥ η and g(S) = 0 otherwise. The profit function in LP-STR is
h(S) = σ(S), ∀S ⊆ V . Clearly, LP-STR strengthens LP-PRIME by increasing
the profits of all unsuccessful coalitions.

Our main result in this section is shown in Theorem 6.

Theorem 6 ∀ δ > 0, there exists an approximate algorithm A of the ALCV(Γf)
problem with running time in poly(n, 1/δ, log σ(V)), A outputs ε′p such that ε∗p ≤
ε′p ≤ min{ε∗p + σ(V)− η + 2δ, max{3ε∗p, η}},.

11

We prove Theorem 6 by show Lemma 2, Lemma 3 and Lemma 4 in order.

Lemma 2 Suppose the optimal value of LP-PRIME, LP-RE and LP-STR are ε∗p,
ε∗r and ε∗s, respectively. Then, we have

ε∗p ≤ ε∗r + (σ(V)− η) ≤ ε∗p + (σ(V)− η), (7)

ε∗p ≤ ε∗s ≤ max{ε∗p, η}. (8)

Lemma 3 There exists a polynomial time approximate algorithm of LP-STR out-
putting ε′s such that ε∗s ≤ ε′s ≤ 3ε∗s.

Lemma 4 ∀ δ > 0, there exists an algorithm of LP-RE outputting ε′r such that
ε∗r ≤ ε′r ≤ ε∗r + 2δ, with runs time in poly(n, 1/δ, log σ(V)).

The proofs of Lemma 2 to Lemma 4 rely heavily on mathematical computation
and we report them in the appendix.

6 Computing Least Average Dissatisfaction Value

Based on Definition 3, LADV(Γf) equals the optimal value of the following linear
programming:

min F (x) = 1
2n

∑
S⊆V max{f(S)− x(S), 0}

s.t.

{
x(V) = σ(V)
x({i}) ≥ 0 ∀ i ∈ V

(9)

Where f(S) = σ(S) if σ(S) ≥ η and f(S) = 0 otherwise. There are exponential
terms in F (x), however, we can utilize stochastic gradient algorithm to approx-
imate the optimal solution of (9). This is because the object function F (x) is a
convex function (Lemma 5) and the feasible solution area in (9) is a convex set.

Lemma 5 F (x) is a convex function.

The proof of Lemma 5 is shown in our appendix. The stochastic gradient descent
algorithm (cf. [24]) can be used to compute LADV(Γf) (see Algorithm 1).

Let F ∗ be the optimal solution of LADV(Γf), F̂ be the output of Algorithm 1
and the profit of grand coalition σ(V) = V . Then, the performance of Algorithm
1 can be formalized in the following theorem.

12

Algorithm 1 Stochastic gradient descent for LADV

1: Parameters: Scaler α > 0, integer T > 0
2: Initialize: X1 = 0, t = 0.
3: Set D = {X : Xi ≥ 0(∀ i ∈ V),

∑
i∈V Xi = σ(V)}.

4: for t = 1 to T do
5: /*choose a random Yt such that E[Yt|Xt] is a subgradient of F .*/
6: Uniformly at random choose a set S ∈ 2V .
7: if f(S) ≥ Xt(S) then
8: Set Yt = (−1S,0V \S).
9: else

10: Set Yt = 0.
11: end if
12: update Xt+ 1

2 = Xt − αYt.

13: /*Project Xt+ 1
2 to D*/

14: Xt+1 = arg minX∈D ‖X−Xt+ 1
2‖2.

15: end for
16: return F̂ = min{F (Xt)}t∈{1,2,··· ,T}.

Theorem 7 ∀ ε > 0, E[F̂]−F ∗ ≤ ε if T ≥ σ(V)4n4

ε2
and α =

√
σ(V)4

Tn4 in Algorithm
1.

Following the analysis in Chapter 14 of [24], Theorem 7 holds since it is easy to
check that E[Yt|Xt] is a subgradient of F (X) at node Xt, for any t ∈ [T] (line 6
- line11 in Algorithm 1).

7 Conclusion and future work

In this paper, we study the core related solution concepts of truncated submodular
profit cooperative game. One possible future work is to change the way of trun-
cating a function. For example, we can set f(S) = σ(S) if |S| ≥ k and f(S) = 0
otherwise. This setting is a special case of the setting in our paper and maybe
we can try to design algorithms for it. In this paper, we prove that computing
the relative least-core value is NP-hard. We also prove that the relative least-core
value can be solved in polynomial time in a special case. A directly future work
is to design an approximate algorithm of RLCV under general case.

13

A Appendix of section 3

Proof. [Proof of Theorem 1] We can design the following polynomial time process
to check the emptiness of C(Γf) and find an allocation in C(Γf) when C(Γf) 6= ∅.
Step 1: Query σ(V \ {i}) for all i ∈ V from value oracle. If there exists j ∈ V
such that σ(V \ {j}) < η, go to Step 2, otherwise, go to Step 3.
Step 2: Return x = (0, · · · , xj = σ(V), 0, · · · , 0) ∈ C(Γf).
Step 3: Query σ(V) and σ({i}) for all i ∈ V from value oracle. If σ(V) =∑

i∈V σ({i}), go to Step 4, otherwise, go to Step 5.
Step 4: Return x = (σ({1}), · · · , σ({n})) ∈ C(Γf).
Step 5: Assert that C(Γf) = ∅. �

B Appendix of Section 4

Proof. [Proof of Theorem 3] We construct a reduction from NP-complete problem
DOMINANT-SET [21]. Given an undirected graph G = (V,E) and an integer
k ∈ N, the DOMINANT-SET problem concerns testing whether there exists a
dominant set of G with size no more than k. A dominant set is a subset S ⊆ V
such that each vertex in V \ S is adjacent to at least one vertex in S.

Given any instance of DOMINANT-SET problem (G = (V,E); k), we con-
struct a social graph G′ as follows: The vertex set in G′ is V ′ = V1 ∪ V2, where
V1 = V2 = V . For each node i ∈ V1 and j ∈ V2, there is a directed edge (i, j) in
G′ if and only if either (i, j) ∈ E in G or i = j. The influence probability on each
edge is 1.

The influence cooperative game defined on G′ is Γ(G′) = (V1, σ
IC(·), η = |V1| =

n). Thus, the linear programming corresponding to the relative least-core value
of Γ(G′) is:

min r

s.t.

x(V1) = n
x(S) ≥ (1− r)n ∀ S ⊆ V1, σ

IC(S) = n
x({i}) ≥ 0 ∀ i ∈ V1

(10)

Now we prove that the DOMINANT-SET problem can be solved in polynomial
time if there exists a polynomial time separation oracle of (10). Given a candidate
solution (x′, r′), where x′i = 1 for any i ∈ V1 and r′ = 1− (k+1)/n. Suppose there
exists a polynomial time separation oracle O of (10). Then ∀ S ⊆ V1, σ

IC(S) = n,
we can decide whether |S| ≥ (k+1

n
)n = k + 1 in polynomial time. Note that

14

{S : S ⊆ V1, σ
IC(S) = n} is the set of all dominant sets of G. Thus, for any G’s

dominant set S, (x′, r′) is a feasible solution if and only if |S| ≥ k + 1. In other
words, having O, we can decide whether there exists a dominant set with size no
more than k. �

In remark 1, we introduce a class of combinatorial optimization problems in-
spired from the proof process of Theorem 3.

Remark 1 We define an adversarial version of the classical weighted set cover
problem: Given a ground set U , a collection of subsets S ⊆ 2U , a weight budget M .
The objective of the adversarial weighted set cover problem is to allocate weight
among subsets in S such that the minimum weight of all set covers is maximum.

Formally, the objective of the adversarial weighted set cover problem is:

maxw:∑S∈S w(S)≤M minC:C is a set cover

∑
S∈C w(S),

where w is a nonnegative allocation vector.
Similarly, we can define adversarial weighted vertex cover problem, adversarial

weighted dominant set problem, and so on.
The following argument shows that the adversarial weighted set cover (dom-

inant set, vertex cover, etc.) problem is a special instance of RLCV. When
η = σ(V) = M , RLCV(Γf) can be denoted more compactly:

RLCV(Γf) = minx:x(V)=M,x≥0 maxS:σ(S)=M(1− x(S)
M

).

Thus, it is enough to compute

maxx:x(V)=M,x≥0 minS:σ(S)=M x(S).

Given any instance of set cover problem, similar to the construction in the proof
of Theorem 3, it is not difficult to construct a social graph such that σIC(S) equals
the number of elements covered by S, for any collection S. Thus, the adversarial
weighted set cover problem is a special instance of RLCV problem.

Proof. [Proof of Theorem 4] We construct a reduction from the SAT problem. A
boolean formula is in conjunctive normal form (CNF) if it is expressed as an AND
of clauses, each of which is the OR of one or more literals. The SAT problem is
defined as follows: given a CNF formula F , determine whether F has a satisfiable
assignment. Let F be a CNF formula with m clauses C1, C2, · · · , Cm, over n
literals z1, z2, · · · , zn. Without loss of generality, we set m > 4n.

We construct a social graph G as follows: G = (V1 ∪ V2 ∪ V3, E) is a tripartite
graph (see the sketch graph in Figure 2). In the first layer (V1), there are two nodes

15

Figure 2: The reduction from SAT to RLCV(Γf)

Si and Ti corresponding to each i ∈ {1, 2, · · · , n}, n + 1 dummy nodes labelled
as u1, u2, · · · , un+1 and n dummy nodes labelled as v1, v2, · · · , vn. In the second
layer (V2), there are two nodes xi and xi corresponding to each i ∈ {1, 2, · · · , n},
one node cj for each j ∈ {1, 2, · · · ,m} and a dummy node w. The third layer
(V3) contains only node Q. Edges exist only between the adjacent layers. For
each i ∈ {1, 2, · · · , n}, Si sends an edge to every node in {xi, xi} ∪ {cj : clause
Cj contains literal zi, j ∈ {1, 2, · · · ,m}}. Similarly, for each i ∈ {1, 2, · · · , n}, Ti
sends an edge to every node in {xi, xi} ∪ {cj : clause Cj contains literal zi, j ∈
{1, 2, · · · ,m}}. The probabilities on edges sent form Si and Ti are 1. There is an
edge with influence probability 1 from ui to ci for any i ∈ {1, 2, · · · , n} and m−n
edges form un+1 to cn+1, cn+2, · · · , cm. There is an edge from ui to w with influence
probability 1− n+1

√
1/2 for any i ∈ {1, 2, · · · , n+ 1}. There is also exists an edge

from vi to w with influence probability 1− n
√

1/2 for any i ∈ {1, 2, · · · , n}. The left
edges are fromQ to all nodes in the second layer. The influence probability on edge
(Q,w) is 1/2 and all other probabilities on edges sent from Q is 1. The influence
cooperative game defined on G is Γ(G) = (V = V1∪V3, σIC(·), η = 2n+m+ 1/2).
For convenient, we set N = 2n+m.

Under the above construction, if F is satisfiable and the corresponding as-
signment is {y1, y2, · · · , yn}. Let A = {Si : yi = 1, i ∈ {1, 2, · · · , n}} ∪ {Ti :
yi = 0, i ∈ {1, 2, · · · , n}}, B = {Si : yi = 0, i ∈ {1, 2, · · · , n}} ∪ {Ti : yi = 1, i ∈
{1, 2, · · · , n}}. Thus, A can active all nodes in the second layer except w andB can
active all nodes in {x1, x2, · · · , xn} ∪ {x1, x2, · · · , xn}. Therefore, there are three
disjoint successful coalitions A′ = A∪{v1, v2, · · · , vn}, B′ = B∪{u1, u2, · · · , un+1}
and Q which means σIC(A′) ≥ η, σIC(B′) ≥ η and σIC(Q) ≥ η. Suppose r∗ is

16

the optimal solution of the relative least-core value of Γ(G) and x∗ is an optimal
allocation. We can prove r∗ ≥ 1 − 1

3
(N + 7

8
)/(N + 1

2
). This conclusion can be

derived by separately considering cases x∗(Q) > 1
3
(N + 7

8
), x∗(Q) < 1

3
(N + 7

8
) and

x∗(Q) = 1
3
(N + 7

8
).

When F is un-satisfiable, it is sufficient for our proof if we can find an solution

(x, r) such that r < 1−
1
3
(N+ 7

8
)

N+ 1
2

. Note that when F is un-satisfiable, then for any

S ⊆ V , |S| ≥ 2n+1 if σ(S) ≥ η. Otherwise, we can construct an assignment such

that F is satisfiable. Let x(Q) = 1
3
(N+ 7

8
)+α and for any v ∈ V , x(v) =

2
3
(N+ 7

8
)−α

4n+1
.

The left is to prove that there exists a positive α such that x(Q)
σIC(Q)

≤ x(S)
σIC(S)

for

any S satisfying σIC(S) ≥ η. We prove the above inequality by considering the
following two cases:
(i) Q ∈ S: In this case,

x(S)

σIC(S)
≥ x(Q) + x(S \ {Q})

σIC({Q}) + 1

≥ min{ x(Q)

σIC({Q})
, x(S \ {Q})}

≥ min{
1
3
(N + 7

8
) + α

N + 1
2

,
2
3
(N + 7

8
)− α

4n+ 1
}.

There exists α > 0 such that
1
3
(N+ 7

8
)+α

N+ 1
2

<
2
3
(N+ 7

8
)−α

4n+1
since

1
3
(N+ 7

8
)

N+ 1
2

<
2
3
(N+ 7

8
)

4n+1
. Thus,

x(S)
σIC(S)

≥ x(Q)
σIC({Q}) .

(ii) Q /∈ S: In this case, there exists an α > 0 such that

x(S)

σIC(S)
=
|S|[2

3
(N + 7

8
)− α]

(4n+ 1)(N + 3
4
)

≥
(2n+ 1)[2

3
(N + 7

8
)− α]

(4n+ 1)(N + 3
4
)

>
[1
3
(N + 7

8
) + α/2]

N + 1
2

=
x(Q)

σIC(Q)
.

�

17

(a) g: An under-graph of MAX-CUT
problem

(b) N : The social graph transformed
from g

Figure 3: Constructing a social graph form a MAX-CUT instance

C Appendix of Section 5

Proof. [Proof of Theorem 5] We construct a reduction from MAX-CUT problem
. The input of MAX-CUT is an undirected graph g = (W,E), where W is the
node set and E is the edge set. The question is to compute the value of the
maximum size of all edge cuts in g. Given an instance of MAX-CUT problem A1,
we construct an instance of influence cooperative game A2 as follows:

The social graph is a one-way layer graph N = (V ∪ U1 ∪ U2, D), where each
node in V corresponds to a node in W one-to-one and each node in U1 corresponds
to an edge in E one-to-one. There is a directed edge from v ∈ V to u ∈ U1 if and
only if the node in W corresponding to v is one of the endpoints of the edge in
E corresponding to u. U2 is a copy of U1 and there is a directed edge from each
node in U1 to its copy node in U2. The probabilities on all edges equal 1. Figure
3 shows an example of the above construction.

The influence cooperative game defined on N is A2 = (V, σIC(·), η = 0). Thus,
ALCV(A2) equals the optimal solution of the following linear programming:

min ε

s.t.

x(V) = σIC(V)
x(S) ≥ σIC(S)− ε ∀ S ⊆ V
x({u}) ≥ 0 ∀ u ∈ V

(11)

In g = (W,E), given any subset S ⊆ W , let I(S) = |{(i, j) ∈ E : i ∈ S, j ∈ S}|
and C(S) = |{(i, j) ∈ E : i ∈ S, j ∈ W \S}|. Clearly, I(S) is the number of edges
induced by S and C(S) is the size of the cut between S and W \ S. To prove
the hardness of computing ALCV(A2), it is sufficient to prove ALCV(A2) = c∗,
where c∗ is the size of the maximum cut of g. Let (x∗, ε∗) be the optimal solution

18

of (11). Therefore, {
x∗(S) ≥ σIC(S)− ε∗,∀S ⊆ V

x∗(V \ S) ≥ σIC(V \ S)− ε∗,∀S ⊆ V

Summing up these two inequalities, we have, 2ε∗ ≥ σIC(S)+σIC(V \S)−x∗(V) =
2I(S) + 2C(S) + 2I(V \S) + 2C(V \S)−σIC(V) = 2I(V) + 2C(V \S)−σIC(V) =
2C(V \ S) = 2C(S). Then ε∗ ≥ c∗ since ε∗ ≥ C(S) for any S ⊆ V .

Let x = (x1, x2, · · · , xn) and xi be the degree of i for any i ∈ W . It is obvious
that x(V) = 2|E| = σIC(V). For any coalition S ⊆ V , σIC(S) = 2(I(S)+C(S)) =
(2I(S) + C(S)) + C(S) = x(S) + C(S) ≤ x(S) + c∗. That is to say (x, c∗) is a
feasible solution of (11). Thus, c∗ ≥ ε∗. Combining with c∗ ≤ ε∗, we have c∗ = ε∗.

If there is a ρ-approximate (ρ ≥ 1) algorithm A for computing ALCV(A2) and
A outputs ε. Therefore, ε∗ ≤ ε ≤ ρε∗. Which means c∗ ≤ ε ≤ ρc∗. Thus, ε/ρ is a
(1/ρ)-approximate value of c∗. If the unique games conjecture is true, [18] proved
that MAX-CUT cannot be approximated within α = 2

π
min0≤θ≤π

θ
1−cos θ (α ≈

0.878). Thus, ALCV problem of influence cooperative game can not be approxi-
mated within 1

α
≈ 1.139. �

Proof. [Proof of Lemma 2] Suppose the optimal solutions of LP-PRIME, LP-RE
and LP-STR are (x∗p, ε

∗
p), (x∗r, ε

∗
r) and (x∗s, ε

∗
s), respectively.

We first prove inequality (7). It obvious that (x∗p, ε
∗
p) is a feasible solution

of LP-RE. Thus, ε∗r ≤ ε∗p. In LP-RE, for any successful coalition S, we have
x∗r(S) ≥ η − ε∗r ≥ σ(S) − (ε∗r + σ(V) − η). Therefore, (x∗r, ε

∗
r + σ(V) − η) is a

feasible solution of LP-PRIME. Thus, ε∗p ≤ ε∗r + σ(V) − η and then (7) sets up.
Now we prove (8). Similar to the proof of inequality (7), (x∗s, ε

∗
s) is a feasible

solution of LP-PRIME. Thus, ε∗p ≤ ε∗s. In LP-PRIME, for any successful coalition
S, we have x∗p(S) ≥ σ(S)− ε∗p. For any unsuccessful coalition S ′, we have σ(S ′)−
x∗p(S

′) < η. Thus, (x∗p(S),max(ε∗p, η)) is a feasible solution of LP-STR. Thus,
ε∗p ≤ ε∗s ≤ max(ε∗p, η). �
Proof. [Proof of Lemma 3] LP-STR captures cooperative games with submodular
profit function. [23] proposed a framework to approximate the least-core value of
this kind of cooperative games.

They defined an optimization problem names as x-maximum dissatisfaction
problem for cooperative game (V, σ) (x-MD), where V is the player set and σ is
the submodular profit function. The definition of x-MD is: Given any allocation x
such that x(V) = σ(V), find a coalition S∗ whose dissatisfaction is maximum. i.e.
maxS⊆V {σ(S) − x(S)}. Under their framework, a ρ-approximation algorithm of
x-MD implies a 1/ρ-approximation algorithm of the least-core value of the cooper-

19

ative game (N, σ). Moreover, ones can find an allocation in this ρ-approximation
least-core.

Note that, given an allocation x(V) = σ(V), finding the maximum value of
σ(S)−x(S) falls into the submodular function maximization problem since σ(S)−
x(S) is submodular. In [2], the authors design a deterministic 1/3-approximate
algorithm of submodular function maximization problem when the function value
on ∅ and V is nonnegative. That is to say, there exists an 1/3-approximation
algorithm of LP-STR since σ(∅)− x(∅) = σ(V)− x(V) = 0. �
Proof. [Proof of Lemma 4] The outline of the dynamic scheme is a generalization
of the process in [10] In LP-RE, let α = η − ε, then LP-RE can be transformed
to the following linear programming (LP-RELAX-NEW):

max α

s.t.

x(V) = σ(V)
x({S}) ≥ α ∀S ⊆ V, σ(S) ≥ η
x({u}) ≥ 0 ∀u ∈ V
0 ≤ α ≤ η

(12)

We break LP-RELAX-NEW into a family of linear feasibility programs F =
{LFP1, LFP2, · · · , LFPt}, where t = dη

δ
e. The k-th linear feasibility program

LFPk is:
x(V) = σ(V)

x({S}) ≥ kδ ∀S ⊆ V, σ(S) ≥ η

x({u}) ≥ 0 ∀u ∈ V
Let k∗ = max{k : LFPk has a feasible solution} and α∗ be the optimal value of
LP-RELAX-NEW. Thus, k∗δ ≤ α∗ < (k∗ + 1)δ.

To solve these linear feasibility programs, we need a polynomial separation
oracle since there are exponential constrains in each program. However, we do
not know how to construct such an oracle. Following the idea in [10], we also
construct a “partial” separation oracle Ok for each program LFPk, k = 1, · · · , t.
Ok has the following property, given a candidate solution x to LFPk, the output
of Ok falls into one of the following cases:

1. Ok successes, i.e. it can assert that x is a feasible solution for LFPk or
output a violate constraint in LFPk.

2. Ok fails, then it outputs a feasible solution for LFPk−1.

Now we introduce how to use this partial separation oracle. Suppose we run
the ellipsoid algorithm for each LFPk, k = 1, · · · , t, using Ok instead of a proper

20

separation oracle. If Ok successes, we can obtain a feasible solution to LFPk or
assert that k∗ = k − 1. If Ok fails, we can obtain a feasible solution to LFPk−1.
Thus, when we work to k = k∗, we can obtain a feasible solution of LFP ∗k or
LFPk∗−1. Let k′ be the largest value of k for which our procedure finds a feasible
solution for LFPk. It holds that k∗−1 ≤ k′ ≤ k∗. Now, it is not difficult to derive
that ε∗r ≤ η − k′δ ≤ ε∗r + 2δ.

A crucial problem is how to design Ok. Indeed the main idea of Ok is to apply
dynamic programming such that we can decide whether there exists a coalition
S with σ(S) ≥ η but x(S) < kδ under the given x. That is to say, given x(V) =
σ(V), we want to compute max{σ(S)|x(S) < kδ}. To use dynamic programming,
we need to discretized x(S). For each i ∈ V , let x′i = max{jδ′ ≤ xi}, where
δ′ = δ

M
. Now, for each j ∈ {1, · · · , n} and l ∈ L{0, · · · , (k − 1)M − 1}, let

z[j, l] = max{σ(S)|S ⊆ {1, · · · , j}, x′(S) = lδ′}. For each l ∈ L, we initialize
z[j, l] as:

z[1, l] =

{
σ({1}) l = bx

′
1

δ′
c

−∞ otherwise

The iteration rule is:

z[j, l] = max{z[j − 1, l], z[j − 1,
lδ′−x′j
δ′

+ σ({1, · · · , j})− σ({1, · · · , j − 1})]}.
Let U = max{z[n, i], l ∈ L}, then we can find a violated constrains if U ≥ η.
Otherwise, if U ≤ η, then for any S ∈ V with σ(S) ≥ η, we have x′(S) ≥
(k − 1)nδ′ − δ′, thus, x(S) ≥ (k − 1)δ. That is to say, x is a feasible solution to
LFPk−1. The running time of Ok is polynomial time in log σ(V), n and 1/δ. �

D Appendix of Section 6

Proof. [Proof of Lemma 5]

tF (x(1)) + (1− t)F (x(2))

=
1

2n

∑
S⊆V

(max(t(f(S)− x(1)((S)), 0)+

max((1− t)(f(S)− x(2)((S)), 0))

≥ 1

2n

∑
S⊆V

max(t(f(S)− x(1)(S)) + (1− t)(f(S)− x(2)(S)), 0)

=F (tx(1) + (1− t)x(2)).
�

21

References

[1] Bemmaor, A.C.: Testing alternative econometric models on the existence of
advertising threshold effect. Journal of Marketing Research 21(3), 298–308
(1984)

[2] Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time
(1/2)-approximation for unconstrained submodular maximization. SIAM
Journal on Computing 44(5), 1384–1402 (2015)

[3] Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of
cooperative game theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning 5(6), 1–168 (2011)

[4] Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and influence prop-
agation in social networks. Morgan & Claypool Publishers (2013)

[5] Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social
networks. In: KDD. pp. 199–208. ACM (2009)

[6] Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core
based on synergies among coalitions. Artificial Intelligence 170(6-7), 607–619
(2006)

[7] Demange, G.: On group stability in hierarchies and networks. Journal of
Political Economy 112, 754–778 (2004)

[8] Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution
concepts. Mathematics of Operations Research 19(2), 257–266 (1994)

[9] Domingos, P., Richardson, M.: Mining the network value of customers. In:
KDD. pp. 57–66. ACM (2001)

[10] Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: Computational
complexity of weighted threshold games. In: Proceedings of the National
Conference on Artificial Intelligence. vol. 22, p. 718. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

[11] Faigle, U., Kern, W.: On some approximately balanced combinatorial coop-
erative games. Math. Methods Oper. Res. 38, 141–152 (1993)

22

[12] Gillies, D.: Some Theorems on n-Person Games. Ph.D. thesis, Princeton
University (1953)

[13] Goyal, A., Bonchi, F., Lakshmanan, L.V., Venkatasubramanian, S.: On min-
imizing budget and time in influence propagation over social networks. Social
Network Analysis and Mining pp. 1–14 (2012)

[14] Granovetter, M.: Threshold models of collective behavior. American Journal
of Sociology pp. 489–515 (1978)

[15] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combina-
torial optimization, vol. 2. Springer Science & Business Media (2012)

[16] Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation
scheme for coalitional games. In: Proceedings of the 6th ACM conference on
Electronic commerce. pp. 193–202. ACM (2005)

[17] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence
through a social network. In: KDD. pp. 137–146. ACM (2003)

[18] Khot, S., Kindler, G., Mossel, E., ODonnell, R.: Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing
37(1), 319–357 (2007)

[19] Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel,
nucleolus, and related solution concepts. Math. Oper. Res. 4(4), 303–338
(1979)

[20] Meir, R., Rosenschein, J.S., Malizia, E.: Subsidies, stability, and restricted
cooperation in coalitional games. In: IJCAI. pp. 301–306 (2011)

[21] Michael, R.G., David, S.J.: Computers and intractability: a guide to the
theory of np-completeness. WH Free. Co., San Fr pp. 90–91 (1979)

[22] Mossel, E., Roch, S.: Submodularity of influence in social networks: from
local to global. SIAM Journal on Computing 39(6), 2176–2188 (2010)

[23] Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core
of cooperative games with supermodular costs. Discrete Optimization 10(2),
163–180 (2013)

[24] Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From
theory to algorithms. Cambridge university press (2014)

23

[25] Shapley, L.S.: Markets as cooperative games. In: IJCAIRand Corporation
Memorandum (1955)

[26] Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A
martingale approach. In: SIGMOD. pp. 1539–1554. ACM (2015)

24

	1 Introduction
	2 Model and Problems
	2.1 Cooperative Games with Truncated Submodular Profit Functions
	2.2 Computational Problems on the Coreness
	2.3 Influence Cooperative Game (inf)

	3 Computing Core
	4 Computing Relative Least-Core Value
	5 Computing Absolute Least-Core Value
	5.1 Hardness of ALCV
	5.2 Approximating ALCV(f)

	6 Computing Least Average Dissatisfaction Value
	7 Conclusion and future work
	A Appendix of section ??
	B Appendix of Section ??
	C Appendix of Section ??
	D Appendix of Section ??

