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Abstract. Crowdsourced parcel delivery service has progressed dramatically by 

actively incorporating innovative technologies and ideas. Yet, maximizing prof-

itability of this new type of delivery service becomes another challenge for ser-

vice providers as market grows. In this paper we study a service order control 

policy to maximize profitability from a service provider perspective. Specifically, 

we suggest an order admission control approach that determines acceptance or 

rejection of an incoming order according to its profitability characteristics. For 

this, we model the problem as an average reward Semi-Markov Decision Process 

and utilize reinforcement learning to obtain an optimal order control policy that 

maximizes overall profitability of a service provider. Through numerical illustra-

tions, we show that our suggested approach outperforms traditional methods, es-

pecially when the order arrival rate is high. Thus, smart order management is an 

important component of parcel pickup and delivery services.  

Keywords: Reinforcement Learning. Crowdsourced Parcel Delivery, Planning 

and Decision-makings, Admission Control, Smart Logistics 

1 Introduction 

Since emergence of Industry 4.0, a crowdsourced parcel delivery service based on the 

idea of the sharing economy and just-in-time delivery, a multitude of scholars from 

different perspectives [1–3] have investigated the utility of this concept. First, 

crowdsourced parcel delivery is cost efficient in that it uses a shared resource. Second, 

it can provide more customized services, that is, pickup and delivery at the time a cus-

tomer specifies. Lastly, it is eco-friendly since fewer vehicles are required to perform 

the given delivery service, thereby reducing the environmental pollution caused by high 

volume traffic and oversized delivery vehicles. There are three mainstream transport 

models that are classified by their type of vehicle: Taxi [4], multi-model, and private 

vehicle. Among these, the private vehicle is the most flexible and efficient, with the 

route and ability for pickup and delivery totally dependent on the driver’s will. In ad-

dition, a private vehicle can support multiple pickup and delivery with less constraints, 

compared to other transport models. Lee et al. studied a private vehicle routing problem 

with an integrated decision-making framework that could handle both on-demand par-
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cel delivery and green logistics, such as considering fuel consumption and gas emis-

sions [5]. In particular, they argue that managing orders in a “smart” way is as important 

as optimizing operational aspects, such as maximizing profits and minimizing costs 

occurring in logistics systems. In their study, they assume that the incoming order can 

be effectively controlled to maximize profitability. Namely, an incoming order that en-

ters a crowdsourced parcel delivery system can be either accepted or declined depend-

ing on the profitability associated with that parcel and its delivery. This order control 

problem maximizes benefits and minimizes costs and is defined and solved through a 

Markov Decision Process (MDP)-based admission control approach, which decides op-

timal sequence decisions and whether to include new incoming requests into the ap-

pointment schedule [6, 7].   

In this paper we focus on optimizing operational costs occurring during conducting 

on-demand crowdsourced parcel delivery business. Specifically, we use a reinforce-

ment learning approach to effectively manage delivery of orders, thereby maximizing 

profitability for the delivery business. In the next section, we define a problem that we 

consider in this paper. Then we suggest a reinforcement learning approach to efficiently 

solve the problem and illustrate the approach with some numerical examples to reveal 

the underlying characteristics of the suggested order control algorithm. 

2 Problem Definition 

To begin with, let us consider a single vehicle routing problem (VRP) with soft time 

windows and multiple on-demand pickup and delivery constraints. Unlike a traditional 

VRP problem, we assume that information about traveling locations and due-dates are 

not known to a service provider in advance. In other words, an order can arrive at any 

time without prior notice. An order contains information about when and where to 

travel to pickup and deliver a parcel. Once an order arrives, an order control system 

decides whether to accept the order with consideration for profitability in executing the 

order. If the order control system accepts the order request, it then schedules pickup 

and delivery of the parcel into the routing schedule. For the criteria for determining 

order acceptance, we consider both vehicle information and parcel information. For 

vehicle information, we consider the current available capacity and the “busyness” of 

the current schedule. For parcel information, we consider traveling distance and due-

date for pickup and delivery as well as the parcel’s load. An order could be rejected due 

to lack of profitability. If order control rejects the order, it may requote the parcel ser-

vice. In the following section, we show how this type of problem can be modeled as a 

sequential decision-making problem, which is an MDP-based model. 

3 Model Formulation 

From an order control perspective, orders keep arriving at random with random 

quote conditions. With every order arrival, the order control system needs to decide 

whether to accept or reject the order. From a modeling perspective, this is a typical form 

of a sequential decision-making problem formulated as a MDP problem. The classical 
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form of MDP, however, is often intractable. To avoid this difficulty, a reinforcement 

learning (RL) approach is used to solve the MDP problem, and it is often combined 

with the function approximation technique, which boosts computational efficiency. In 

this section we define an MDP model for the problem and RL approach to efficiently 

solve the model we formulate. 

3.1 MDP model for order management 

As for the ingredients in the MDP problem, we need to define state, action, and reward. 

First, a vehicle's information and a parcel's information can be regarded as state, de-

noted as 𝑠 ∈ 𝑆 ≔ 𝜗 ∪ 𝜁 where  𝜗 and 𝜁 represent a set of vehicle information and par-

cel information, respectively. A set of vehicle information, 𝜗, consists of available ca-

pacity and “busyness” of the schedule at the current time. A set of parcel information, 

𝜁, consists of due-date and traveling distance for pickup and delivery of the parcel and 

the load of the parcel. In particular, such parcel information is assumed to be unavaila-

ble until the corresponding order arrives, which can be regarded as an event in our sys-

tem. Next, an action, denoted by 𝑎 ∈ 𝐴, takes place in reference to an incoming order, 

that is, acceptance as is or rejection of the order. The best action is determined by com-

paring the benefits of acceptance with that of rejection. Such benefit is defined as a 

reward in the MDP setting and denoted by 𝑟, which is governed by 𝑆 and 𝐴  . With all 

these elements, we want to obtain an optimal policy that maximizes average reward in 

executing orders over the long run.  

Theoretically, such an MDP model can be formulated as Bellman’s equation and 

solved optimally by using several algorithms, such as value iteration, policy iteration, 

or linear programming in an infinite horizon of decision settings. Practically, however, 

the MDP model suffers from the curse of dimensionality, that is, solving the model 

becomes intractable as the size of problem increases. In our case, the combination of 

possible state 𝜗 and 𝜁 exceeds 10 million, which is impossible to be solved by using a 

conventional algorithm. Besides, we assume that an order arrives randomly, and its 

acceptance will be determined at each arrival point in the system. Therefore, inter-de-

cision time is not consistent; thus, the problem needs to be modeled as Semi-

MDP(SMDP), which has more complex computational structures. In the following sec-

tion, we suggest RL with the function approximation approach to solve this model. 

3.2 Reinforcement learning (RL) approach 

Q-learning, one of the RL approaches, is an iterative learning algorithm that learns 

from numerous trials by simulating actions, thus obtaining the best policy for a specific 

situation. Usually, Bellman’s equation can be solved optimally using the Q-learning 

approach. In this paper the original version of the Q-learning approach is tailored for 

solving an average reward SMDP problem. Bertsekas proves that a regular Markov 

chain can be transformed into a Markov chain with an artificial terminate state, and the 

optimal policy of average reward SMDP for both cases is identical. Such a transformed 
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model is called a stochastic shorted path (SSP) problem and is highly tractable, com-

pared to the original problem [8]. This SSP problem can be solved in a Q-learning form 

as follows: 

 

Q(i, a) = (1 − α)Q(i, a) + α[r(i, a, j) − ρt(i, a, j) + 𝕀𝑗≠𝑖∗ max
𝑣∈𝐴(𝑗)

𝑄(𝑗, 𝑣)]       (1) 

Here i, j ∈ S and  𝑖∗ ∈ 𝑆 is an artificial terminate state. α stands for a step size for an 

iterative algorithm. t(i, a, j) stands for sojourn time from the state i to state j, and  ρ is 

an estimated average reward, which is updated iteratively with accumulated reward and 

time [9]. 𝕀𝑗≠𝑖∗  is 1 when ≠ 𝑖∗, otherwise 0. 

    Once an order arrives, its acceptance is determined by comparing the Q value of 

acceptance with the Q value of rejection. If 𝑄(𝑠, 𝑎𝑎𝑐𝑐𝑒𝑝𝑡) is greater than 𝑄(𝑠, 𝑎𝑟𝑒𝑗𝑒𝑐𝑡) 

then the system accepts the order, otherwise the order is rejected. The difference be-

tween the two Q values is defined as the “additional-fee-for-acceptance.” In the case of 

rejection, the “additional-fee-for-acceptance” becomes a positive value, which means 

the order would be accepted (i.e., the rejection decision overturned) if the customer 

were to pay an amount greater than or equal to the "additional-fee-for-acceptance" 

value. This value is denoted as  𝛿(𝑠) and defined as follows: 

 

𝛿(𝑠) = {
𝑄(𝑠, 𝑎𝑟𝑒𝑗𝑒𝑐𝑡) − 𝑄(𝑠, 𝑎𝑎𝑐𝑐𝑒𝑝𝑡) , if   𝑄(𝑠, 𝑎𝑟𝑒𝑗𝑒𝑐𝑡) >  𝑄(𝑠, 𝑎𝑎𝑐𝑐𝑒𝑝𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2) 

 

Namely, overturning the rejection decision requires 𝛿(𝑠) as an additional price. If 

the incoming order is rejected with higher 𝛿(𝑠), we can argue that the order is less 

attractive to the service provider. Meanwhile, if the order is rejected with lower 𝛿(𝑠), 

the rejected decision may be overturned and the order accepted by slightly changing 

the quote conditions, which makes the order more attractive. 

RL can be more efficient in solving models when it incorporates a function approx-

imation scheme. A popular approximation approach is to utilize an Artificial Neural 

Network (ANN) to efficiently retrieve and store enormous number pairs consisting of 

state and action. Although the detailed scheme is not included in this paper due to  page 

limits, interest readers are referred to the relevant literature [8–11]. 

 

4 Numerical Illustration 

This section describes the order control algorithm suggested in this paper and presents 

some numerical illustrations. For convenience, we consider a single vehicle routing 

problem with soft time windows. Since the order planning and route scheduling part is 

separated, choosing which route scheduling algorithm is trivial, i.e., no matter which 

route algorithm is used, the planning trend does not change. In this paper, we use the 

algorithm which was developed for deriving on-demand just-in-time delivery schedules 

based on the continuous variable feedback control approach [12].  
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4.1 Experimental scenarios 

In Table 1 we summarize the experimental conditions used for the illustration. All lo-

cations and due-date for pickup and delivery are randomly generated under the given 

condition in Table 1. For representing “busyness” of the schedule, we define the penalty 

parameter, 𝜉, as the summation of the deviation between scheduled time and appoint-

ment time of all current accepted orders (i.e., earliness or tardiness from the original 

schedule). Large 𝜉 means the current delivery schedule is far from the original ap-

pointed due-date. In that case we impose a high penalty for the order, and this will 

increase the cost for executing the order, thereby lowering the chances of it being ac-

cepted. Here, a cost consists of delivery distance and parcel load, 𝜉 penalty, and due-

date. As 1) the vehicle travels longer, 2) due-date is tighter, 3) the current schedule 

becomes busier (i.e., high level of deviations between scheduled and appointed time) 

and 4) the parcel is heavier, we assume the cost for carrying the corresponding order 

increases. The lower and upper bounds related to cost were set at $4.99 and $10, re-

spectively, by referring to the related literature [13]. 

 

Table 1. Experimental conditions 

Parameter Value 

Arrival rate Varies from 1 to 10 per minute 

Vehicle capacity (lbs) 400  

Delivery space 20 mile by 20 mile 

Due-date 0.5, 1, 1.5, 2, 4, 6, 8, and 12 hours after current time 

𝜉 penalty 

No penalty (< 0.5 hour difference), Light (0.5~1 hour differ-

ence), Heavy (2 > hour difference), Maximum (> 3 hour dif-

ference) 

Load of a parcel (lbs) 10, 20, 30, 40 

 

4.2 Experiment results and discussions 

With RL and all of the conditions mentioned above, we calculated average reward and 

the ratio of admission when a new order arrives by varying the arrival rate of the order. 

The detailed results are shown in Table 2. From the results, we could see the average 

reward increases gradually as the arrival rate increases. Intuitively, this result is reason-

able in that we expect more incoming orders as the arrival rate increases, thereby con-

tributing to increased average reward.  

   Meanwhile, we could also see the ratio of admission tends to be lower as the arrival 

rate increases, even though average reward increases at that time. This result can be 

interpreted as our model tending to choose more profitable orders from among the many 

incoming orders.  

   For comparison purposes, we consider a simple heuristic algorithm. The rule of the 

algorithm is that we accept a parcel as long as vehicle capacity remains. Namely, the 

algorithm only rejects an order when the capacity becomes full. Intuitively, this type of 
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heuristic makes sense in that the worker can easily apply the rule on site. From a simu-

lation result of the algorithm, however, we saw that average reward decreases as the 

arrival rate increases. If the system follows this rule, the vehicle’s capacity becomes 

full as the arrival rate increases. “Full” capacity means increasing fuel costs, thereby 

lowering profitability to carry the orders.  

 

 

Table 2. Average reward and admitted ratio by arrival rate 

Arrival Rate Average Reward ($) Admitted Ratio 

1 1.752317895 1 

2 2.030466464 0.605830336 

3 1.680257417 0.507339358 

4 2.120772918 0.535525655 

5 2.464457988 0.208630454 

6 3.669486354 0.354101483 

7 3.453952971 0.58208095 

8 3.133908961 0.541404358 

9 4.774441287 0.252209083 

10 8.397353574 0.340053004 

 

In terms of “additional-fee-for-acceptance”, we plotted three cases that have differ-

ent arrival rate values (𝜆 = 2, 6, and 10) in Fig. 1. In the case of a low arrival rate ( 𝜆 =
2), 

we observe 𝛿 does not significantly change across the range of capacity, meaning that 

the attractiveness of rejecting the order is trivial in most cases. Intuitively, this result 

makes sense since we may not need to be “choosy” when an order arrives intermittently. 

Also, we observe low level of 𝛿 for the case of low arrival rate, compared to higher 

arrival cases. Low 𝛿 means a minimal additional fee will lead to overturning the re-

jected decision. In other words, even if an order is rejected for some reason(s), it can 

be relatively easy to have the order accepted by paying a little more.  

However, this trend changes when the arrival rate is high (𝜆 = 6 and 10). In this case 

a high level of 𝛿 is observed at a lower level of remaining capacity, meaning that a 

rejected order carries a higher fee for the rejection to be overturned and the order to be 

accepted. Our algorithm becomes “choosy” in accepting an order when available ca-

pacity decreases. This can be interpreted as follows: given the case of highly frequent 

arrival events, if we have little available capacity, the system does not accept any orders 

since it expects greater profitability will result from order rejection and requoting at a 

higher price for order acceptance. Meanwhile, if there is enough room to load additional 

parcels, overturning rejected orders is possible by paying a little more.  
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Fig. 1. “Additional-fee-for-acceptance” given available capacity 

5 Conclusion and Future Research 

In this paper we study order control for maximizing profitability for a crowdsourced 

parcel pickup and delivery service. We show how the MDP-based control approach can 

be applied to this type of problem. We use a tailored RL approach with an adaptation 

of function approximation to efficiently solve the SMDP problem, which is often in-

tractable in determining optimal policy. From the numerical results we gained some 

insights on how order control policy behaves as a variety of parameters such as arrival 

rate or available capacity changes.  

Although we consider only two actions for this problem, that is, accept or reject the 

parcel, we can further add other types of actions. In particular, in the case of rejecting 

an order, we regard this as the starting point for negotiating with a customer. In other 

words, the order control system may suggest that the customer resubmit the order with 

at least one of the following conditions: 1) select different time slot with greater avail-

ability or 2) pay higher price for order. Thus, we may need to guide the customer by 

presenting different quote conditions until the request can finally be accepted. In addi-

tion, this paper only deals with a single vehicle routing problem but can be extended to 

a multiple vehicle routing problem [14], which represents the future direction of this 

research.  
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