Skip to main content

Verifying Bounded Subset-Closed Hyperproperties

  • Conference paper
  • First Online:
Static Analysis (SAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11002))

Included in the following conference series:

Abstract

Hyperproperties are quickly becoming very popular in the context of systems security, due to their expressive power. They differ from classic trace properties since they are represented by sets of sets of executions instead of sets of executions. This allows us, for instance, to capture information flow security specifications, which cannot be expressed as trace properties, namely as predicates over single executions. In this work, we reason about how it is possible to move standard abstract interpretation-based static analysis methods, designed for trace properties, towards the verification of hyperproperties. In particular, we focus on the verification of bounded subset-closed hyperproperties which are easier to verify than generic hyperproperties. It turns out that a lot of interesting specifications (e.g., Non-Interference) lie in this category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Access Control is defined over systems (reachable) states. Non-Interference, instead, is defined over systems input/output (I/O) traces.

  2. 2.

    Here \(X \leqslant Y\) iff for every \(d \in X\) exists \(d^\prime \in Y\) such that d is a prefix of \(d^\prime \) [9].

  3. 3.

    For the sake of simplicity, we suppose the programs \(\mathsf {P}_i\) have only one variable and the state is denoted by the set of its possible values.

  4. 4.

    Namely a semantics function, defined on a program \(\mathsf {P}\) syntax, computing \(\mathcal {S}[\mathsf {P}]\).

  5. 5.

    \(\mathcal {A}\) is an abstract domain of \(\mathcal {C}\) if there exists a Galois connection , where \(\alpha ,\gamma \) are monotone maps such that: \(\forall c \in \mathcal {C}, a \in \mathcal {A}\, .\, \alpha (c) \preceq a \Leftrightarrow c \preccurlyeq \gamma (a)\).

  6. 6.

    It is a Galois connection with surjective abstraction function.

  7. 7.

    We recall that any abstract domain can be made partitioning [22].

  8. 8.

    Where and the others are similarly defined.

  9. 9.

    Here we implicitly apply a non-relational variables abstraction.

  10. 10.

    Here \({\dot{\subseteq }}\) denotes the pointwise set inclusion.

References

  1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties in HyperLTL. In: IEEE 29th Computer Security Foundations Symposium, pp. 239–252 (2016)

    Google Scholar 

  2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)

    Article  MathSciNet  Google Scholar 

  3. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition instead of self-composition for proving the absence of timing channels. In: Proceedings of PLDI, pp. 362–375 (2017)

    Google Scholar 

  4. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting semantics and its application to static analysis of information flow. In: Proceedings of POPL, pp. 874–887 (2017)

    Google Scholar 

  5. Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: Information leakage in declassification policies. ENTCS 173, 47–66 (2007)

    MATH  Google Scholar 

  6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In: Proceedings of 17th IEEE Computer Security Foundations Workshop, pp. 100–114 (2004)

    Google Scholar 

  7. Buro, S., Mastroeni, I.: Abstract code injection - A semantic approach based on abstract non-interference. In: Dillig, I., Palsberg, J. (eds.) VMCAI 2018. LNCS, vol. 10747, pp. 116–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_6

    Chapter  Google Scholar 

  8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics for hyperproperties. In: Proceedings of POST (2014)

    Google Scholar 

  9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010)

    Article  Google Scholar 

  10. Cohen, E.: Information transmission in computational systems. SIGOPS Oper. Syst. Rev. 11(5), 133–139 (1977)

    Article  Google Scholar 

  11. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (2002)

    Article  MathSciNet  Google Scholar 

  12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of POPL, pp. 238–252 (1977)

    Google Scholar 

  13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of POPL, pp. 269–282 (1979)

    Google Scholar 

  14. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In: Proceedings of ICCL, pp. 95–112 (1994)

    Google Scholar 

  15. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL and HyperCTL\(^*\). In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_3

    Chapter  Google Scholar 

  16. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Proceedings of POPL, pp. 261–273 (2015)

    Google Scholar 

  17. Giacobazzi, R., Mastroeni, I.: Transforming semantics by abstract interpretation. Theor. Comput. Sci. 337(1–3), 1–50 (2005)

    Article  MathSciNet  Google Scholar 

  18. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-interference by abstract interpretation. In: Proceedings of POPL, pp. 186–197 (2004)

    Google Scholar 

  19. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: a unifying framework for weakening information-flow. ACM Trans. Priv. Secur 21(2), 9:1–9:31 (2018)

    Article  Google Scholar 

  20. Giacobazzi, R., Ranzato, F.: Personal communication (2017)

    Google Scholar 

  21. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

    Google Scholar 

  22. Hunt, S., Mastroeni, I.: The PER model of abstract non-interference. In: Proceedings of 12th International Symposium on Static Analysis, pp. 171–185 (2005)

    Google Scholar 

  23. Mastroeni, I., Banerjee, A.: Modelling declassification policies using abstract domain completeness. MSCS 21(6), 1253–1299 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Mastroeni, I., Nikolić, Đ.: Abstract program slicing: from theory towards an implementation. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 452–467. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16901-4_30

    Chapter  Google Scholar 

  25. Mastroeni, I., Pasqua, M.: Hyperhierarchy of semantics - A formal framework for hyperproperties verification. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_12

    Chapter  Google Scholar 

  26. Mastroeni, I., Zanardini, D.: Abstract program slicing: An abstract interpretation-based approach to program slicing. ACM TOCL 18(1), 7:1–7:58 (2017)

    Article  MathSciNet  Google Scholar 

  27. Naumann, D.A.: From coupling relations to mated invariants for checking information flow. In: Proceedings of ESORICS, pp. 279–296 (2006)

    Google Scholar 

  28. Pasqua, M., Mastroeni, I.: On topologies for (hyper)properties. In: Proceedings of ICTCS, pp. 1–12 (2017). http://ceur-ws.org/Vol-1949/ICTCSpaper13.pdf

  29. Ranzato, F., Tapparo, F.: Strong preservation as completeness in abstract interpretation. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 18–32. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24725-8_3

    Chapter  Google Scholar 

  30. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In: Proceedings of PLDI, pp. 57–69 (2016)

    Google Scholar 

  31. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005). https://doi.org/10.1007/11547662_24

    Chapter  Google Scholar 

  32. Urban, C., Müller, P.: An abstract interpretation framework for input data usage. In: ESOP, pp. 683–710 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Roberto Giacobazzi and Francesco Ranzato for sharing with us their preliminary work on analyzing analyses [20], which has many connections with the present work and may create interesting future collaborations. Finally, we would like to thank the anonymous reviewers for the useful suggestions and comments, helping us in improving the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pasqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mastroeni, I., Pasqua, M. (2018). Verifying Bounded Subset-Closed Hyperproperties. In: Podelski, A. (eds) Static Analysis. SAS 2018. Lecture Notes in Computer Science(), vol 11002. Springer, Cham. https://doi.org/10.1007/978-3-319-99725-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99725-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99724-7

  • Online ISBN: 978-3-319-99725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics