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Abstract. Reliability measures the ability of a system to provide its
intended level of service. It is influenced by many factors throughout a
system life-cycle. A detailed understanding of their impact often remains
elusive since these factors cannot be studied independently. Formulating
reliability studies as a Bayesian regression problem allows assessment of
their impact simultaneously and to identify a predictive model of relia-
bility metrics.
The proposed method is applied to currently operational particle acceler-
ator equipment at CERN. Relevant metrics were gathered by combining
data from various organizational databases. To obtain predictive models,
different supervised machine learning algorithms are applied and com-
pared in terms of their prediction error and reliability. Results show that
the identified models accurately predict the mean-time-between-failure
of devices – an important reliability metric for repairable systems - and
reveal factors which lead to an increased dependability. These results pro-
vide valuable inputs for early development stages of highly dependable
equipment for future particle accelerators.

Keywords: Reliability Prediction · System Life Cycle · Bayesian Learn-
ing.

1 Introduction

Reliability measures the ability of a system to perform as expected during its
intended lifetime. The ”field-reliability” of complex repairable systems is a result
of all actions during all stages of its system lifecycle. These stages are (1) concep-
tual design, (2) detailed design and testing, (3) manufacturing, (4) installation,
(5) operation and maintenance, and (6) phase-out and disposal. At each stage
an interplay of complex technical, organizational and human processes leads to
a more or less desirable outcome in terms of system reliability.
An assessment of all stages and processes is not feasible since models capturing
the interactions between all relevant processes in system development do not
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exist. Therefore, most common reliability methods focus on certain stages and
aspects during a system life cycle which can be modeled and understood - an
overview will be given in section 2. However, such methods struggle to quantify
the overall uncertainty of reliability predictions in a systematic way since con-
tributions by disregarded relevant processes during a system life cycle are not
straight-forward to include.
Instead of focusing on models for certain stages and aspects of a system we pro-
pose to learn a statistical model of the whole product life cycle to predict the
observed field-reliability with machine learning techniques as depicted in figure
1. For a set of existing comparable systems with known field-reliability so-called
”quantitative reliability-indicators” are gathered. Using the reliability-indicators
as input variables and the field-reliability metric as target variables a statistical
reliability model is learned by a supervised machine learning algorithm.
The learned model will always be an approximation of the true underlying sys-
tem life-cycle process. The lost accuracy due to the statistical model and the
limited granularity of the reliability-indicators can be quantified by Bayesian
methods. Thereby, the overall predictive certainty can be quantified in an effi-
cient way based on the available data.

1) Conceptual 
Design

2) Detailed 
Design and 

Testing

3) 
Manufacturing

4) Installation
5) Operation 

and 
Maintenance

a) Quantitiative

Reliability Indicators
b) ML model c) Field Reliability

Fig. 1. Illustration of the proposed approach. The achieved field-reliability (c) can be
seen as the result of relevant processes during the whole product life-cycle (1-5). It is
not feasible to capture and model all of the relevant processes. Instead, it is proposed to
learn a reduced-order statistical life-cycle model (b) with machine-learning algorithms
based on quantitative reliability-indicators (a).

We will demonstrate that the learned models accurately predict reliability
metrics even with a limited set of reliability-indicators (as is the case at early
stages of a system’s life-cycle). Compared to traditional reliability assessment
methods this leads to a reduced workload for reliability predictions and to a sys-
tematic quantification of uncertainties. Furthermore by an appropriate choice of
reliability-indicators and machine learning algorithms one can study the influ-
ence of each individual reliability-indicator. This information assists engineers
in design decisions for highly reliable systems.
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The rest of the paper is structured as follows: In section 2 related methods to re-
liability predictions are presented. In section 3 the methodology of our approach
is explained and in section 4 it is applied in a use-case.

2 Literature Review

A general review of the challenges in reliability studies is given in [19]. The author
of [19] concludes that the two major challenges in reliability studies are complex-
ity and uncertainty. Reliability studies must consider technical, organizational
and human factors each of which influences the field-reliability of systems. In the
following paragraph a selection of reliability prediction methods to tackle these
problems is given.

Reliability Engineering Methods Scientific literature on reliability engineering
prediction methods of electronic systems is numerous. An attempt to classify
and evaluate the existing methods is given in the IEEE standard 1413 [16, 5]
and its successors. In this standard they have been classified as based on

– handbooks,
– stress and damage models (frequently referred to as physics-of-failure based),
– field-data.

Most methods are based on early designs of the considered system and the se-
lected components.
A common criticism for handbook based models is that they do not consider in-
teractions of components but only single-component faults. However, faults due
to single-component failures are not dominant [15, 4, 6, 1, 11]. As a result the ac-
tual field reliabilties can deviate from the predicted ones by orders of magnitude
[10]. The author of [4] argues that some methods should not be seen as ”field-
reliability prediction methods” and rather as part of a review process at a stage
when limited information on the final design is available.
Stress- and damage models are in general more accurate than handbook based
methods. However, the development of such methods requires more effort [15].
Instead of assessing the system on the component level, some approaches use
a top-down approach in which the field-reliability of new systems is estimated
from field-data of similar systems in operation [8, 9].

Reliability Program Assessment A different approach to evaluate the field-reliability
of systems is taken in [13]. The likelihood of achieving the required field-reliability
is estimated by a review of the design process. Each system is assigned a score
depending on its design process and it is shown that this score correlates with
the probability of fulfilling field-reliability requirements. Thereby organizational
aspects of reliability are taken into account.
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Organizational and Human Reliability Analysis In the review article [19] section
3.1.3 is dedicated to non-technical factors in reliability studies since its contri-
bution to the field-reliability can be significant.

In our work we propose to infer the most relevant processes or factors in a
system life-cycle from the field-reliability data of a set of systems. This allows to
include organizational and human reliability factors. The method can be applied
at any stage of a system life-cycle to guide engineering decisions.

3 Methodology

In this section the relevant definitions are made, the methods used are explained
and the general methodology is described.

3.1 Definitions

System reliability It is generally defined as the ability of a system to provide
its intended level of services for a specified time t. For repairable systems it is
usually measured as availability A which is defined by

A =
MTBF

MTBF +MTTR
(1)

with MTBF being the mean-time-between-failure and MTTR being the mean-
time-to-repair. The MTBF is being calculated as

MTBF =
toperation
nfaults

(2)

with toperation being the cumulative operational time of the considered devices
and nfaults being the total number of faults within the operational time. The
MTTR can be evaluated by

MTTR =
tinrepair
nfaults

(3)

with tinrepair being the total time a system is in repair and nfaults the total
number of faults during the operational time. The un-availability UA is given by
UA = 1−A. Note that a constant failure rate is assumed.

System life-cycle It is the overall process describing the lifetime of a system. It
is a concept from systems engineering to address all stages of a product from its
beginning to end. Here these stages shall be divided into (1) conceptual design,
(2) detailed design and testing, (3) manufacturing, (4) installation, (5) operation
and maintenance, (6) and phase-out and disposal. 3

3 Depending on the system under study the definitions of the stages may change. The
proposed methodology is not restricted to this specific choice of stages.
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System definition This discussion is focused on repairable electronic systems. A
more precise definition will be given for the use case in section 4. 4

3.2 Method

The central assumption is that the observed field-reliability is the outcome of
all technical, organizational and human processes during all stages of a system’s
life-cycle. It is unfeasible to model all these interactions due to their complex-
ity and non-linearity. Therefore, we restrict ourselves to learning a statistical
model of the observed field-reliability of comparable systems based on reliability-
indicators collected throughout the system life-cycle. Modern machine learning
algorithms are capable of learning accurate predictive models of field-reliability
based on the relevant reliability-indicators. The loss of information due to the
limited availability of data and the intrinsic uncertainty of the problem can be
assessed by using Bayesian machine learning methods.

Life Cycle Analysis by Machine Learning To arrive at a firm mathemat-
ical description of the proposed method let us hypothesize the existence of a
deterministic model F : Z 7→ Y to determine any field-reliability metric Y ∈ Y
from all relevant input variables Z ∈ Z in the form of

Y = F(Z). (4)

This would be a model to quantify the contribution of all relevant process towards
the field-reliability during the whole system life cycle. Since it is not possible to
derive such a formula or to gather all relevant inputs for practical purposes we
try to approximate the true field-reliability metrics Y by a reduced model

Y ≈ y = f(x), (5)

with x ∈ X , dim(X ) � dim(Z), being the set of collected reliability-indicators
and f : x 7→ y,y ∈ Y being an approximate model. When supplied with pairs of
input and output data D = {(x1,Y1), ..., (xN,YN)} a statistical learning algo-
rithm can learn such a model by minimizing a certain loss function l : Y×Y 7→ R.
This is essentially a regression problem and there exists a vast range of learning
algorithms for this.

For our purposes we prefer learning algorithms which fulfill three additional
requirements. Firstly, to quantify the uncertainty of the predictions of the reli-
ability metrics, we want to learn probabilistic models

p(Y|x). (6)

4 There is no implicit restriction for the proposed method to electronic repairable
systems. It can also be used for non-repairable systems and for mechanic, electric,
electronic or software systems. However, the definitions of the fault metrics must be
adapted.
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Our method will be based on an arbitrary non-linear mapping from the reliability-
indicators to features Φ : X 7→ Rn. Since it is of interest which features are
relevant, secondly, it is beneficial if the learned models are of a parametric form

p(Y|w · Φ(x)), (7)

with w ∈ Rn being a weight vector indicating the relevance of each feature.
Thirdly, some methods prefer models in which only a few features are relevant.
These are preferred from a practical point of view since that requires a reduced
data collection effort for predicting field-reliability. A general justification of such
methods on philosophical grounds is given by Occam’s razor [7].
Concrete algorithms fulfilling these criteria will be presented in section 4. Even
though the outlined requirements are not mandatory, they greatly facilitate the
data collection and model assessment process by providing direct feedback as
will be discussed in the following paragraphs.

(1) Set of 
systems

(2) Reliability 
indicators for 
the systems

(3) Reliability 
metrics for the 

systems

(4) Learn a 
model and test

(b) Predictive Uncertainty

(a) Reliability Indicator Weights

Fig. 2. Illustration of the iterative data collection and reliability prediction process.
The choice of (1) systems, (2) reliability indicators and (3) reliability metrics influences
the quality of the predictive model (4). The learning algorithm provides feed-back in
the form of relevance weights for the reliability indicators (a) and uncertainty bounds
for the field-reliability predictions (b).

Data Collection and Reliability Prediction As briefly outlined in the in-
troduction, the proposed method is based on a statistical analysis of system
life-cycles of comparable systems by a machine learning approach. To carry out
the method a data-set D has to be compiled. To do so, several choices in terms
of (1) comparable systems, (2) relevant reliability-indicators, and (3) reliability
metrics have to be made. A summary of this process is illustrated in figure 3.2
and will be discussed in detail below.
As can be seen in figure 3.2 this is an iterative process. An algorithm with the
desired properties as in equations 6 and 7 can systematically guide the user
through this process by providing quantitative feedback on the quality of the
collected data. However, when solely relying on the feedback of the algorithm
one might encounter some pitfalls which can be avoided by following further
guidelines given below.
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Collection of Training Systems Since the method is based on the field-reliability
of existing comparable systems, the choice of the collected systems will have an
influence on the accuracy of the predictions for future systems. Three general
recommendations can be given for this selection:

– Only systems which have been in use for a significant exploitation period
with accurately monitored reliability metrics shall be used.

– The choice of systems for which a field-reliability model is learned shall in-
clude systems which are comparable to the system for which a field-reliability
shall be predicted. In reliability studies comparable systems are similar in
terms of technical, organizational and human factors throughout their life-
cycle.

– The set of chosen reliability-indicators and reliability metrics has to be avail-
able for both the existing systems and those for which a prediction should
be obtained.

Collection of Reliability-Indicators The choice of these indicators largely influ-
ences the quality of the model in terms of its accuracy and interpretability.
Following statements can be made:

– Based on expert knowledge, recommendations can be given for indicators
which carry important reliability information. E.g. operational conditions
such as load, temperature or humidity can contribute significantly to a failure
rate. Systems which are mass-produced will achieve different field reliabilities
than prototypes. Products developed by highly-skilled experienced engineers
are also expected to behave differently than those developed by un-skilled
and unexperienced engineers [14].

– In engineering practice the collection of data is facing practical limitations
due to time or other restrictions. Therefore, a natural choice is to begin to
collect the indicators which require the least collection effort. For the use-case
in section 4 it will be shown that accurate predictions can be obtained from
a very limited set of meta-variables as reliability-indicators. Furthermore,
one always needs to consider the availability of the indicators for all systems
in the data-set.

Collection of System Reliability Metrics The choice of reliability metrics is usu-
ally given by the system under study. For our choice of system and assuming a
constant failure rate5, these are given by MTBF and MTTR. Based on these
other metrics can be derived.

Training a Reliability Model Having chosen a set of systems, reliability-indicators
and reliability metrics one is able to compile a data-setD = {(x1,Y1), ..., (xN,YN)}
5 This assumption can be relaxed by e.g. predicting a parameterized failure rate dis-

tribution over time. Then, instead of MTBF and MTTR the reliability metrics are
the parameters of the distribution. This requires a different data collection and can
be considered for future work.
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for which xi and Yi are the collected reliability-indicators and the field-reliability
metrics for system i, respectively. This is the data-set based on which a reliabil-
ity model shall be learned.
The general machine learning approach is to split the data-set into a training
data-set Dtrain and a test data-set Dtest

6. Based on the training set, a learning
algorithm will find a model as in equation 5 for which we can evaluate its accu-
racy with the test data-set Dtest. Based on this accuracy estimate it is neither
possible to evaluate the confidence of the predictions nor to assess the relevance
of the selected reliability-indicators. Assuming a learning algorithm is used which
satisfies equations 6 and 7 one is able to do so.
The confidence or uncertainty of the predictions provides feedback on the amount
and quality of the collected data. The weight vector w indicates the relevance
of the features and the reliability-indicators. Depending on the complexity of
the mapping Φ : X 7→ Rn from the reliability-indicators to the features we can
identify the most important reliability-indicators. Using this information and
expert knowledge, we can iteratively refine our data-set (choice of systems and
reliability-indicators) and feature mapping Φ and confirm iterative improvements
by comparing the model predictions with the true field-reliabilities in the test
data-set7.

Reliability Prediction by the Learned Model Once a model is trained and vali-
dated we can use it to predict the field-reliability of new systems. This is done by
providing the collected or estimated reliability-indicators xj,predict for the new
system j. Having trained a model satisfying formula 6, it is possible to estimate
the uncertainty of its predictions - a valuable input for further studies based on
the predictions.

The iterative data collection and the reliability prediction process will be
illustrated for a use-case in section 4. The feedback of the algorithms in terms
of chosen systems, reliability-indicators and features will be assessed.

4 Use Case

In this section the proposed method is used to learn a model for the expected
field-reliability of the next generation of accelerator power converters at the
conceptual stage. It is based on a statistical life-cycle model learned by field-
data of the current and past generations of power converters. The system of
interest, the collected data and features, the used learning algorithms and the
results will be discussed.

6 Alternatively models can also be trained by cross-validation and commonly a few
data-items are left out for later validation purposes.

7 To avoid an overfitting of the test-data we recommend to shuffle the data items
between training and test data-set during the iterations.
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System Definition The considered systems are magnet power converters at the
CERN particle accelerator facilities. A power converter is a device to transform
electrical energy. The conversion is in terms of voltage, current and waveform.
Magnet power converters control the flow of current through particle accelerator
magnets. In order to achieve precise magnetic fields these converters generally
need to control the output current very precisely.

Dataset, Reliability Metrics and Reliability-Indicators

Set of systems At CERN there are currently more than 6000 power converters
of approximately 600 different types in use. Their field-reliability is continu-
ously tracked by a centralized computerized maintenance management system
(CMMS). After removing converter types with a cumulative operational time
toperation of less than ten years and cleaning the data, approximately 300 power
converter types can be used for reliability analysis. Table 1 gives an overview
of minimal and maximal characteristic attributes of power converters in the
dataset.

Table 1. Illustration of characteristic power converter attributes of the studied dataset.

Power [W] Current [A] Voltage [U] Age [yrs] MTBF [hrs]

Minimum 10−6 10−4 10−3 2.2 103

Maximum 108 4 · 104 105 49.7 6 · 105

One has to note that the systems operate in various environments (laborato-
ries, experiment tunnels, outside) and are sometimes exposed to radiation. Some
converters are developed in-house and some are commercially available. Consid-
ering the vast range of converter types and operational environments one would
not expect a global model to accurately predict the field-reliability. Therefore,
both local- and global-models will be trained.

Reliability indicators for the systems The initial choice of reliability-indicators
depends on

– the system development stage at which the prediction shall be carried out,
– recommendations from system experts,
– the availability of data and time or effort which can be attributed to the

analysis.

For our use case a conceptual design stage shall be considered. In that case,
only the rated power (P ), rated voltage (U), rated current (I) and quantity of
each power converter type shall be available. Clearly these (meta-)indicators are
absolutely incapable of capturing the complex processes which occur during a
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system life cycle and influence the field-reliability. However, all information and
processes which are not captured shall result in an increased uncertainty in our
predictions of the field-reliability.
To include expert knowledge, a power-converter classification scheme was de-
veloped with equipment experts at CERN. The following list of additionally
collected reliability-indicators is based on a trade-off between the recommenda-
tions from the experts and restrictions due to the availability of data:

– Avg. Age: The average age of converters for each converter type. Depending
on a reactive or preventive maintenance strategy a decreasing or constant
availability as a function of the age is expected, respectively.

– Cum. Age: The cumulative age of converters for each converter type. A
dependency of the availability on the cumulative age could indicate both a
organizational learning curve in terms of a more efficient maintenance and
a degradation with age of the converters.

– Pol 0-9: The polarity of the converter. This indicates the operating modes,
technology and complexity of the converter8.

– Acc. 1-9: The accelerator in which the converter type is used. Depending on
the accelerator the converter type is exposed to different operating condi-
tions9 and operation modes.

– in Acc.: The number of different particle accelerators in which each power
converter is used.

We can probe different indicators for their information content by appropriate
Bayesian learning methods. The required learning algorithms will be introduced
later in this section.

Reliability metrics for the systems The studied field-reliability metrics areMTBF ,
MTTR, Availability A and Un-Availability UA as defined in section 310. These
are directly computed in the CMMS with the necessary variables for power con-
verter type i which are defined as follows:

– toperation,i: Cumulative time in operation of all converters of converter type
i. Note that commissioning and testing times are not counted towards oper-
ation time.

– nfaults,i: Cumulative number of faults of all converters of converter type
i during the operational time toperation,i. Note that only internal faults of

8 The discrete set of polarities is given by: (1) Unipolar, (2) Bipolar Switch Mechanic,
(3) Bipolar I - Unipolar U - 2 Quadrants, (4) Unipolar I Bipolar U 2 Quadrants, (5)
Bipolar Pulse-Width-Modulation, (6) Bipolar Relay, (7) Bipolar Electronic I/U, (8)
Bipolar Anti-Parallel 4 Quadrants, (9) Bipolar I-circulation 4 Quadrants and, (0)
un-specified or other Polarity.

9 E.g. the radiation levels differ on the kind of accelerator. However, there is also
different operation conditions within each of the accelerators.

10 Note that due to space limitations only the results for the MTBF will be presented.
Models for other metrics can be requested from the authors.
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the system which required an external action to alleviate the problem are
included. Internal faults which are automatically resolved or are very short
and faults due to external reasons are not included. This ensures that a
model for the reliability of the considered systems itself is learned and not
of its surroundings.

– tinrepair,i: Cumulative time in repair of all converters of converter type i
during the operational time toperation,i. The repair time starts by a request
from the system operators to the system experts and ends when the problem
was resolved and the system can continue to operate.

Algorithms By formulating the reliability prediction problem as a supervised
machine learning problem in principle we can choose from a range of existing
learning algorithms to generate the desired statistical model for predictive pur-
poses. Since the uncertainty in the field-reliability predictions shall be quantified
(i.e. a model as presented in equation 6), the choice of algorithms is narrowed
down. Furthermore, sparse parametric models (as in equation 7) are preferred
since they potentially require fewer reliability-indicators to be collected and -
more importantly - since they allow an estimation of the relevance of the choice
of reliability-indicators and the generated features.

A summary of the chosen algorithms is given in table 2. Note that the scikit-
learn python implementations of the algorithms were used [17]. A detailed de-
scription of each algorithm can be found on their website and in their user-guide
[3]. Since the algorithms are standard implementations, only their parametriza-
tions are be given below:

Table 2. Summary of learning algorithms.

UQ (6) Feature Weights (7) Sparsity Global/Local

ARD yes yes yes Global

BAR yes yes balanced Global

GP yes no no Local

ENCV no yes yes Global

SVR no only for linear kernel no Local

– ARD - Automatic Relevance Determination Regression: Sparse Bayesian re-
gression technique as described in [2] - Chapter 7.2.1. The implementation
is taken from [3] - Chapter 1.1.10.2.

– BAR - Bayesian Ridge Regression: A Bayesian regression method as intro-
duced in [12]. It is similar to the ARD Regression but fewer parameters have
to be determined form the data. The implementation is taken from [3] -
Chapter 1.1.10.1.

– GP - Gaussian Process Regression. A kernel-trick based Bayesian Regression
technique. The implementation is described in [18] - Algorithm 2.1 and was
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taken from [3] - Chapter 1.7.1. The kernel is based on a combination of a
radial-basis-function kernel11 and a white-kernel12.

– ENCV: Elastic Net Regression with hyper-parameter optimization by cross-
validation. The implementation is taken from [3] - Chapter 1.1.5 - which
includes a description of the algorithm.

– SVR - Support Vector Machine Regression: A kernel-trick based regression
method. A description is given in [3] - Chapter 1.4.2. Linear basis functions
are used with manually optimized hyper-parameters13.

4.1 Results and Interpretation

Iterative Training Procedure In this section it will be demonstrated that
the user is assisted in choosing the reliability-indicators, the set of feature func-
tions and the selected systems in the data set by a learning algorithm with the
desired properties as in equation 6 and 7. Instead of exercising the iterative pro-
cess the final trained model which was obtained after multiple iterations will be
presented. Based on that, it will be shown how variations of the above named
choices affect the performance of the predictive model and how that is indicated
by the learning algorithm.
Unless further specified, all shown results are based on models trained by the
ARD algorithm. Throughout the training process all introduced algorithms were
used to train the models and compared in terms of their performance. During
this process, the ARD algorithm has shown to be of highest practical value
and will therefore be regarded as preferred choice. Its prediction accuracy was
consistently among the best14, it learns a sparse parametric model which leads
to a decreased data collection effort, it assigns relevance weights to the feature
functions and and it quantifies uncertainties of both the field-reliability predic-
tions and the feature function weights. Nevertheless, results obtained by models
trained by other algorithms will be stated as well for reference.

Reference Model The chosen systems in the data-set and the reliability-indicators
were already introduced earlier in this section. All considered systems are power
converters which are operated at CERN. A large set of converter types was cho-
sen to ensure that the converters for which the field-reliability shall be predicted
are similar to the converters contained in the data-set. The chosen reliability-
indicators are in this case largely predetermined by the problem statement
and the availability of trustworthy data. The benefit of formulating the field-
reliability prediction problem as supervised learning problem is that captured

11 Parameters: length scale=10.0, length scale bounds=(1e-2, 1e3)
12 Parameters: noise level=1e-5, noise level bounds=(1e-10, 1e+1)
13 C = 10, γ = 0.002
14 The prediction error was measured for a test data-set by the mean-squared-error

(MSE). For each of the problems a table of the achieved MSE by different algorithms
will be given.
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relevant indicators are selected, the captured irrelevant indicators are ruled out
and the non-captured relevant indicators contribute to an increased predictive
uncertainty. This is automatically taken care of by the learning algorithm.
Based on the reliability-indicators, following features were generated for the final
model:

– Based on the numeric indicators xnum linear features and logarithmic fea-
tures were chosen - Φ(xnum) = [xnum, log(xnum)]

T
.

– The categorical indicators xcat were split into binary features, whereas the
number of binary variables corresponds to the number of categories per cat-
egorical variable.

Combining all features a feature vector of 34 dimensions was obtained. Of the
281 different converter types in the data-set, 168 were used to train a model
and 113 were used to test the model. The training data set contains converters
which are at least 18 years old and the test set contains converters which are
younger than 18 years. This is to confirm that the learned model can in princi-
ple be extrapolated to future converters 15. To train the learning algorithms the
features were re-scaled by removing their mean and a scaling to unit variance.
Furthermore, the logarithms of the reliability metrics were taken instead of their
nominal value.
The result of the prediction is shown in figure 3. The green line depicts the mean
of the predictive distribution and the green shaded area the 95% confidence in-
tervals. The blue dots mark the actual observed field reliabilites which are almost
always contained. Note that the different converter types on the horizontal axis
were ordered by the mean of the predictive distribution for illustration purposes.

The feature weights are illustrated in figure 4. Note that the estimates by
all considered algorithms 16 are given. This is to show that irrespective of the
chosen learning algorithm a similar model is learned. The ARD and the BAR
model assign distributions to the weights whereas the other models are based on
point estimates. For all models the most pronounced feature is the logarithm of
the quantity of converters per type (log(Quantity)).

In table 3 a) the mean squared error (MSE) between the (mean of) the pre-
dicted values and the true observed field values is shown. A similar performance
is observed for the different algorithms.

Based on this final model we will investigate the influence of changing the set
of systems, the set of reliability-indicators and the form of the feature functions
with respect to the performance of the learned predictive model.

15 Note that for the iterative training procedure this splitting by age was not always
used.

16 Except for the GP algorithm which does not assign these weights.
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Fig. 3. Prediction of the log(MTBF ) with the final model for the test data-set. The
green line depicts the mean of the predictive distribution and the green shaded area
the 95% confidence intervals. The blue dots mark the actual observed field reliabilites
which are almost always contained. Note that the different converter types were ordered
by the mean of the predictive distribution for illustration purposes.
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Fig. 4. Estimated feature weights for the prediction of the MTBF . This is to show
that irrespective of the chosen algorithm a similar model is learned. For all models
the most pronounced feature is the logarithm of the quantity of converters per type
(log(Quantity)).
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Choice of Systems In order to illustrate the influence of the choice of systems in
the data-set we will subsample the training data items. Instead of 168 converter
types only 42 types are used to learn a predictive model. The predictions of this
model are shown in figure 5. Note that the 95% confidence interval significantly
grows in comparison with figure 3 and that the predictive distributions become
noisy for some estimates. The BAR learning algorithm has shown to be more
robust for fewer data items to learn from. The MSE for the test set is shown in
table 3 b).
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Fig. 5. Prediction of the log(MTBF ) with the final model for the test data-set using
only 42 instead of 168 training data items. The green line depicts the mean of the
predictive distribution and the green shaded are the 95% confidence interval. The blue
dots mark the actual observed field reliabilities which are almost always contained.
Note that the 95% confidence interval significantly grows in comparison with figure 3.

This illustrates that a reduced amount of systems as training data reduces
the confidence of the reliability predictions. The accuracy as measured by the
MSE decreases slightly. This is consistent with the expected behaviour.

Choice of Reliability-Indicators in this section the influence of the choice of
reliability-indicators shall be studied. It is expected that their choice largely in-
fluences the quality of the predictions. Since we already know from the training
model which features and, hence, which indicators are relevant, we will remove
the most important reliability-indicator - the quantity of converters per type - to
test if the algorithms are still able to predict the field-reliability with a certain
confidence.

Figure 6 shows the predictions of the model as trained by the ARD algo-
rithm for the test data-set. The 95% confidence interval is significantly larger as
in figure 3. The removal of a single feature leads to very uncertain predictions.
This form of direct feedback greatly facilitates the choice of reliability features.
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Fig. 6. Prediction of the log(MTBF ) with the final model for the test data-set using
all reliability-indicators except for the quantities of converters per type. The green line
depicts the mean of the predictive distribution and the green shaded area the 95%
confidence intervals. The blue dots mark the actual observed field reliabilities which
are almost always contained. Note that the 95% confidence interval significantly grows
in comparison with figure 3.
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Fig. 7. Estimated feature weights for the prediction of the MTBF . Note that for the
ENCV algorithm model no feature is activated.
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Table 3 c) shows the obtained MSE by the different algorithms. Compared
to the reference model 3 a) the errors increased. This illustrates that the choice
of features is very significant.

Choice of Feature Mapping There is in principle no restriction for the mapping of
the reliability-indicators to input features. Here, the results based on a modified
mapping will be shown. It is similar to the reference model, except that second
order interactions of the numeric variables are accounted for. This means that

Φ(xnum) =
[
xnum, log(xnum), [xnum, log(xnum)] · [xnum, log(xnum)]

T
]T
. (8)

One would expect that based on these more complex features a more accurate
model can be learned which comes at the cost of the interpretability of the in-
dividual feature weights.
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Fig. 8. Prediction of the log(MTBF ) with the final model for the test data-set using
all reliability-indicators except for the quantities of converters per type. The green
line depicts the mean of the predictive distribution and the green shaded are the 95%
confidence interval. The blue dots mark the actual observed field reliabilities which are
almost always contained. Note that the 95% confidence interval significantly grows in
comparison with figure 3.

Figure 8 shows the predictions of the model trained by the ARD algorithm
for the test data-set. The 95% confidence interval is of a similar size as in figure 3.
The addition of non-linear feature functions does not improve the predictive ac-
curacy in this case.

Table 3 d) shows the MSE obtained with the different algorithms. Compared
to the reference model errors in table 3 a) the errors are of the same order. One
can conclude that for this kind of problem the addition of non-linear features is
not necessary.
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Table 3. The mean squared error between the (mean of) the predicted values and the
true observed field values of the test data-set for different modifications of the reference
model - a) MSE for the reference model, b) MSE for a reduced set of systems, c) MSE
for a reduced set of reliability-indicators, and d) MSE for non-linear numeric features.

ARD BAR GP ENCV SVR

a) 0.4007 0.4332 0.4644 0.753 0.4262

b) 0.4654 0.6175 0.6174 0.7877 9.233

c) 1.3291 1.1594 1.1517 1.1490 24.041

d) 0.6703 0.4394 0.4447 0.6333 14.073

In the last section it was demonstrated that an algorithm fulfilling the initially
stated requirements (equations 6 and 7) supports the user to find an accurate
and reliable model for the prediction of field-reliablities based on easy-to-collect
data.

Prediction In the preceding section a validated statistical life-cycle model was
learned from field-data. Using this model, the expected field-reliability for fu-
ture power converters can be predicted at a conceptual design stage. The power
converters will be used for a hypothetical new accelerator which will be build
and operated at CERN. This is relevant, since we learn a model based on power
converters whose life cycle is similar in terms of technical, organizational and
human factors 17.
Using the data-set which was collected one can learn a predictive model based
on reliability indicators which are available at early design stages by using e.g
the ARD or BAR algorithm. The learned model can be used to predict the mean
and the 95% confidence interval of the expected field-reliability metrics. Since
it is already known that the quantity of converters per type is highly relevant,
recommendations18 for the overall powering strategy for a new accelerator can
already be given at the conceptual design stage.

Discussion One of the major insights created by applying the methods to the
use-case is that the field-reliability is strongly dependent on the quantity of con-
verters per converter type. It would be interesting to study this dependence for
other use cases. The explanation for such a characteristic could be that through-
out the life cycle reliability enhancing methods and processes are used for devices
which are produced in higher quantities. E.g. the production of larger quantities
can be optimized and leads to a decreased variability in quality and a higher
field-reliability.
The method would be capable to learn a statistical model for the whole life-cycle

17 If the new converters would be operated at another institute, the model might not
be valid.

18 E.g. the recommendation to reduce the number of power converter types and, hence,
increasing the number of converters per type.
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of systems. However, to do so more reliability-indicators should be gathered than
was done in this work. this can be considered for future work. However, the pur-
pose of this limited set of reliability-indicators was to illustrate that even with
very high-level data a good model can be trained. It has to be pointed out that
the approach is empirical and that causal relationships have to be identified or
confirmed by further studies or experts.

5 Conclusion and Outlook

An approach was presented to predict the field-reliability of complex electronic
systems at an early development stage based on learning a statistical life-cycle
model from similar operational systems. It was demonstrated that the field-
reliability can be predicted accurately based on very few reliability-indicators.
Compared to existing methods this implies a reduced data collection effort and
an integrated quantification of predictive uncertainty based on the granularity
of the available information and the implicit randomness of the investigated pro-
cess. The results of such a study uncover reliability relevant factors which lead
to improved system designs at very early stages of design.
Sparse Bayesian Regression methods are the key to efficiently learn an accu-
rate model in an iterative process. Bayesian methods provide feedback on the
selection of data-items and their reliability-indicators. The confidence in field-
reliability predictions is automatically quantified with respect to the available
data and the randomness inherent in the problem.
Future research can focus on more detailed data-sets in terms of reliability-
indicators. Based on that, further relevant processes for the field-reliability of
systems may be uncovered.

References

1. Barnard, R.: What is wrong with reliability engineering? In: INCOSE International
Symposium. vol. 18, pp. 357–365. Wiley Online Library (2008)

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

3. Blondel, M., Brucher, M., Buitinck, L., Cournapeau, D., Dawe, N., Dubourg, V.,
Duchesnay, E., la Tour, T.D., ander Fabisch, A., Fritsch, V., Ghosh, S., Gollonet,
A.S., Gorgolewski, C.F., andre Gramfort, A., Grisel, O., Grobler, J., Halchenko, Y.,
Holt, B., Joly, A., Jones, T.R., Kastner, K., Kumar, M., Layton, R., Li, W., Losi,
P., Louppe, G., Metzen, J.H., Michel, V., Millman, J., andreas Müller, Niculae,
V., Nothman, J., andre Passos, A., Pedregosa, F., Prettenhofer, P., Bertr, Thirion,
anderPlas, J.V., Varoquaux, N., Varoquaux, G., Weiss, R.: Scikit-learn user guide
(2018), http://scikit-learn.org/stable/user guide.html#

4. Denson, W.: The history of reliability prediction. IEEE Transactions on reliability
47(3), SP321–SP328 (1998)

5. Elerath, J.G., Pecht, M.: Ieee 1413: A standard for reliability predictions. IEEE
Transactions on Reliability 61(1), 125–129 (2012)



Pr
ep
rin
t

20 L. Felsberger et al.

6. Foucher, B., Boullie, J., Meslet, B., Das, D.: A review of reliability prediction
methods for electronic devices. Microelectronics reliability 42(8), 1155–1162 (2002)

7. Gauch, H.G.: Scientific method in practice. Cambridge University Press (2003)
8. Gullo, L.: In-service reliability assessment and top-down approach provides alterna-

tive reliability prediction method. In: Reliability and Maintainability Symposium,
1999. Proceedings. Annual. pp. 365–377. IEEE (1999)

9. Johnson, B.G., Gullo, L.: Improvements in reliability assessment and prediction
methodology. In: Reliability and Maintainability Symposium, 2000. Proceedings.
Annual. pp. 181–187. IEEE (2000)

10. Jones, J., Hayes, J.: A comparison of electronic-reliability prediction models. IEEE
Transactions on reliability 48(2), 127–134 (1999)

11. Leonard, C.T., Pecht, M.: How failure prediction methodology affects electronic
equipment design. Quality and Reliability Engineering International 6(4), 243–249
(1990)

12. MacKay, D.J.: Bayesian interpolation. Neural computation 4(3), 415–447 (1992)
13. Miller, R., Green, J., Herrmann, D., Heer, D.: Assess your program for probability

of success using the reliability scorecard tool. In: Reliability and Maintainability,
2004 Annual Symposium-RAMS. pp. 641–646. IEEE (2004)

14. O’Connor, P., Kleyner, A.: Practical reliability engineering. John Wiley & Sons
(2012)

15. PANDIAN, G.P., Diganta, D., Chuan, L., Enrico, Z., PECHT, M.: A critique
of reliability prediction techniques for avionics applications. Chinese Journal of
Aeronautics (2017)

16. Pecht, M.G., Das, D., Ramakrishnan, A.: The ieee standards on reliability pro-
gram and reliability prediction methods for electronic equipment. Microelectronics
Reliability 42(9-11), 1259–1266 (2002)

17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

18. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning. the
MIT Press 2(3), 4 (2006)

19. Zio, E.: Reliability engineering: Old problems and new challenges. Reliability En-
gineering & System Safety 94(2), 125–141 (2009)


